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We show that the general behavior iqtii' ~i It W'~(qt, ~) -E'~(~) holds in the scaling region.
W' is the absorptive forward Compton amplitude with virtual-photon helicity indices a, b.
This leads to readily observable consequences in the azimuthal angular distributions of the
semileptonic processes l+P l'+p&+. ~ +P +X and l+l' P&+ ~ ~ ~ +p„+X, where P; are the
detected hadrons, and in deep-inelastic scattering of leptons on polarized targets which includes
polarized nucleon, virtual photon, and Reggeon. A study of the tensor properties of the light-
cone expansion shows that, due to competition of certain higher-twist contributions, relations
involving E'~ for a & b are more model-dependent than relations involving only E". Ambi-
guities which arise in gauge completions of light-cone expansion are illustrated by certain
scaling-function sum rules.

I. INTRODUCTION

Consider the absorptive part of a general for-
ward Compton amplitude (Fig. 1),

& &(&)&(a)+
p I/ y

where J„ is the hadronic current. The initial and
final states may have different helicity labels
(they are, of course, of identical momentum con-
figurations). The virtual photon has momentum q;
its initial and final helicities are a and b (a, b = 0,
+1). In general the scattering state in Eg. (1.1)
may be a multiparticle state with momenta P„.. . ,
P„. For the sake of notational simplicity we de-
note it by a momentum label I' and helicities e
and P. Similarly the variable &u generically de-
notes the set {&u, = —q'/2qp;). Furthermore, we
do not exhibit on the left-hand side of Eq. (1.1)
information not essential for our considerations
(e.g. , the dependence of W'~ on n, P and on P;P, ).
In the simplest electroproduction process (for ex-
ample the MIT-SLAC single-arm unpolarized tar-
get experiment) one only measures W" corre-
sponding to Eg. (1.1) with a single (spin-averaged)
nucleon state and a=b. In this paper we shall,
however, concentrate on the scaling properties of
W" for acb. Such amplitudes shall be referred
to as off-diagonal structure functions.

We now state our main result: In the Bjorken
scaling limit' of q' -~ with e fixed (more ex-
plicitly, we take the generalized Bjorken limit of
q'--~ with {~,] and {P,P~] fixed), W" behave

according to the scaling law

(1.2)

The off-diagonal structure functions are in gen-
eral accessible to measurements in the following
two types [(A) and (B)] of semileptonic process-
es.

(A) I+P, -/'+P, + +P„+X, (n) 2)

where P, P„denote the (n —1) observed had-
rons [Fig. 2(a)]. Generally the target is unpolar-
ized and no final polarization is observed. (In
this category we can also add the crossed (col-
liding-beam) reaction [Fig. 2(b)]: I+ l'-P, +P,
+ ~ ~ ~ +P„+X (n ) 2) to which all our remarks may
be applied. )

where p is a polarized target. In (A) and (B) X
denotes the missing hadron complex, E and l' are
the initial and final leptons. Although in this pa-
per we shall work explicitly only with electropro-
duction, it will be evident that our result (1.2)
applies, without modification, to weak production
processes as well. We now discuss the kinemati-
cal features of these two types of processes sep-
arately.

(A) In the one-photon-exchange approximation,
process (A) has the general azimuthal angular
distribution

I=I, +I, cos(b+ I, sin(b + I4 cos2$ + I, sin2$ .

In the laboratory the angle (b is defined by
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q(a) q(b) ~"«', {;),{p;p,))-&"(q',{ /, ), {p;p/))

xv, ~' '~ (i j=1, . . . , n)

(1.6)

P„

FIG. 1. Generalized forward Compton amplitude with

initial and final photons in helicity states a and b.

I xl' (1 —1') xp'
Il I'I I(l —I')xp'I '

where p' is any momentum formed out of the ob-
served hadrons. (We note that Q should not be
confused with the conventional laboratory azi-
muthal angle contained between planes spanned
by l with l' and p, respectively. It represents a
generalization of the Treiman-Yang angle and
has been mentioned by a. number of authors. ')
For n=2 (i.e., single coincidence electroproduc-
tion') parity inva, riance implies that I, = 0, and

further, if the lepton beam is unpolarized, that

I,=o. It is straightforward to show that the co-
efficients of the cos(( a —t/) Q) and sin(~ a —t/~ Q)
terms in (1.3) are directly proportional to semi-
connected parts of W'~ as shown in (1.1). (For a
discussion of coincidence electroproduction kine-
matics, see Ref. 3.) A number of authors' have
pointed out that the scaling behavior of these
structure functions is expected to be the same as
the Qll absorptive amplitudes W'~. (A more pre-
cise statement on this question will be given in
Sec. III.) Consequently, our result (1.2) implies
that P-dependent terms scale away in the Bjorken
limit as

(1.4)

2 ~ 3
f

2f 1/2 4 ~ 5
/

2f l
Q' Q'

l 1

This feature should be relatively easy to observe:
One does not need to identify the detected final
hadrons and one may also integrate over all other
variables as long as the basic requirement of
large q' and {qp, ) is satisfied.

Comment: Abarbanel and Gross' have derived
the behavior

as v, =qP, -~ with v, /v, and q' fixed, in other
words, in the target-fragmentation region. Their
derivation is based on Mueller's picture of inclu-
sive reactions, factorization, and the assumed
M =0 nature of the leading trajectory o.. (M is
the so-called Toiler quantum number. ') We note
that our result Eq. (1.2) is not necessarily im-
plied by Eq. (1.6). Rather, they are complemen-
tary in the sense that if the scaling and Hegge
limits may be interchanged, ' Eq. (1.6) dictates
the small &u, behavior of E"(&u) in Eq. (1.2) with

&u,./&u, fixed, namely, that'

&"(~)-(~ ) "'~' '~f"({~/~, ),{p~p)),
(1.'I)

where f'~ is an unknown function. In other words,
Eqs. (1.2) and (1.6) jointly imply that as

~

q'~ -~,

~

q2~-n+(4-5(/ayah({v /v ) {pp )) (1 6)

where y' is an unknown function.
(B) It is obvious that the off-diagonal structure

functions are also accessible in the total inclusive
electroproduction (n = 1) when the target is polar-
ized. W" with aub is just the usual (two-body)
spin-flip forward Compton amplitude. In practice
one may consider deep-inelastic scattering on

(i) a polarized nucleon, (ii) an off-shell photon

[Fig. 3(a)], and (iii) a Reggeon [Fig. 3(b)]. Case
(i) has already received a good deal of attention
in the literature. ' " The two spin-dependent
structure functions vG, and v'G, are expected to
scale (see Appendix A). Case (ii) can be extracted
in a, colliding-lepton-beam experiment [Fig. 3(a)] .
A number of authors" have already considered
this limi. t with the spin of the "target photon"

X X

Pp
Pj

(a)

P Pl

(a)

FIG. 2. Process (A): (a) Coincidence electroproduc-
tion; (b) colliding-lepton-beam production.

FIG. 3. Process (8): (a) "Polarized-photon target"
as furnished by colliding-beam machine; (b) "polarized-
Reggeon target" R as provided by coincidence electro-
production.
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averaged (hence a=b}. Since in such processes
the photon in effect comes to us polarized without
cost, we present a detailed discussion of deep-in-
elastic scattering on a polarized spin-1 target in
Sec. IV. Case (iii) may be thought of as lepton
scattering on a target of continuous spin. It was
the subject of a recent study. ' All these results
illustrate the general kinematical theorem in Eq.
(1.2).

For want of a better phrase we will refer to the
behavior in Eq. (1.2) as a "kinematical suppres-
sion" of W'~for awb. This is in contradistinction
to what we call "dynamical suppressions, "which
cause E'i(v) to vanish for certain helicity com-
ponents a and b. The best-known example is pro-
vided by the Callan-Gross relation' which states
that, depending upon the spin structure of the un-
derlying dynamics, either Eo(0&v) or E++(~}van-
ishes. As we will see in Sec. 7 and Appendix A,
light-cone relations involving kinematically sup-
pressed structure functions are in general less
credible than relations not involving them. In
particular, we show explicitly in Appendix A that
the validity of certain sum rules depends on how

gauge invariance on the light cone is implemented.
The familiar single-arm situation in which the

scaling of W, and vW, leads to the scaling of W"
and TV" has fostered the erroneous impression
that the scaling behavior of structure functions
may be deduced from dimensional arguments
alone. " Qur result shows this to be a falsehood. "

We will give two derivations of our results Eq.
(1.2). The first derivation, to be given in Sec. II,
is less general and applies only to process (B).
It rests on O(4) symmetry and specific assump-
tions about the Bjorken-Johnson-Low (BJL) lim-
it." The second derivation involves the light-cone
behavior of the product of two currents and con-
stitutes Secs. III and V.

II. DISPERSION RELATION AND 8JORKEN-
JOHNSON-LOW LIMIT OF FORWARD

COMPTON AMPLITUDE

Consider the off-shell forward Compton amplitude

T'~ (v, q') =i d'xe"'(p(d)) T(JI'(x)J"(0)}(p(c))'
(2.1)

Qn the left-hand side v = P q and the helicity indi-
ces of target c and d have been suppressed (An-.
gular momentum conservation implies that a- c
=b —d.} Thus in general T'i stands for a number
of amplitudes depending on the target spin. Qur
convention for the photon polarization vectors is
as follows: For q ~ = (0, 0, 0, q') and q'& 0,

e~'~(q) =-(0, ~l, i, 0)/v 2,
e&'&(q) = (1, 0, 0, 0),

and

(2.2)

%e also note that under the interchange of JU. , v

indices in (2.1), S++, S+, S", and A+' are even,
and 8+' and A++ are odd.

To derive the scaling behavior of these ampli-
tudes we follow Bjorken's original procedure' of
applying the BJL (Bjorken-Johnson-Low) limit to
various dispersive representations of T'~. It may
be shown (see Appendix B) that such helicity am-
plitudes (forward scattering involving pairwise
identical particles) are free of kinematic singu-
larities in v (although not in q'). We learn
whether a subtracted or an unsubtracted disper-
sion relation holds by exploiting the O(4) symme-
try of forward scattering, which tells us that in
the Hegge limit of v-~ with q' fixed,

~ aa v~(o)- )e-1a-alt (2.3)

M is the so-called Toiler quantum number of the
trajectory n. (This behavior is most readily seen
in the Feynman-van Hove model. ") The leading
natural-parity trajectory is the Pomeranchukon
with n~(0) = 1; the present experimental data" on
the (real) photon inclusive reaction yP -nXap-''
pear to indicate that it is largely M =0." %e
shall also set M =0 for the leading unnatural-
parity trajectory n with n(0) &1. Thus S++, S+,
8", and A ' receive contributions only from nat-
ural-parity trajectories, whiIe the Regge asymp-
totic behavior of 8"and A++ is determined by

Cuts will not change our conclusion. "
The dispersion representations for 8'+ and S"

thus require one subtraction, while those for S+'
and 8' may be unsubtracted. Even though A+'
- v and A '- v & ', as odd amplitudes they also
satisfy unsubtracted dispersion relations.

S++(q", v) = S+"(q', v = 0)

v' ""dv" ImS"(q', v')
7T v v -v~l p02

(2.4a)

It is convenient to define crossing (in v) even am-
plitudes

S"(v, q') = T"(v, q')+ 7 ' '(v, q')

and odd amplitudes

A"(v q')= T"(v q')- T ' '(v q')

Thus there are six possible classes of amplitudes:
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= S'+(q', &u =~)

+ — d(d
+0

1 t"„„ImS"(q', v')
V 2-V2

PQ2

(u' "' d(u" ImS "(q' (u')

7T 40I2 (d2 (d/2
Q Q

(2.4b)

(2.5a)

(2.5b)

j —
3 VI VI2 V2

(2.6a)

(u "' d(ul2 rmA"(q' (u')

4 Q

where a;,- and b;,- are, respectively, antisymmet-
ric and symmetric in i and j. Hence in the BJL
limit

S'+, S", S', and A"-O(q, ') (2.'la)

S+' and A++-O(q, '). (2.7b)

Combining Eqs. (2.4)-(2. 'I) we obtain in the scal-
ing limit, -q' —~ (recall that &u= ——,'qo in this
limit),

ImTob(q2 ~) (
q2

~

-la bl/2Pab(&)- (2.8)

as promised.
Comment: For a c b, Im T" is not positive semi-

definite. For example, it may happen that ImS '
scales but

& 0
dross 'ImS"(w}=0.

In Sec. III we show that this is an unlikely possi-
bility from the point of view of the light-cone ex-
pansion.

Comment: For the semi-inclusive electropro-
duction process (A), the above procedure is ap-
parently not applicable since we would have to
write dispersion relations in the missing-mass
variable. This is in fact the only obstacle for an
identical derivation of Eq. (1.2) for process (A).

As usual v = -q'/2v and &u' = -q'/2v'. We also
wrote ImT'~(q', v') =ImT"(q', &u'). The disper-
sion representations for S", S, and A"
have the same form as S++, S ', and A++, re-
spectively.

We take the BJL limit: qQ-i~ with q=0. Since
&~&'~ has no time component, only T;&(qo, q=0)
enters in lim, &„T'~. We assume thatqQ~ 00

T -~+ ~ in the BJL limita) bg

III. LIGHT-CONE DOMINANCE IN A GENERAL
ELECTROPRODUCTION PROCESS

coup, =op /). (3.2)

As we shall see, our result (1.2) is related to the

It is well-known that for electroproduction pro-
cess (B) where no hadron is detected W" as
shown in Eq. (1.1) is directly related to the cross
section, and its behavior in the deep-inelastic
region in momentum space reflects the light-cone
structure" of the product of two currents in con-
figuration space. In this section we shall concen-
trate on the possible scaling behavior for struc-
ture functions of the semi-inclusive process (A) in

the Bjorken limit. It has been argued ' ' re-
cently that such a behavior may also be deduced
from light-cone dominance of a forward amplitude
as the one in Eq. (1.1). We shall not present in
this paper a detailed discussion of the kinematics
of a general coincidence electroproduction pro-
cess, but refer the reader to Ref. 3. We note
that the structure function for process (A) is only
a piece of the total absorptive forward Compton
amplitude (1.1}: It is the semiconnected part cor-
responding to the discontinuity in the missing-
mass variable (with all other variables fixed. ) It
has been conjectured4 that scaling behavior of this
semiconnected part is the same as the full ab-
sorptive amplitude, and that therefore its scaling
behavior may be deduced by examining directly
the light-cone structure of (1.1). Callan and
Gross" have shown that if the leading bilocal
operators appearing in the light-cone expansion
are in fact products of local operators (this is
the case for free-quark theory"}, then this con-
jecture is indeed true -they have shown that such
a light-cone structure contains the desired semi-
connected part. It should be noted that this ap-
proach to the question of scaling in semi-inclusive
process is in practice equivalent to the multilocal
light-cone expansion put forward by Ellis": In
effect both approaches allow one, in the Bjorken
limit, to move particles from out-state into in-
state and hence relate by closure the structure
functions to an expression as Eq. (1.1). Accepting
this argument the procedure to derive scaling is
then identical to the one we would employ in deriv-
ing scaling for the simpler process (B).

We parametrize the Bjorken limit by taking

q" = (g, 0, 0, g + m&a, )

with ( -~ and all other momenta (P, ) fixed with

P, at rest. We have in this limit

q'=op}, qp, =op), e~'~p, =og ),

and
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fact that polarization vectors have different asymptotic limits as given in (3.2).
To derive Eq. (1.2) we begin with the general light-cone expansion in terms of bilocal operators:

J„(x)J'„(0) = g„„S,(x, 0)(x' —ix,e) '+ x„x„S,(x, 0)(x' —ix,~) '+ (x„g„„+, x„g„)) V~(x, 0)(x' —ix,e) '
x ~~0

+(x„g„„—x„g„„)V~(x, 0)(x' —ixoe) '+c „,„x'A~(x, 0)(x'-ix,e) '+ T„„(x,0)(x' —ix,e) '+ ~ ~ ~,

(3.3)

where . indicates less singular terms. The bilocal operators can of course be expanded in terms of a
tower of local operators. We have assumed scale invariance at small distances" and that the leading
operators have twist equal to two [twist (r) —= dimension (d) -spin (J)]."We have also restricted ourselves
only to local operators belonging to the (j,j) representation of the Lorentz group (thus they correspond to
the M= 0 case of Sec. II). Noncanonical dimensions" may be readily accommodated by multiplying the right-
hand side of (3.3) by a factor (x'-ix,e)" . Equation (1.2) would then read W' -I(I'I ~' ~t~' in the scaling
region.

As an illustration consider the contribution of the S, term. %e have the matrix element of the bilocal
operator. [For notational simplicity we shall only consider the process (A) with an unpolarized target, and

no final polarization is measured. It will be obvious that this restriction may be trivially relaxed. ]

IS.(, 0)l{p;] &-=3.(( p;], (p,p;))
tl 8

(( da, exp I'P a„P x) S((aJ,(PP)).
l=l k m=x

Substituting into (1.1) we have (y" =q" +Q"-, a P")
n

IV" = e(')e((')*
i Q da, S, j d'xe')'"x)'x"(x'- fx,~) '

s

5

g da, 3, 1 —g a (d„-'-ie g a;(e"P,) P a, (~("P;)
m j

-g-(I t+I~t)&2F ~((s,,]. (P, P,].),

(3.4)

(3.5)

where in the last line we have used asymptotic properties of polarization vectors as shown in (3.2).
The contributions by all the bilocal operators to the various helicity structure functions are summarized

in Table I. (;ollecting the leading terms, we immediately obtai~ Eq. (1.2).
Remark: We note that the axial bllocal A (x 0) ln (3.3) gives a contribution to S g E'( ( E~& )6( )(I~8&

where Qz is some axial vector formed from the available momenta (and polarization vector) Naive . power

counting would mislead us to the conclusion S+'- O($ 'I'). However, explicitly we have

e P~~P ( e) +( e)q08 —(g(0)q g(0)g )(Q(+)g +&(+)@ )

—( (I2)&I2(g(+)(t +g(+)g ) (3.6)

and thus S"-O(g '~') as shown in Table I. We shall have further occasion to see manifestation of such a
purely kinematical cancellation when discussing deep-inelastic scattering on a spin-1 target in the next
section [see Eq. (4.8)].

TABLE I. The contributions by the bilocal operators
to the various helicity structure functions. (a)

q, Eju,

(0
(0
(0
~0

(-i/2
(-1/2
(-i/2

(c y (d)
P

FIG. 4. Kinematical notation for deep-inelastic
scattering on spin-1 target.
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With the notation we have established, it is easy to see that if the current commutator on the light cone
is the one given in the canonical quark-gluon model [see Eq. (4.8) below] the generalized Callan-Gross
relation W'0/W++ -0 as (-~ hoMs for the general process (A} and (B). This is hardly surprising from
the point of view of the parton model2' since the Callan-Gross relation follows from the property of the
virtual-photon-parton-parton vertex.

IV. QUARK-MODEL LIGHT-CONE ALGEBRA AND DEEP-INELASTK SCATTERING

ON A SPIN-ONE TARGET

In this section we illustrate our previous discussion by considering in some detail deep-inelastic scatter-
ing on a. (polarized) spin-1 target.

The kinematics of a forward Compton scattering on spin-1 target is illustrated in Fig. 4. The absorptive
part is (v=q P)

W"(q' v}=
)

d'x e"*
& p p "

I [4"(x), J "(0)] I p, g ') e „')e»' *

with

W P vkP (q P )e» a)e» b) 4 y» ~) y» 4) 4
p v t p

(4.1)

(4 2)

W"" p =(-W, g""+ W2ppp") g~ p+(-8', g""
+W4p "p")q~qp+ W, (g""g"p+g "pg "~)

+ W(P" g'"q'+P"g ""q'+P"g"'q" +P"g "'q')+ W( g"'g"'- g"'g"')
+ W (ppg xP qp pvgkpqp p pgvp q). +pPg p pqk)

where terms proportional to qp, q", p~, or pp have been dropped. The invariant amplitudes (W, ] are,
of course, functions of q2 and v; their relations to the helicity amplitudes (W«~) are explicitly given in

Appendix C.
e assumethat the light-cone commutator between currents has the structure given by the free-quark

model,

[&„( ), &, (0)l = [8'„...&'(, 0)+ „...&'(, 0)]»)'(.(»(")). ~ ~,
x2 0

(4.8)

where SppfyT gp fy gp 7 + AT gag gppgfyg e

The calculation leading to scaling behavior of [W,]. is straightforward. We introduce the bilocal matrix
elements

&P, 0")I&.(, 0)IP, 0»')&=P.[(e»') 0»"*)f +(4"' )(0'"*' )f,l".[(~ ' ~ "*)g, (~ )(0 ' * ~ )g.] :[(~' )~—»: * (~»' * ~ )0 ]h

(4.4a)

&P @'"I& (x o)IP 0"&=~e "0"@"'*(Pf +x g ) (4.4b)

where f, , „, g, , „, and f)', are functions of x.p
(and P'). Taking Fourier transform of these func-
tions and inserting them into Eqs. (4.1)-(4.4) one
readily obtains in the scaling region F, =2 (F,+2F, +4F,),I

(4. 'f)

W, --~ f, —= F, , vR' --—'A=E
5 2 5 0 (4.8)

vW, --ref, = „Fv' W---,'( f—2,'-~/g' l), )=—F

5 4 5 2 6

84) 8(d QQp
(4.9)

(4.5)

where F, =F;(~,P'). By inspe. ction, we obtain four
relations among the scaling functions:

Equation (4.6) is just the Callan-Gross relation.
Equation (4.7) looks less familiar but is in fact
also a "Callan-Gross" relation. It is easy to see
why. Consider the general case of scattering on
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a spin-J target. The argument of Callan-Gross
leads to the result that the spin-averaged longitu-
dinal structure function vanishes in the scaling
limit, i.e., P~ +&00„-0. By positivity we in
fact have W" —0 for each m. After using parity
invariance we can conclude that for integer-spin
target there are in general (/+ 1) independent
Callan-Gross relations, and for half-integer-spin
target, (J+ —,') relations. The relation in Eq. (4.8)
differs from the rest in that it is "pure1y kinemati-
cal." We have such a result whenever the axial-
vector bilocal operator is present in the light-cone
expansion. This has already been explained in Sec.
III [see Eq. (3.6)]. The relation in Eq. (4.9) will
be discussed in the next section. %'hen the scaling
behavior found in Eq. (4.5), together with Eqs.
(4.6)-(4.8), is translated into the language of helic-
ity structure functions (see Appendix C), it corre-
sponds exactly to our general result Eq. (1.2) with
the added quark-model result of Fao(v) =0. The
lesson is that helicity structure functions have
many advantages over the invariant structure
functions: The cross sections, the angular and
spin correlation, the positivity conditions, the
Callan-Gross relation, and, most of all, our re-
sult Eq. (1.2), when expressed in terms of helicity
structure functions, take on simple forms for the
whole class of inclusive and semi-inclusive elec-
tr oproduction processes.

Our intention is to apply the discussion of this
section to the two-photon process e 'e - e'e +X.

Many authors" have proposed that this process
be used to measure deep-inelastic scattering on
a virtual photon target and have given cross-sec-
tion estimates. That the light cone may be rele-
vant has been argued in the literature" (see Sec.
111). For simplicity we assume that operator
Schwinger terms are absent so that the amplitude
for the two-photon process is proportional to
(X~ 7(J„(x)Z„(0))~0). Referring to the cross sec-
tion given for example in Eq. (28) of Ref. 29 we
see that the scaling behavior in Eq. (1.2) leads
to the vanishing of terms proportional to cosx and
cos2y in the scaling region. (X is the azimuthal
angle defined in Ref. 29.)

V. LIGHT-CONE EXPANSION BEYOND

TWIST TWO

In the light-cone analysis presented in Sec. III
we allow only local operators that belong to the
(j, j) representation of O(3, 1), i.e., the bilocal
operators appearing in the expansion have only
symmetric indices. With this restriction the twist
classification is clearly useful since the tower
with the lowest twist dominates in Eq. (3.3).

In general, however, local fields belonging to
(j,j') with j xj ' may well contribute. We refer to
these fields as having M =-

~
j-j ~

x 0. In practice
this means we will have to allow bilocal operators
with antisymmetric indices (the notation
[o., P, y, . . . ] indicates that the tensor is totally
antisymmetric in these indices):

P( x)J"(0) = [M=0 terms as in Eq. (3.3)]+Ui,"'i(x, 0)(x' —ix,e) '+~~

+x~U, ~ "i'(x, 0)(x' —ix,e) "~2 +(p. —v)+x~x~U, " ~ (x, 0)(x' —ix,e) "&+(p —v)

+x x~g~ U~~ ~i(x 0)(x jx g)- +"4+x x Pi~ ~ ~ii i(x, 0)(x2 —jx e) (5.1)

The parameters 5, and ~ are related to the twist
of the local operators appearing in U, and V by
r(U;) =3+26, and r(V) =4+2m. Just as in Sec. III
one readily works out the contribution of these I
t 0 operators to the structure functions in the scal-
ing region (Table II).

We observe that for 5,. = re =0 the twist-three
operators U, and twist-four operator V can already
compete with the leading M =0 twist-two operators
given in Sec. II in their contributions to the kine-
matically suppressed helicity-flip structure func-
tions W" and 8" . Hence the presence of such
terms will in general invalidate any relation in-
volving scaling functions F'" with acb when it is
derived using only a twist-two light-cone expan-
sion. This is the case with our relation Eq. (4.9)
and the relation (4.12) of Ref. 3. Thus the condi-
tion for their validity is precisely the absence of

TABLE II. Contribution of the M & 0 operators U;
and V to the structure functions in the scaling region.
is the scaling parameter introduced in Sec. III.

woo w"

g-i-K

(-1-6i

2 K

(-i/2-6;

(-3/2-K

M 10 fields of twist three and four of the appro-
priate form as shown above (see also Appendix A).
It is of interest to see if the experimental data
support this assumption. (We note that such terms
are absent in the light-cone expansion in a free-
quark model. ) We prefer to say that this phenom-
enon of M w 0 operators competing with M = 0 opera-



toI's of lower twist shows that the twist classifica-
tion is not a convenient one for M w0 field. (The
twist of a MW0 operator is "abnoxmally" large be-
cause their spin J is less than the number of Lo-
rentz indices they carry. )

Some typical M w 0 bilocal operators that one
may construct formally out of a quark field (with
dllllellsloI1 2) Rl'e

l.s5 +hei)~ (0)

They correspond to II = 5, = --,'. (These terms also
exemplify the most singular M w0 terms which
can be built out of fields with naive dimensions. }
According to Table II this implies a "kinematical"
enhancement: namely, that W"- (g') and W'
-O(E ~') No.w such a factor of I/Wxl cannot pop
up in pex turbation theox'y and in the parton models
proposed so far but cannot be excluded on general
grounds. In perturbation theory the factor of
I/lx~ is replaced by 'fg, with ts Bonis cllR1'Rctel'is-
tic mass in the theory (such as the quark mass
in some formal quark-gluon model). It is of inter-
est to settle this question by measuring W'" and
7V+ .

%6 note that the Callan-Gross relation, if satis-
fied by the contribution of the M =0 operators, is
not destroyed by the M 10 operators. Also, the
SLAC-MIT s1Dgle-arm expe1'lment measures only
9 "and W'0 and hence cannot provide any informa-
tion on the questions discussed in t 1s section.

To summarize, in a general canonical light-cone
expansion (i.e., for the most singular terms we

only allow those that may be constructed out of
fl'ee fleMB RIld w1th 1Iltegel' powel's of x ) Gill' 1'e-
sult (1.2) follows. This scaling behavior is not
affected by the presence of the M c 0 terms in such
an expansion. However, a derivation of I'elations
involving F"(~)with aX II must require definite
knowledge of these M e 0 terms up to (and including)
tourist four.
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tensively. ' " Our general result Eq. (1.2} when
translated into invariant amplitudes reads

v ImG, (v, q') -g,{(o),

v'Ima, (v, q') -g, (I0)

in the scaling region. Here G~ and Q2 are the usual
spin-dependent structure functions. " This scaling
behavior has been presented in the literature. ""

Vfe note that both C, and 62 satisfy unsubtracted
dispersion relations and in the BJL limit they van-
ish as q,

' and qo', respectively. " Thus the ori.gi.-
nal Bjorken method of deriving scaling (see Sec.
II}will also lead to (Al), contrary to the conclu-
sion reached in Ref. 10.

Hey and Mandula" have presented the foBowing
sum rule as a prediction of the quark-model light-
cone expRDsion:

%6 would like to polDt out thRt th1S, b61ng R relR-
tion 1nvolvlng the kinematically suppl essed Q"

is a highly model-dependent result. In particular,
lt ls sensitive to coDtr1butions from Mg 0 terIQs of
higher twist, fox' example, the U', term in Eq.
(5.1) with 5, =0. Thus this sum rule is on the same
footing as Eq. (4.9) of Sec. IV [and Eq. (4.12) of
Ref. 3]. Associated with this problem is the ques-
tloD of maintaining mRnlfest gRuge invar1RQce. The
quark-model expansion as presented in Eq. (4.3)
is Qot manifestly gauge-invariant. Usually this
does not introduce any ambiguity since for gauge
completion we need only add operators that may
differ from each other by higher twist terms. 3'

However, it does make a difference for the validity
of (A2) since G, is kinematically suppressed. For
example, adding the twist-three term

e(xo)6(x2)&„„„.S'A '(x, 0)

to Eq. (4.3) will lead to (A2). On the other hand,
one may complete the gauge by applying the usual
pro jectox' opex'Rtox'

8'PP 2 8'I y

to the result obtained from Eq. (4.3}. This pro-
cedure'3 formally corresponds to adding various
extra terms to Eq. (4.3}and will spoil (A2). We
know of Qo generRl argument fox' px'efex'x'1ng either
met od to 1mplement gauge 1nvariance. The ques-
tion boils down to what extent one may reliably
extract information from a model.

APPENMX 8

The problem of deep 1nelRstlc scRttex'1ng on R
polarized nucleon has Rlx'eady been discussed ex-

Here we shall show that the forward Compton
helicity amplitudes T~~ as used in Sec. II are free
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of kinematical singularities in v= p ~ q. [This is
manifestly true for the cases of spin-& and spin-1
targets as illustrated in Ref. 32 and Eq. (C2).]

(v q ) = ~
p (q)~, (q) QI„'}(p)

&& y(d)+(p)Z pc)~}(()} (Bl)

where {u)=n, ~ ~
&2d and p(&') (p) denotes the po-

larization tensor of the spin- target in helicity
state (c). (For the time being we shall restrict
ourselves to cases where J is an integer. ) In
terms of invariant amplitudes we have

TPc(a}(8} P L Pc(c'}(8}q (V q2) (B2)
(+ p) f (q p) 5

{i.," &, p) ] being a set of invariant bases construct-
2

ed out of+) p
6')

p p and a minimal number of q's
and p's; the invariant amplitudes {T;]are expected
to be free of kinematical singularities. Thus our
task is to show that the products

fbf b(l P q) = &( )Z(b)*y& )y& )+I

do not have any singularities in v. For this pur-
pose it is convenient to write explicitly in the rest

frame of the target

p„=(m, o, o, o),

qp =[v, 0, 0, (v2 —q')'"],
e(0) [(V2 q2)l/2 P P v] /( q2)1/2

e&„') = -(0, +I, i, O)/~Z .
Hence

=0 for a.ny o; =0,

and also

p ~ ~~'~ =0.

( B3)

( B4)

( B5)

Clearly there cannot be any v-dependent factors in
the denominator of M,'~. The only nontrivial step
left is to show that they are also free of square-
root singularities; namely, in M;d(i, p, q) the total
number of e0&0) and q, of (B3) is always even. This
may be demonstrated by direct inspection [and
using Eqs. (B4) and (B5)] of the four distinctive
types of terms in M:

y(c) y(d 6 ) [f e( ) ~ g( ) q 1 ~ ~ qc2d+f e( ) ~ Pg( )8 ~ pq 1 ~ ~ ~ q 2d
'(+1 + Jk ~+4+1 ' ' ' 2'

+f e( ) ~ p6( )+ 1/f'2 ~ ~ ~ ql"2d +f g( ) le( )b 2(f28 ~ ~ ~ (f12J'] (B6)

Other terms differ from the above four by permu-
tation of indices {o)or differ by an even number of

q, 's when {n)are contracted.
The above argument may be extended in a

straightforward manner to cases of O'= J+-,' =half
integers if a Rarita-Schwinger" type of formalism
is used. P(„} is then the polarization tensor-
spinor: (P-m)P(„}=0. Besides (B6) we must also
consider terms with P(d)*g(') replaced by

p(8) y) ybp and also he totally antisymmetric
tensor e„,~, must appear. We shall leave to the
reader as an exercise to show that again E'p and

g3 appear in even numbers in these cases. In fact
it is obvious that our conclusion continues to hold
when the photon is replaced by any other particle. "

APPENDIX C

The helicity structure functions
W;d(q', p', v= p q) of a spin-1 particle are related
to invariant amplitudes of Eq. (4.1) by

2 2 2
s"=-w"=g + ~ & ' g0 00 1 2

p
3

2 2 2
o oo &P

S+ =—%++ =W, —
2 W2,

$ 00 ~00
0 00

V=-W, + 1 —
2 2 [p W, —q W8+(p q —v )Wd]

p tg

+ . . rv. ——(bc —v )8'.},2

PQ' v

S'-=-W,'- = 28, ,

1= 2(W+0+ W+0) & 2 2)1/2 [vWv (p q v )W8](p g

A++ -=2(W+", —W, ~) = W7,

1
2(W+0 W+0) & 2 2)1/2 [vW6 (p q v )W6] '

(p0

Wcb= E(q)6(b)4(q')y( )(p) t)(d)b(lp) Wp p(q p)

Explicitly we hav'e

(C1)

We have used the notation of S"and A" of Sec. II
and, of course, here they are absorptive parts of
the Compton amplitudes. In the deep-inelastic
limit, our result Eq. (4.5) gives the following
scaling behavior for the helicity structure func-
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tions ((o = —q'/2v):

g++

S++ —-F, ,

So -F,—F3,

S+ F-—F00 1

1 +0 1~ S+
(2~pa)~/a (F7 —Es) ~

2p )

PS 2F~ .
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