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%'e demonstrate that in asymptotically free gauge theories the wave-function renormalization constants

for spin-1/2 fields do not vanish. (The scalar fields, if incorporated, also have this property. ) However„

there exists a subclass of such theories where the Z's for the gauge fields themselves tend to zero in

the limit of infinite cutoff. These features are shown to be gauge-independent. This suggests the

potentiality of constructing asymptotically free strong-interaction theories in which the only elementary
fields are "quarks" and all other hadrons are bound states.

I. 1NTRODUCTION

Qauge-invariant quantum field theories based on
non-Abelian groups are being actively investigated.
A number of rather unique properties have been
discovered about such theories. These features,
when interpreted optimistically, indicate that non-
Abelian gauge theories may provide the framework
within which theories of strong interactions (or
event unified theories of all elementary-particle
forces) may be constructed.

Gauge theories are renormalizable, ' It has been
shown, by way of the renormalization-group equa-
tion, ' that the origin of the coupling-constant space
is an ultraviolet-stable fixed point only in non-
Abelian gauge theories. 4 This asymptotically free
nature of the theory provides us with a field-the-
oretical explanation of Bjorken scaling —rather
the explanation of lou, t Bjorken scaling is ap-
proached in the deep Euclidean limit. ' This same
property indicates that the effective couplings can
be large in the infrared limit —it just may provide
the desired quark-conf inement mechanism. '

There are also a number of works suggesting
intriguing connections of gauge theories to dual
models and relativistic string models of hadrons. '

This confluence of field-theoretical and S-matrix
approaches to strong-interaction physics is also
indicated by the works of Qrisaru, Schnitzer, and
Tsao." These authors have demonstrated that
vector mesons and spin--,' fermions in such field
theories satisfy the usual criteria of Reggeization:
factorization of Born amplitudes and Mandel. stam
countings. However, as possible candidates for
strong-interaction theories, the class of gauge
theories investigated in their works may have
some drawbacks: These gauge theories are not
asymptotically free and while spin--,' particles
(tiuarks'?) iie on Regge trajectory, scalar fields
do not. (It would seem an unattractive picture of
having spin--, fermions composite, but not all
other particles. ) In this paper we shall use an-
other criterion for the compositeness of fields
appearing in a Lagrangian field theory, i.e., the
vanishing of the wave-function renormalization
constants. Our results suggest the possibility of
constructing strong-interaction field theories
which are asymptotically free and in which the
only elementary fields are quarks and all other
hadrons are composite.

In Sec. II we shall demonstrate, through a
straightforward exercise of solving the renormal-



ization-group equation, that in asymptotically free
gauge theories the renormalization constants for
spin-0 and spin-~ fields do not vanish in the limit
of infinite cutoff A. In particular we show that
there exists a subclass of such theories where
the Z's of the gauge fields vanish. ' This property
is gauge-independent since we can show that the
effective gauge parameter n is always driven to
some fixed value (for example, o. =0, the Landau
gauge) in much the same manner as the effective
couplings are driven to zero in the deep Euclidean
region. ''0

The final section is devoted to a discussion of
the implications of such gauge-independent fea-
tures. Some of the arguments for the connection
of vanishing renormalization constant and com-
positeness of particles are reviewed. Possible
implications for incorporating scalars as corn-
posite Goldstone-Higgs particles are also briefly
discussed.
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From Eq. (4) it immediately follows that

the cutoff A, " renormalization point M, couplings„
and the gauge parameter

Zg =Zg(A/M, g, A, a), i = V, f, 8 .

They satisfy the renormalization-group equations,
which may be derived most simply by differen-
tiating (with respect to M) both sides of the trivial
identity Z, 'Z, = 1 and by applying the chain rule,

II. EVALUATION OF RENORMALIZATION CONSTANTS

IN ASYMPTOTKALLY FREE GAUGE THEORIES

To illustrate our point we shall restrict our con-
siderations to gauge theories with two dimension-
1ess coupling constants: the gauge coupling g and
the quartic scalar self-coupling X. [For example,
we may consider the group O(N) or SU(N) with
scalars in a single vector representation. ] Gen-
eralization to eases involving more couplings is
straightforward.

Some of the renormalization constants we shall
compute are defined to be
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The renormalization equation in (5) may be
solved in the standard manner" by first defining
the effective coupling constants and effective
gauge parameter: (g,}=g,A, a. They are functions
of the physical couplings, gauge parameters, and
t. And they satisfy the differential equations

with the normalization conditions that tg(t=0)}
=fg, }. It then follows that Eq. (5) has the solution

Z((t, g, ) = Z, (0, g,(t ))exp

In an asymptotically free theory all effective cou-
pling constants are driven to zero in the limit of
infinite t (i.e., g, X-0). Being interested in this
class of theories only, we shall expand P's and
y's to the lowest order in the coupling constants:

A, g, and p denote the gauge, spinor, and scalar
fields, respectively and the subscript 0 indicates
unrenormalized quantities. The bare propagator
for the gauge boson takes on the form of
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The renormalization constants are functions of

Since the higher-order correction terms do not
modify the longitudinal part, the renormalized
gauge parameter is related to a, by

n=Zv ao .

t3„=—(I' +I' a) o.g' .

The condition for asymptotic freedom is 5 & 0,
B —b&0, (8 —b)' —4AC&0, with A, C being always
positive. "'4' The constants b, A, 8, C, and I,
depend on the group and particle representation.
In general
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The behavior of the wave-function renormaliza-
tion constant for a spin--,' field, Zf, will need a
separate discussion. Since the one-loop contribu-
tion is proportional to the gauge parameter, i.e.,
Fz =0 [see Eq. (17)], then yz(g, (t)) is driven to
zero in the asymptotic limit faster than g'(t ). It
then follows that the Zf's do not. vanish in the
t-~ limit. Explicitly, we have (see Appendix)
a-t " "-0; then Eq. {19)takes on the form

Zf -exp —I'f dt'n t' g' t'

+terms constant in the large-t limit

) bcc Cccd Cccd

S,(s) 6, , =(9' 8');, ,

S,(f) &„=(t't'}„,
S,(s) 6"=tr(e' tI'),

S,(f) 6"=tr(t't'),

(18)

C"' being the structure constant of the group; 8',
t' being the representation matrices of the scalar
and spin--,' particles, respectively. Specifically,
for 0(N), S, =d(N-2), and S, =,' (N 1), S,-=a-for
the vector representation; for SU(N}, S, =N, and

S, =(N'-1)/2N, S, =a for the (real) vector repre-
sentations.

When the condition for asymptotic freedom is
satisfied

limg - {2bt )
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The ultraviolet behavior of the gauge parameter
o. in asymptotically free theories is discussed in
the Appendix. Depending on the value of I'~ two
distinctive cases obtain. For I"~ «0, the only fixed
point is the stable one at a„=0 (the Landau gauge);
for I'~ &0, 5 will be driven to some finite positive
value u„= —F»/I'», while +=0 is an unstable fixed
point.

The discussion of wave-function renormalization
constants will be divided into these two cases:
(i) I'» &0 and (ii} I'» &0.

(i) When I'» &0 (u„=0), it immediately follows
[see Eq. (9)] that the wave-function renormaliza-
tion constants for gauge fields vanish in the limit
of infinite cutoff, while the Z's for scalar fields

I

= e'"""t I/' "+ constant

—constant. (20)

Z~ - t'+ ~ constant,
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S

(21)
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Since o, = 0 is also a fixed point (albeit an unstable
one} we must consider this situation also:

We note, if we had n-0 faster than g' then yf
should be properly calculated to include higher
orders in coupling constants. Also in this paper
we have excluded Yukawa couplings (by some dis-
crete symmetry, for example}. However, we
would like to emphasize that the result in Eq. (20)
holds even under these situations, since its valid-
ity is dependent solely on the condition that y&(t)
vanish faster than t ' (In the follo. wing discussion,
we shall denote such a situation by "t'+ - const. ")
This clearly holds when higher-order couplings
are included. The Yukawa coupling contribution
also satisfies this condition since it is known that
in order for the gauge theory to remain asymp-
totically free, the Yukawa coupling must be driven
to zero at a rate I,reaie~ than that of the gauge
coupling. "'

Clearly there are a wide class of gauge theories
which can satisfy the above conditions. For ex-
ample. in an SU(3) theory with 16 sets of fermions
and one set of complex scalars in triplet repre-
sentations, 'd' we have b = I/48v', F» = -2/3v',
I's = —I/2a2, A =7/8w', 8= —1/v', C= 13/48m'.

(ii) When I"» &0, the ultraviolet value of the
gauge parameter is finite, o.„=—I'»/1» (see Ap-
pendix). The solutions in Eq. (9) take on the fol-
lowing asymptotic values'4b:
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and

Z -t-'s~"-~
S

Z —t'+ ~ ~ ~ constant .

(21a)

(23a)

To summarize, we have shown that, independent
of the choices of gauges, the renormalization con-
stants in asymptotically free gauge theories take
on the values as

Z g0

Z g0

Z~ = 0, for I'~ & 0

Zv ~0 for ~v &0

III. DISCUSSION

Since the wave-function renormalization constant
Z is usually identified as the probability of the
particle in its bare state, it has been suggested
by a number of authors that Z equal to zero be
taken as a general criterion for composite sys-
tems. " The validity of this connection has been
verified in a number of toy field-theory models.
Phenomenological analysis also suggests that the
Z's for the deuteron" and proton" are consistent
with the value zero. This is compatible with an
expectation that they are composite systems.

Furthermore, the vanishing of renormalization
constants has been shown to be related to the com-
positeness criteria as formulated in the 8-matrix
language, "i.e., the particles appear on a Regge
trajectory and the absence of a Kronecker 6 in
the J plane. In this context, Kaus and Zachari-
asen" have shown that an added requirement will
be the vanishing of the ratio of vertex renormal-
ization constant to wave-function refiormalization.
(Crudely speaking, this requires that the interac-
tion terms vanish faster than the kinetic energy
term. ) We note that in asymptotically free gauge
theories, these additional criteria are automat-
ically satisfied. One may check this either by
explicit computation or by noting that g(~) = g, —0.
Then Eq. (2} clearly requires that

Z, /Zv -0
in order to keep the physical coupling constants
on the left-hand side of the equation finite.

If this connection of vanishing renormalization
constant to the dynamical nature of the particle is
indeed a correct one, then the result of this cal-
culation could have a number of implications in
our attempts of constructing asymptotically free

gauge theories for strong interactions.
So far no one has succeeded in incorporating

scalars in such theories in a way one can demon-
strate that all gauge fields acquire mass through
usual Higgs mechanism (at the tree diagram level)
and still retain asymptotic freedom. "~ '4' Attempts
have been made to attack the problem through non-
perturbative approach, and it is hoped that the
fermion and antifermion will form bound-state
Goldstone particles which will in turn be elimi-
nated by the massless gauge field to form a mas-
sive spin-1 particle. " Our result may suggest that
asymptotic freedom and dynamical symmetry
breaking as envisaged by some authors may not be
realizable in such theories. If this is indeed the
case, it would appear that the only option for vi-
able theories for strong interactions would be the
type as proposed in Ref. 6, i.e. , gauge theories
with fermions based on exact non-Abelian local
symmetries.

Our calculation also suggests that there exist a
subclass of asymptotically free theories" which
are consistent with the following picture of strong-
interaction dynamics: Strong interactions are in-
deed described by a non-Abelian gauge theory with
fermions in which the only bona fide elementary
fields are fermions (quarks), in which all other
particles, including the gauge particles, are dy-
namical bound states. Furthermore a sort of
bootstrap world will result if the fundamental fer-
mion fields are never present in the asymptotical
states as free particles: All observed particles
are dynamical ones.
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APPENDIX

The renormalization-group equation for effective
gauge parameter a(f) is as follows:

When the right-hand side is expanded in terms of
effective couplings, we have [see Eq. (12}]

+higher-order terms in effective couplings .

(A2)
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4 c7(u)

du
= - F» cr(u) —F» & (u) ~ (AS)

which has the general solution of

c7 '=Ce»" —F»/F» . (A4)

The constant C may be fixed by the boundary con-
dition c7(t = 0) = o. to be

(A5)

The limit of c7 for large t (i.e., large u) depends
on the sign of l'~.

(i) F» &0. The e"»" term in (A4) tends to in-
finity, resulting in

c7-const xt v —0 . (A6)

(ii) I"»&0. The e»" factor tends to zero, re-
sulting in

c7- —I"»/F„. (A7)

In the following we shall give a somewhat more

As we are only interested in the asymptotically
free theories, the higher-order terms may be
ignored. Then Eq. (A2) may be solved by a simple
change of variable from t to u with u =(25) '

Win(g '+ 2bt):

detailed discussion of the nature of these fixed
points.

From Eq. (Al) it is clear that o. =0 is always a
fixed point. In Eq. (A6) we have shown that for
I'~ & 0, it is a stable one; but for I'~ & 0, the zero
is an ultraviolet-unstab1. e fixed point.

On the other hand, while Eq. (A'1) demonstrated
that when I'» & 0 o. = —I'»/F» is a stable fixed point,
it ~ei/l be incorrect to concIude that this is an lcn-
stable fixed point zuhen I"„&0[as Eqs. (AS) and
(A4) would lead us to believej. 22 This comes about
because (unlike the o. = 0 situation) the higher-
order terms in Eq. (A2) do not vanish simulta-
neously when cr = -I'»/I'». Consequently at the
point of n = -I'„/I'„ the subdominant terms have
the effect of moving n away from this point; but
once o. is dislocated, the g' term is once again
present and is naturally the dominant driving
force; when F~ & 0, it drives c7 to zero; when
I'» & 0 it tends to restore c7 back to —I'»/I'».

To summarize the asymptotic behaviors of the
effective gauge parameter:

(i) I'» & 0; the only fixed point is the stable one
at a=0.

(ii) I'» &0; there are two fixed points:
n= —I"~/I"~ is the stable one; o. =0 is the unstable
one.
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The Bethe-Salpeter equation is used in conjunction with the Froissart bound (assumed true
off the mass shell) to put restrictions on two-photon exchange. Implications are discussed.

I. INTRODUCTION

We wish to study here the Regge asymptotic be-
havior of the sum of all two-photon reducible Feyn-
man diagrams in massive quantum electrodynam-
ics. This is motivated by the "tower" graph cal-
culations of Frolov, Gribov, and Lipatov' and also
Cheng and Wu. ' This paper is an extension of pre-
vious work on m-m scatteting. ' It is found in Refs.
1 and 2 that the sum of all "tower" graphs violates
the Froissart bound by a power for all nonzero val-
ues of the coupling constant n. We ask here if it
is likely that the sum of all crossed-channel, two-
photon reducible graphs violates the Froissart
bound in this manner. We feel that this question
is important because of the following:

1. Massive quantum electrodynamics is a likely
candidate for a quark-gluon field theory.

2. The fact that the tower graphs violate the
Froissart bound by a power is essential to obtain

Froissart-bound saturation in the Cheng-Wu eiko-
nal model. '

3. If it seems probable or desirable that the full
two-photon exchange amplitude does not violate the
Froissart bound by a power, then a search for two-
photon reducible graphs which cancel the leading
behavior of the tower graphs is in order.

We begin with the Bethe-Salpeter equations for
elastic y-y, e-y, and e-e scattering. We then re-
write these equations in a particular way and make
an assumption about the off-mass-shell behavior
of the full amplitudes. We also make an assump-
tion about certain moments of the Bethe-Salpeter
(BS) equation. We find that these assumptions rule
out the possibility that the sum of all two-photon
reducible graphs violates the Froissart bound by a
power. We first study y-y scattering which is the
simplest case and then work our way up to y-e and
e-e scattering.

II. p-y SCATTERING

The invariant amplitudes for y-y scattering we write as

r(q, P, P', X„X„X„g)= T"" '(q, P, P')e„(P+ ,'q, X,)e„(P —,'q, q)~„-(P'- —,'q, X,—)e,(P'+ —,'q, X,),


