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predicted by (10) is very small, we estimate the
background, coming from terms which have the
normal (rather than anomalous) behavior as the
pion momenta approach zero, to be smaller by a
factor of (p, /M)' or (~k„~/M)', where M is some
inverse range of interaction.
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That is to say, in all models for which the axial cur-
rent is conserved in the absence of anomalous terms,
taking here the conserved axial current, zero-mass
pion view of PCAC which we shall henceforth adopt.

6S. Brodsky, T. Kinoshita, and H. Terazawa, to be
published.

YMeaning that we will work only to first order in pho-
ton frequencies and to zeroth order in pion frequencies.

This is the rotation generated by the third component
of the axial charge Q&~5). 7(. and 0 will transform as 6m

=0.5~, 60.=-«~. If we have isospin —
2 Dirae particles,

they transform according to &(I) = 27@56~$ ~ ~, etc.
This kind of model was first applied to 7r —y+y by
Bell and Jackiw, Ref. 3.

-i (S-1) is the interaction Lagrangian density inte-
grated over all space-time. We remove the integral
to obtain the Lagrangian density.

For example BZI IBzz& in a y5 coupling theory, for the
baryon-loop graphs, is G, Try&G(x, x) where G(x, x) is
the baryon propagator in a11 external fields.

The calculation was performed using Schwinger's
gauge-invariant Green's function for the baryon, modi-
fied to include external ~3 and 0. fields. The results
will be published elsewhere. See J. Schwinger, Phys.
Rev. 82, 664 (1951).

For a detailed model embodying the restricted ehiral
rotation see Hell and Jackiw, Ref. 3.

Schwinger, Ref. 11, Eq. {5.12).
If the symmetry is broken by a pion-mass term,

then we get a PCAC theory; and all of our results
would be obtainable in an extrapolation to zero pion
four-momenta.

For a review of the nonlinear representation method
and its applications, see S. Gasiorowicz and D. Geffen,
Rev. Mod. Phys. 41, 591 (1969).

That is, we pick out the part quadratic in E» which
has to do with the 2y processes. A peculiarity of the
baryon-loop calculation is that processes with more
than two photons do not appear in the anomalous terms.
In our approach, this follows from Eq. (8) and dimen-
sional arguments only. An additional general conclu-
sion we can draw from Eq. (8) is the absence of anom-
alous terms for even numbers of pions emitted, as al-
ready noted by Adler, Ref. 2.

See, for example, K. C. Wali, Phys. Rev. Lett. 9,
120 (1962).

Precisely, this means the following: In a theory
with massless pions and conserved axial current, the
matrix element for y+p —z +~ +m does not vanish
for vanishing m() momentum, as demanded by a formal
application of current algebra.
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Using the T(N phase shifts and fixed-t dispersion relations we have calculated (to first
order in symmetry breaking) the nucleon matrix element of the current algebra "sigma"

term, and found a value of about 110 MeV. This is an order of magnitude larger than

the prediction of the (3, 3~) (3",3) model for chiral symmetry breaking and it indicates

that SU(2) S SU(2) breaking is comparable to SU(8) breaking.

The basic idea of chiral symmetry is that the

strong Hamiltonian (density) can be meaningfully

written as the sum of a SU(3) SSU(3)-invariant
piece Ho, plus a correction (small in some sense)
JJ'. It has become popular to look at H' itself as
the sum H'=H, +H, IJ, breaks bot. h SU(3) @SU(3)
and SU(3) but conserves SU(2) SSU(2); H, then

breaks SU(2) txISU(2) down to SU(2). It seems

safe to assume that SU(2) @SU(2) is at least as
good a symmetry as SU(3). Thus there are two

interesting cases: (i) SU(2) (xl SU(2) and SU(3)
breakings are comparable in magnitude, i.e. ,
H, - H„and (ii) SU(2) 8 SU(2) is a much better
symmetry than SU(3), i.e. , H, »H, . Case (ii) is
suggested but not required' by the smallness of
the pion mass.
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In the (3, 3*)(3*, 3) model of Gell-Mann,
Oakes, and Renner' and GIashow and Weinberg, '
we have H'=u, +cu, and H, =-,'(W2+()(&2u, +u, ).
Fitting the pseudoscalar meson masses gives
c=-l.25 or 2()f2+c) =0.05. We see that the

(3, 3*)% (3~, 3) model definitely falls into case
(ii). In particular, this model predicts that a
typical matrix element of H, should be about 10
MeV, i.e. , 0.05 times SU(3) breaking. It can be
shown' that other schemes, for example with IJ'
belonging to (8, 8), will generally correspond to
the opposing case (i). They have typical matrix
elements of IJ, with values around 100 to 200
MeV, the size of SU(3) breaking.

Unfortunately, objects like the matrix ele-
ment of the density JJ, between nucleon states, '
(N lH2(0)l», cannot be measured directly. How-

ever the closely related quantity, '

,-=-'Z(~l[e. ', [e.', H, (0)]II»
a=1

T ( v = 0, v~ = 0, q2 = 0, q
'2 = 0) = -4 f,2v~„,

T (0, 0, p, ', 0) = T (0, 0, 0, p.2) = 0, (3)

where T is related to the conventional mX invar-
i.ant amplitudes" A and 8 by T =A+ vB and is
isospin even; v=(p+p') (q+q')/4M; ra=-q q'/
2M = (f-2 p2)/4M; p. and M are the pion and nu-
cleon masses, respectively; and f, is the pion
decay constant (=0.74@. '). The amplitudes with
either one or two pions on shell may be expanded
in powers of p. (which is of order H, ):

(the nucleon matrix element of the "sigma" com-
mutator, Q,

' being axial-vector charges), can
be obtained from on-shell ~Ã scattering ampli-
tudes, ' provided that effects of second order in
JJ, can be neglected. ' A simplified derivation of
this connection goes as follows. Consider the
process v(q)+iV(p) —v(q')+X(p'). The Adler con-
sistency conditions (with two- and one-pion re-
ductions) are"

T(0, O, p', O) =T(O, O, O, O)+(s/sq')T(O, O, O, O)~'+0(~'),

T (0, 0, 0, p') = T(0, 0, 0, 0) + (&/eq ")T (0, 0, 0, 0) p.'+ 0 (p.')

T(0, 0, ', ') = T(0, 0, 0, 0) + (&/sq') T(0, 0, 0, 0) p. '+ (s/sq")T(0, 0, 0, 0) p, '+0 (p, '). (4)

Using Eqs. (2), (3), and (4), one can clearly ob-
tain an expression T(0, 0, p. 2, p2) accurate to or-
der p.', in which the off-shell derivatives do not

appear; it is

T (0, 0) = 4f ' „+0(H, '), (5)

where we no longer display the q', q" dependence
of the on-shell amplitude T(v, v2).

To compare Eq. (5) with experiment, we first
note that the point v= ~~ = 0 is clearly outside the

physical region. It can, however, be reached by
a fixed-t dispersion relation. Using existing re-
sults of vN phase-shift analyses, we have made

a thorough evaluation of the dispersion integral.
Our result is that T(0, 0) is roughly 1.7p.

which by Eq. (5) gives about 110 MeV for o~.
This is what one would expect in case (i) and

would appear to be in serious disagreement with
the (3, 3*) (3*,3) model.

Our computational method is as follows. Em-
ploying the usual broad-area subtraction method,
we define a new function,

0)&, 28' 2(a-8)

(& 2 P)H(& 2 P)Z- 8

which is equal to T(0, 0) when v= 0, which is real
analytic and satisfies an unsubtracted dispersion
relation. This dispersion integral for F(0),

which converges fairly rapidly, "is then evaluat-
ed using phase-shift analyses. The denominator
in F introduces a cut on the real axis (from v, to
v2) in the v plane, and the discontinuity of F
across this artificial cut is determined by the
imaginary and real parts of T. Thus it has the
effect of smearing the needed subtraction for T
over a region so that our results will not be over-
ly sensitive to errors in the phase shifts at any
one point. Furthermore, the presence of these
three parameters v„v„and P provides us built-
in checks on the compatibility of the phase-shift
solutions used with respect to dispersion re1a-
tions.

Since it is difficult to estimate the errors in
each one set of phase-shift analyses, we have
made our computation using all the different solu-
tions included in the Berkeley Particle Data
Group compi1ation. '2 The variation in the outputs
should give us some idea of the uncertainties in
the final result. Details of these calculations will
be published elsewhere; here we can illustrate
the general nature of the calculation by listing in
Table I some numbers obtained by using (A) the
CERN experimental phase shifts, "and (8) the 0-
to 350-MeV solution of Roper, Wright, and Feld, "
supplimented by the Berkeley or Saclay phase

5S5
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Table I. T(0, 0) computed in units of p, "with parameters v~, v2 (in units of p, ),
and P. Phase-shift sets A and 8 are as discussed in the text.

0.9
0.8
0.7
0.6
0.5
0.4
0.8
0.2
0.1

1.52, 2.85

A B

1.7 1.7
1.8 1.7
1.8 1.7
1.8 1.7
1.8 1.7
1.8 1.7
1.7 1.7
1.6 1.8
1.5 1.8

1.18, 1 96

A 8
1.6 1.9
1.6 1.9
1.6 1.9
1,6 1.8
1 ' 6 1.8
1.7 1.8
1.8 1.7
2.0 1.7
2.1 1.7

1.74, 2.29

A. B

2.0 1.6
2.0 1.6
2.0 1.6
2.0 1.6
2.1 1.6
2.1 1.6
2.2 1.6
2.2 1.6
2.3 1.6

2.07, B.18

A B

1.9 1.6
1.8 1.7
1.7 1.7
1.7 1,7
1.6 1.8
1.5 1.9
1.4 2.0
1.3 2.1
1.2 2.2

shifts at higher ener gie s."
For the parameters v, and v, the values" v,

=1.52', and v, =2.85JU, are close to optimal. This
allows us to sample ReV' over a large area while
avoiding the low-energy region E„~70 MeV
where there is very little experimental informa-
tion, and the region around E,=300 MeV where
the high- and low-energy phase-shift solutions
have to be joined. As P varies from 0 to 1, dif-
ferent. segments of the interval v, & v & v, are em-
phasized. The last three groups of numbers in
the table list the values of T(0, 0) computed with
three more sets of values for the parameters v,
and v, . One would expect more variations here.
The choice v, =1.18', and v, =1.96JU, makes the
dispersion integral sensitive to the real part of
T in the region F. , & 70 MeV, especially when p
is near 1. The second choice, v, = 1.74'. and

v, = 2.29 p, , emphasizes a small region part way
up the 3-3 resonance and presumably makes the
integral sensitive to the exact shape of the reso-
nance. Finally, with the choice vy 2.07)(f and
v, = 3.18p, the region E„~300 MeV begins to
make dominant contributions, particularly when

P is near zero. Clearly a disadvantage of placing
the subtraction cut too high up on the v axis is
that the D, I, G, ~ phase shifts, which are not
so well determined, become important.

Besides performing the computation with all
the different phase-shift solutions (and obtaining
numbers that are in general agreement with the
above-quoted result), we have made further con-
sistency checks. One was to evaluate the dis-
persion integral using a threshold subtraction
which we determined from the S- and I'-wave
scattering lengths of Hamilton and %oolcock. "
Another was to replace Roper's low-energy
phase shifts by an older ("model-independent" )
S- and P-wave solution of McKinley, "which is

adequate if v, and v, are Iow enough so that the
effects of D waves and the Roper resonance are
small. Both of these calculations gave results
consistent with those discussed above. Also, we
should note that our values for T(0, 0) lie within
the errors quoted by Adler' in his original evalu-
ation of the amplitude A~'~(0, 0).

Recently Bugg et al. "have measured the total
and differential cross sections of vX scatterings
in the range 70 to 290 MeV with an improvement
of one order of magnitude in its accuracy over
the previous data. By fitting the w'p total cross
section, with the CERN phase shifts for the small
waves as background, they have obtained a set
of new P33 phase shifts with significantly lower
values for the resonance mass and width. How-
ever the effect of these changes on T(0, 0) was
found to be unimportant. Thus we anticipate that
the qualitative nature of our conclusion should be
fairly stable with respect to future changes in
the mN phase shifts.

The known smallness of the isospin-even scat-
tering length" a, + 2a, is often associated with
the assumed smallness of 0„„.' In fact the scat-
tering length gives a value of the amplitude at
the physical threshold, T(p. , —@2j2M), which is
at least an order of magnitude sma11er than
would be suggested by naive extrapolation of our
value for T(0, 0). The way this appears to come
about is most interesting. Near the point v= vB
= 0, T can be approximated by'

T= ",' +T(0, 0)
M vg

[g„'/M + T(0, 0) ] v~' T(0, 0) v'—
v —vB

where g„ is the pion-nucleon coupling constant.
Taking into account the fact that T(0, 0) is posi-
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FIG. 1. Line of zeros ~f the amplitude (open circles)
in the Euclidean region. The two straight lines corre-
spond to positions of poles and threshold of v for fixed
v~. Shaded area is the physical region.
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tive and small compared to g„'/M, one easily
sees that near v= v~ =0, T is zero along v =~g,
X[MT(0, 0)] "'vs. This must be a segment of
a line of zeros of T. Such a line cannot leave the
real v-v~ plane in a region where Z' is analytic.
The zeros start out in the general direction of
the threshold, but if the line were a straight one
with the above slope it would miss the threshold
by a considerable margin. We have followed the
zeros numerically, As shown in Fig. 1, the
string of zeros leaves v= v~=0 with the expected
slope, then curves a bit and heads for a point
very close to the threshold, Needless to say,
this makes Z' very small there. Thus we see
that the present data seem to lead to a complete-
ly consistent, if somewhat surprising, picture.

Our numbers for (T» are in disagreement with
a number of previous estimates, notably those of
Kim and von Hippel. " We do not understand the
reason for this and would prefer not to speculate.

After this Letter was written, F. von Hippel in-
formed one of us (R.D. ) that he has begun some
similar calculations.

We are deeply indebted to S. Adler and C. Love-
lace for much helpful advice. One of us (T.P.C. )
would like to thank Dr. Carl Kaysen for hospital-
ity at the Institute for Advanced Study.
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