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Using new multipole analyses of low-energy pion photoproduction, we have examined the
possibility that the elect'romagnetic current does not commute with the axial charge 5'35.

Within errors, which are not as small as one would like, there is no evidence for a lack
of commutation. It is pointed out that the photoproduction amplitude which directly measures
this commutator receives very little contribution from the large, well-determined M~+

multipole and is dominated by the more exotic multipoles like &i+.

wN1

X~M(x) = —,'Jtd'y D""(x y)T*( Z„—(y)JE (x)), (3}

D~'(x-y) being the photon propagator. Partial
conservation of axial-vector current (PCAC} then
informs us that in the limit of zero four-momentum
q of any one of the neutral pions, the amplitud. e is
related to the matrix element of a commutator:

a(g-3v;q=0) ~ &2vI[E,', 30™(0)]Ig), (4)

which vanishes by Eq. (1). Thus current algebra
predicts that, to zeroth order in SU(2} SU(2}
symmetry breaking, this decay process is for-
bidden.

The second difficulty that we will mention here
is the formula, 4 valid in the SU(3) 8 SU(3)-sym-
metric limit, for, the electromagnetic mass shifts
of the pseudoscalar mesons, m's and K's. The

fn Qell-Mmm's SU(3) SU(3} algebra of currents,
the'assumptionithat the hadronic electromagnetic
current transforms as a U-spin singlet member
of the (1,8}$(8, 1}representation leads to the
following commutation relation~:

[F,'(x ),J ~~ (x', x)] = 0, a =3, 6, 7, or 8.

That is, the electromagnetic current commutes
with an electrically neutral axial charge. The
purpose of this note is to discuss several questions
concerning the validity of this commutation rela-
tion. A related, although rather different, analysis
has recently been carried out by %einstein. 2

In the applications of current algebra there are
a number of outstanding difficulties that couM
possibly be traced to the vanishing of the com-
mutator in (1).

First of all, there is the g- 3m puzzle. ' In the
usual picture this decay proceeds via a second-
order virtual electromagnetic interaction with
amplitude

symmetry is assumed to be realized in the "Qold-
stone mode, " i.e. , the eight pseudoscalar mesons
are massless. It then follows that in the presence
of a symmetry-breaking perturbation [in this case
the K~ of;Eq. (3}] the mesons acquire masses

Again using the standard PCAC technique, we re-
late it to a double commutator:

1'his and Eq. (1) give the result that to first order
in the fine-structure constant 0. and zeroth order
in the strong symmetry-breaking parameter r, the
electromagnetic self-energies of the neutral
mesons w and. E are zero. The usual assumption
that mass splittings in a given isospin multiplet
are purely electromagnetic in origin and U-spin
invariance then lead to the formula

m~+ -m&o =m~+ -m~o .2 2 . 2 2. (6)

The above two results are clearly in violent
disagreement with experiments. Among possible
resolutions is the possibility that Eq. (1) does not
hold in nature; namely, in the electromagnetic cur-
rent there exist, besides the (1,8)$(8, 1) octet
piece, extra terms. These could be, for example,
an SU(3) singlet or a member of a 27 (including
possible isotensor currents) or even an 8 that
does not belong to the (1,8)$ (8, 1). Clearly, in
order to resolve the above-mentioned difficulties,
the "anomalous" currents must have a-magnitude
comparable to the normal one. Consequently, a
typical matrix element of the commutator in
Eq. (1) would have to differ significantly from
zero. In the following we shall discuss the present
experimental constraint that may be placed upon
such a possibility.

Before proceeding to the main topic of this
paper, however, two possible sources of confusion
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&8r VB

M v 2

Kp egq v
B 2M M VB2

(8)

where g„ is the pion-nucleon coupling constant and

K~ is the proton anomalous magnetic moment
(measured in nuclear magnetons, e/2M; ~~ = 1.79).

Reduction of the final neutral pion in the ampli-
tude

d4~e-f~qx g + ~2 P T ~ PM 0 P

and a straightforward application of PCAC leads,
in the q - 0 limit„ to the result'

should be mentioned. First, we are not talking
about the anomalies found by Adler and by Bell
and Jackiw, ' which may be operating in m yy.
This type of anomaly can appear only in processes
involving two or more (real or virtual) photons
and will not explain the puzzles mentioned above.
More explicitly, we are looking for a violation of
Eq. (1) in the strong interactions alone. Secondly,
we will assume that any part of Jz which fails to
commute with E,' has the usual charge-conjugation
properties. Thus, we are ignoring a possible class
of theories where the failure of Eq. (1) is related
to C violation. 6'

Consider the matrix element of the commutator
in Eq. (1) with a=3 between proton states of mo-
menta p, and p, :
(p, l [Z,', Z', (0)] I p, ) = eg„'(r/2-M)@p. )r &~„&"&(P,),

(7)

with

k=p, —p, and O'=0.

Equation (1) demands that g =0. We note that g is
directly related to a certain linear combination of
invariant amplitudes for the photoproduction of a
neutral pion,

r(h) +P(P, )-v'(q)+P(p. ),

although, at the "soft-pion point, "q=p. Thus,
given the results of multipole analyses, ari ap-
proximate evaluation of f is possible. We shall
follow the standard Chew-Goldberger-Low-Nambu
notation' and denote the four invariant amplitudes
as A, B, C, and D. They are functions of v=

(p, +p, ) q/2M, ve = q k/2M, and q'. We shall
also make the separation A =AB+A, etc. , where
AB is the contribution of the Barn-approximation
diagrams to the invariant amplitude A. . Thus, for
example,

(Other non-Born amplitudes vanish in this limit. )
In 1966 Adler and Gilman" had already attempted

a numerical evaluation of the isospin-even ampli-
tude A ' at v= vB=0. Our reasons for coming
back to this problem are twofold: At the time of
their work, the low-energy photoproduction experi-
ments had not advanced to the degree that detailed
model-independent multipole analyses could be
made. Thus, in the dispersion integrals, Adler
and Gilman kept only multipoles which resonate
around the N*(1238) and the N*(1520), and the non-
resonant S wave. Since their investigation, the
amount and quality of data have greatly improved,
to the extent that energy-independent multipole
analyses are at last being made. ' This provides
us with relatively reliable knowledge of a number
of the nonresonant multipoles, each of which also
makes, as we shall see, important contributions
to the dispersion integrals. Secondly, we would
like to point out that there is a linear combination
of the invariant amplitudes 4+ vC (= T) whi—ch, at the
soft-pion point, is directly related to the param-
eter g [see Eqs. (8) and (9)]":

T (v = ve = q =. 0) =-
2M M

Using this amplitude it can be shown that the
value of f is insensitive to the resonant M„wave;
its contribution to T in the low-energy region is
kinematically suppressed. '4 Thus for our purpose,
the result deduced from Ref. 10 cannot be taken as
final since at that time the only reliably known

multipole was M,+ (which makes the dominant
contribution to A„but not to T or g). In fact, from
a cursory examination it seems that contributions
by ther lt pol s g Eo+ a- Ex+ and
etc. , can easily add up to a value of g comparable
to ~~ giving a large violation of Eq. (1). There are
also some differences of attitude between Ref. 10
and us. While the main concern of Ref. 10 is to test
the validity of PCAC, we shall, on the other hand,
assume at the outset that PCAC is good to (10-20)/p
and we only wish to examine the possibility that
the commutation relation in Eq. (1) may be in-
correct, giving rise to a large, say 50%, violation
of the (& =0) low-energy theorem. Consequently,
for our purpose we shall not attempt any calcula-
tion of the corrections coming from the pion being
off the mass shell, q'=0. But we expect that if
g =0, the absolute value of T for any values of
v', VB, q' of the order p, ,' should not be signifi-
cantly greater than 0.015',„', that is, 20% of

~—'=0.0824'„' (for „g' 4/v14. ).8

A(v= vs =q =0)- K~ eg„g eg„
2MM 2M M (9)

The multipoles used for our calculation are those
of Berends and Weaver, "who have made an
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FIG. 1. Real parts of amplitudes A and 7.' at && =0
as computed from multipoles of Berends and Weaver.
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energy-independent analysis of pion photoproduction
off a proton at 27 energies below the photon lab
energy of 450 MeV, These authors used all exist-
ing data, and a continuous solution was found.
This was then supplemented at higher energies
(up to 1200 MeV) by the older and energy-depend-
ent solution of %balker. "

Pigures 1 and 2 display the real and imaginary
parts of the amplitudes (at ve = 0)" computed from
multlpoles. That g could significantly dlffex' fx'om

zero is indicated by the values of amplitudes,
T=-0.06p, , ', A.'=0.12',,=2, at v=1.1-1.3p, ~.
However, we should not take this too seriously.
The values of multipoles are not reliable at these
extremely low energies (below 200 MeV} where
polarizRtion Rnd asymmetry datR still do not exist

FIG. 2. Imaginary parts of amplitudes A and T
at v& =0 as computed from multipoles of Berends and
Weaver {solid symbols) and Walker (open symbols).

and differential cross-section data are not Rbun-

dRnt ..

In the following, fixed-t dispersion relations
will be used to compute values of.amplitudes at
v = v~ =0. Even though A Rnd T are expected to
satisfy unsubtracted dispersion relations, " we
shall still make a subtraction so that our final re-
sults mill be almost completely determined by the
multipoles at energies around 200-400 MeV,
where their values are the most reliable. " So
that our final result mill not be overly sensitive to
errors in multipoles at any one point, we make
the "broad-area" subtraction by placing an arti-
ficial cut from v, =210 MeV to v, =2VO MeV:

2 2
v, 'sv,"' ~' '~ dv" ImT(v', 0) "2 dv" ReT(v', 0) sinps+imT(v', 0) cospm

2 (v R vt2) 5(v 2 vt2)1 s g vtm
'

(v&2 v 2) 5(v 2 vt2)1
0 l.

dv'2 ImT(v, 0)
v~

~ ~
~

~

~ ~

~ v~" (~"- ')'( "-~')' ')'

where vo = p, , + p, ,'/2M and P is a parameter
(0 & p & 1). A similar dispersion, relation holds
for A(0, 0). A subtraction made in this form also
spares us the problem of evaluating principal-
value integrals, and thus makes the numerical
computation easier. In Table I results of the cal-
culation are shown for various values of P. The
subtraction cut is placed low enough so that the
last integral in Eq. (11)is rapidly convergent. In
practice we have cut it off at v= 1200 Me7, but
actually the contributions from the high-energy
region (v&450 MeV), where Walker's multipoles
have to be used, are negligible; they are typically
+0.003 y. „"' (Ref. 19) for T and -0.002', ' for A,
and thus mell below the over-all uncertainties ex-

pected in the final results. The variation of re-
sults mith P.gives us some idea of the compatibility
of the multipoles used with respect to dispersion
relations. This amount of uncertainty (=0.01', , ')
is also indicated by the difference between tmo
sides of the kinematic equality:

A(0, 0) —T(0, 0) = ~»

With this uncertainty and the 10-20/0 PCAC
correction in mind, we can conclude that the pres-
ent photoproduction data are compatible with (but
do not require) Eq. (1) and & =0.

The contributions to the dispersion integrals
from each of the multipoles are shown in Table D.
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TABLE I. Values of ~- photoproduction amplitudes (in
units of p, ~ ) at & = vz =0 computed for various values of
P and v~=210 MeV and &2=270 MeV in Eq. (11). Of Eg.
(1) holds and PCAC corrections are negligible, the ex-
pected values of T(0, 0) and A(0, 0) are 0 and 0.082, re-
spectively. ] T(0, 0) A(0, 0)

TABLE II. Multipole contributions to the dispersion
integral with a broad-area subtraction (P = 0.5). [If Eq.
(1) holds, the expected totals for T(0, 0) and A(0, 0) are
0 and 0.082, respectively. ]

T(0, 0) A(0, 0)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

-0.019
-0.014
-0.011
-0.010
-0.009
-0.010
-0.011
-0.012
-0.015

0.067
0.073
0.077
0.080
0.081
0.082
0.081
0.080
0.078

It is clear that the smallness of T(0, 0}is the re-
sult of a cancellation among a number of multi-
poles, each of which makes important contribu-
tions. It would certainly be desirable to have a
more accurate determination of the nonresonant
multipoles which make up the bulk of T. If T were

&0
g(

&2+

g
Mg

M2

M2+
M3
Ms
Total

-0.022
-0.023

0.041
-0.001
-0.008

0.000
-0.004

0.010
-0.001
-0.003

0.000
0.001'

-0.009

-0.019
-0.011
-0.007

0.000
0.001
0.000
0.033
0.092

-0.001
-0.009

0.000
0.002
0.081

really known to (say) 10%, one would be able to
make a much more precise statement about the
possibility that g is nonzero.
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