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Since in gauge theories eigenstates of weak interactions are in general not mass eigenstates, we would not
expect flavor conservation. In particular this should also hold for the leptonic flavors: muon numbers and

electron numbers, etc. The apparent conservation of muon number in the standard V —A theory should be

interpreted as reflecting the fact that neutrino masses (if not identically zero) are almost degenerate when

viewed on the normal mass scale. In theories containing V+ A currents, the right-handed muon and
electrons are expected to couple to intermixing heavy leptons in the GeV range. In such theories muon-

number-violation effects will be dramatically larger, However, when constructing new models of leptons one
should be mindful that flavor-changing neutral-current processes such as p,~ ey and p.~ eee are suppressed

experimentally. This indicates the need for a "leptonic Glashow-Iliopoulos-Maiani cancellation mechanism. "
We have proposed a way to incorporate these features in an SU, X U, gauge theory. Basically it involves the
addition to the standard Weinberg-Salam theory of right-handed doublets with the electron and muon coupled
to orthogonal "heavy neutrinos. " This leads to an electronic neutral current which is purely vector and its

attendant suppression of parity-violation effects in high-Z atoms. Muon-number-nonconservation effects
involving only familiar particles are higher-order weak processes and are naturally of the order GF'. In this

paper we give details of our calculations of p, ~e y, p, ~ eee, K~ ~ e p„K~m e p„and p, e conversion in a
nucleus, etc. In order to have a "natural" theory, we have incorporated recent suggestions made by Bjorken,
Lane, and Weinberg about the Higgs structure for such a model. This modification increases the rate for

p.~ ey by a factor of 25 but does not materially affect other processes. For a heavy-lepton mass-difference

and mixing-angle combination of singcosg[m(N, )' —m(N, )'] 1 GeV', the branching ratio for p, ~ey is

4)& 10 '; that for p, ~ eee is around 10 ", the p, e conversion rate can be as large as 10 ' when compared to
the ordinary muon capture in the nucleus. If there is a heavy quark b coupled to the u quark through the
V+ A current, this conversion rate will be decreased by a factor of 30. The rates for the muon-number-

nonconserving K decay are more sensitive to the relative lepton masses. For example the branching ratio of
KL~ eP, is about 10 ' for m(N&)/m(N2) 4, and a 1.8-GeV charmed quark.

I. INTRODUCTION

It is becoming increasingly plausible that modern
gauge theories provide the correct theoretical
framework to understand particle interactions. One
of the attractive features of such a possibility is
that there is a natural link between dynamics and
the various approximate symmetries observed in
nature. Spontaneous symmetry breaking in gauge
theories of weak and electromagnetic interactions
generally brings about fermion masses that are
not diagonal with respect to the weak eigenstates.
This brings about mixing angles among gauge
couplings of physical states. We have the Cabibbo
angle, and strangeness is not conserved in weak
interactions. Furthermore, the off-diagonal fer-
mion masses specify the size of the induced higher-
order neutral- current couplings: The Glashow-
Iliopoulos-Maiani' (GIM) cancellation mechanism
works in such a way that the strangeness-changing
(s —d) neutral-current effects are controlled by
the quark masses: sin8ccos8c(mc' —m„'). In this

paper we shall discuss an analogous symmetry for
the leptons and the possibility of its being broken:
the separate conservations of the muon and elec-
tron lepton numbers. We have already presented
our principal results in earlier communications. '3
Here we provide details of our calculations on the
various induced muon-number-changing (p, —e)
electromagnetic and neutral-current effects. ' '

In the following section we offer a general theo-
retical discussion of muon-number-changing cur-
rents in gauge theories. Readers familiar with
such broad questions may wish to skip over this
section and proceed directly to Sec. III where our
model is stated, and to specific calculations in
Secs. IV and V. In Sec. IV leptonic processes
p, -ey, p, —eee and muonium-antimuonium transi-
tions are discussed. Section V contains calcula-
tions on semileptonic processes: pe conversion in
a nucleus, K~ e p. , and K- me p. . In the concluding
section, we summarize our results, together with
existing experimental limits, in a table. In the Ap-
pendix various details of our computations are pro-
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vided. Thx oughout this paper we shall restrict our
considex ations to muon-number-noneonservation
effects mediated by gauge bosons. The alternative
mechanism via Higgs exchanges has been proposed
by Bjorken and %einberg. v

%e shall first briefly review some of the general
features about flavor-number conservation in the
standard V -A theory. Then we will discuss what

we ean expect for weak-interaction theories with
both P-A. and V+A curxents.

A. The standard model

Consider the standard SU, x U, gauge theory of
electromagnetic and weak interactionse

(2.1)

is brought about by the neutrino mass degeneracy.
There the mass eigenstates can be chosen to be
the eigenstates of weak interactions; so there does
not exist a physically meaningful angle correspond-
ing to 8~. However, we may assume that neutrinos
are not strictly massless and they possess differ-
ent masses. From our previous discussion we
would indeed expect a nontrivial mixing angle be-
tween the neutrino states. However, the physical
consequence of such a mixing will in practice still
be unobservable. Since we also have a GIN mech-
anism here (after all, the fourth quark was invent-
ed on the basis of lepton-quark analogy~ '0 all the
p. —e transitions must be proportional to neutrino
mass differences. (For example, with nm„'& 25
eV'," the branching ratio for p, -ey is less than
10~'.") In other words, on a typical mass scale
neutxinos for all practical intents and purposes are
massless, hence degenerate. In this limit we can
always "rotate the mixings away, " leading to a
muon-number- conserving gauge interaction.

u) (c) (2.2)

where the weak eigenstates d' and s' are linear
combinations of the mass eigenstates d and s:

d =eos8&d+sln8&s,

s ' = -sin8cd+ cos8&s .
(2.3)

The Cabibbo angle 8~ xepxesents a rotation between
these two sets of orthogonal states. In gauge
theory, there is, of course, a natural explanation
for the necessity of such a rotation. The mass
terms of the fexmions in such theoxies arise from
their couplings to the Higgs scalars which develop
vacuum expectation values. If we allow for the
most genexal, gauge-invariant, Vukawa couplings
then we would expect both the diagonal d'd' and
s's' as well as the off-diagonal d's' and F'd' terms.
The relation in Eq. (2.3) reflects the need of a un-
itaxy transformation which diagonalizes the mass
matrix. Thus, except for accidental symmetries,
we would anticipate mixings among states of the
same ehax'ge and helicity.

Another outstanding feature of the quark gauge
eouplings is the GIM mechanism': Absence of the
direct strangeness-changing neutral-curx'ent coup-
ling and the induced eouplings is suppressed by an
order of G„sin8c cos8c(m c' —m„').' Thus the non-
conservation of the strange-quark number in these
processes is directly controlled by the quark mass
matrix.

In the standard theory (2.l) with massless neu-
trinos, 1epton-number flavors are conserved. This

B. Gauge theories with both V-A and V+A cunents

Our main concern in this paper is to discuss
muon-number nonconservation in weak- interaction
theories with heavy leptons and right-handed cur-
rents. These bvo new features are, of course, in-
timately connected. It has been suggested that new

elementary fermions exist and that some of theix
weak couplings are &+A in nature. " The observed
V-A character is supposed to break down when

new degrees of freedom are excited at high ener-
gies. There are indications that right-handed cur-
rents are already playing an important role in

present-day high-energy neutrino experiments. "
They presumably involve quarks beyond charm.
Thus it seems to us entirely plausible that the true
weak-interaction theory involves leptonic V+A
currents as well. The right-handed muon and elec-
tx'on are expected to couple to intermixing heavy
leptons in the GeV range. " In such theories muon-
number-violation effects will be dramatically
larger. As already reported in Ref. 2, we found
that a reasonable lepton mass difference would
lead us to predict branching ratios for p-ey and
E~- e p. not extremely small when compared to
their present experimental limits.

HI. AMODELOF LEPTONS

In constructing new models of leptons with right-
handed muons and electxons belonging to nontrivial
representations of the weak isospin group, one
should be mindful of the need of a "natural" GIM
mechansim" for the leptons as well. By this we
mean specifically the following":

(1) The absence of u df ecf g(a+ by, )y„e neufref
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cu~renI, . Otherwise the model will run afoul of the
stringent experimental limits on p -eel (Ref. 18)
and pe conversion in a nucleus. ' This requires
that the third components of weak isospin for the
right-handed electron and muon have the same
value: t, (es) = f, ( ps)."

(2) The cancellation of the leading one loop-con-
tributions to pe transitions. This cancellation
should take place for both the left-left (f,f.} and
right-right (RR) type, as well as for the (LR) and
(Rf, ) type. The conditions imposed by this re-
quirement on the theory may be stated most simply
by an examination of diagrams where the intermed-
iate fermions axe labeled by the weak eigenstates.
%e require the leading terms of diagrams such a,s
shown in Fig. 1 to vanish. These cancellations are
required in order to maintain the induced muon-
number-changing effects at the G~' level. That
the leading helicity-nonf lip diagrams such as Fig.
1(a) should vanish can be trivially satisfied: All
it requires is that electron and muon (for a given
helicity) be coupled to independent orthogonal
states [hence one of the gauge couplings in Fig. 1(a)
is necessarily sero]. That diagrams of the type
shown in Fig. 1(b) should vanish requires in this
graph eithex

(2a) the absence of one of tbe gauge couplings or
(2b) the absence of the appropriate off-diagonal

mass term [shown as a cross in Fig. 1(b)].
Of course, the original standard model with only

V —A currents, and extensions thereof, already sat-
isfy these requirements. They become significant
statements fox models where e„and p,~ belong to
nontrivial representations of the gauge groups

%e have proposed a model of leptons'"

(ri) (s,) (n„) (n„}
~ ~ ~ (3.1)

where we have already taken the mass matrix for
charged leptons to be diagonal. The weak eigen-
states (n, )~ a and (n„)~ „are then expected to be
linear combinations of their respective mass eigen-
states. In particular we have for the heavy neu-
tral leptons

(n,)„=(cosPN, + sinQN, )„,
(n„)„=(-singN, +cosPN, )a,

where N, , are the mass eigenstates with masses
m, , in the GeV range. Clearly this model satis-
fies the GIM requirement (1) since t,(e„)=t,(p„)
=-—,'. Vfe have placed the right-handed electrons
and muon in weak isodoublets (instead of, say, in
triplets. } This is mainly for aesthetic reasons,
but it also has the implication that the eleetronie
neutral current is purely vector:

Z~(e) = (--,'+ sin'8~)Fy„e (3 3)

(8~ is the Weinberg angle). This is compatible
with the experimental. report that parity violation
is small in high-g atoms. 2~

It is clear that in this model the requirement
(2a) of a natural GIM mechanism for the (LR)
transition cannot be satisfied. However, taking
into account a crucial observation made by Bjox-
ken, Lane, and steinberg, "one notices that the
alternative situation (2b) can be arranged in a
rather simple manner. Condition (2b) states that
the mass terms (g, n„+H.c.) should be absent.
Since the product of two doublets can either be a
singlet or a triplet, these off-diagonal terms auto-
matically disappear if there is no Higgs triplet
which develops vacuum expectation values. This
comes about because there is now only one type of
source (vacuum expectation values of singlet
Higgs and/or gauge-invariant bare mass terms)
which can give rise to terms bilinear in e and p, as
we1.1 as in n, and n„. %'hen we diagonalize the
(e —p, ) mass matrix (which we are free to do with-
out loss of generality) we automatically diagonalixe
the (n, —n„) mass matrix as well. Furthermore,
the diagonal elements for both matrices are simply
the electron and muon masses. Prom this Bjorken,
Lane, and %einberg2'"4 further conclude that for
our model (3.1) and (3.2) the contents of N, and N,
in (n, )~ and (n„)~ are uniquely determined. For
definiteness, we assume that there are two left-
handed singlet neutral, leptons n„n, and no cor-
responding right-handed singlets. This way we are
guaranteed to have two massless neutrinos after
spontaneous symmetry breaking has taken place.
The weak eigenstates (n, )~ and (s„)~ are related
to tbe mass eigenstates (N„N„v„v,) [see Eqs.
(A24) and (A2"I) in Appendix A]

I e I = =e
(aj (a) (R) (Lj

(a)
FIG. 1. Leading loop contributions to p, e transition

amplitudes. (The shaded blob stands for any relevant
interactions between the two W lines. ) Type (a) involves
no helicity Hip by mass-insertion interactions; type (b)
involves one mass insertion to flip the helicity once. The
intermediate fermions are supposed to be weak eigen-
states.

(n,)~= ' cos@N, + ' sinfN,
m1 m2

+ U;~.+ U~~~

(n„)~ = — " singN, + " cosPN,
mg ma

(3 4)
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where U„. are elements of the unitary matrix that
diagonalizes the mass matrix [see Eq. (A25)].
Since v, and v~ are degenerate neutrino mass
eigenstates, we are free to define

U„v, + U~v, =—av, ,

U„,vs+ U„~v~ —= bv, + cv
(3.5)

7T g +ve

are not entirely orthogonal. For example, the
"muon neutrino" v„which accompanies the muon in
the v decay has a small probability (-b') of pro-
ducing an electron when it scatters off a nucleon.
Treiman, Wilczek, and Zee' termed this phen-
omenon "neutrino sharing. "

The mixing of the heavy leptons N, , in n, ~ and

n„~ is small because heavy leptons cannot be
lighter than the kaons. For simplicity let us set
m, =0, then a=1, b =0 in Eqs. (3.6) and (3.7). The
violation of p, , (and hadron-lepton) universality is
basically measured by the amount c deviates from
unity. From Eq. (3.8) it is clear that this devia-
tion is

The constants a, b, and c can be determined by the
two normalization conditions and one orthogonality
condition for n, and n„:

a =(I —m, '[(cosP/m, ) + (sing/m)']f' ', (3.6)

b =m, m sing cosP(m, '- m, ')/(am, 'm, '), (3.7)

c = (I —m „'[(sing/m, )' + (cosP/m, )'] —O'P" .

(3.8)

The presence of a nonvanishing b indicates that the
neutrino states as defined in the reaction

IV. LEPTONIC PROCESSES

In this section we discuss the muon-number-non-
conserving leptonic processes: p, -ey, p -eee,
and (pe) —(ep, ), etc. Details of our calculation of
the induced pep, ~Z vertices and W-exchange
box diagrams are given in Secs. 8, C, and D of
the Appendix. Throughout our computations we

shall set the electron mass equal to zero.

-u (fu+fu y5)lm O~q u (4.2)

where e" is the photon polarization vector, E~q~=0.
The decay rate is

(4.3)

The angular distribution" of the outgoing electron
with respect to the initial muon polarization vector
(p) is

I (8) = (1+ n cosB); (4.4)

. prey

For the general case of the electromagnetic cur-
rent operator between states of a muon and an
electron, the matrix element is of the form

T, =(e(p') l~.(0) II (»&

=u, (p ')[(f„+f„'y,)im, o,„q"

+ (fs+fE'y5)(yxq '
qx y'q)]-u„(p), (4 1)

where the transition form factors f„,f„', fe, and
fe' are functions of q', with q =p —p'. This struc-
ture for T„ is dictated by the requirement of cur-
rent conservation, T„q"= 0. The most general
form for the on-shell (q2=0) p. -ey amplitude is
then given by

K(p-ey) = T,c"

a = —,
' [(sinPm „/m, )'+ (cosg m, /m, )'] . (3.9)

for p, '-e+y it is

I'(8) =(1 —o cosB), (4.5)
The experimental bounds, after radiative correc-
tions, on ~ are not much better than half a per-
cent." We note that this requirement can be easily
satisifed for m, , , Z 1 GeV.

An inevitable consequence of our model is the ex-
istence of at least two heavy neutral leptons. In
this paper we shall not discuss the production and
decay properties of these particles. Interesting
observations on these questions have already been
made by other authors. " In connection with our
discussion of muon-number nonconservation, we
make the obvious remark that once these heavy lep-
tons N,. are produced, we can observe spectacular
muon-number and electron-number violations in
their decay modes: N,.- p, m, em, p. p. v, eev, e p, v,
etc.

where cos6) =p' p, and ~ is the asymmetry param-
eter

2 &e(f„*f„')
~ f u ~'+ ~fu' ~'

In the model of Eqs. (3.1), (3.2), and (3.4) the de-
cay proceeds through the diagrams shown in Fig.
2 (they are unitary gauge diagrams, hence only
physical particles appear). To ensure that our re-
sult is (non-Abelian) gauge invariant, we have car-
ried out the calculation in the general ( gauge and
verified that our final result is independent of the pa-
rameter $.29 (See Sec. B of the Appendix for details).

The contributions from diagrams (b) and (c) are
proportional to y„, hence they must be cancelled by
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f„(RR)=-f„'(RR}= pic

%ith

(4.7)

e g
$6+2 SM 2 N ' (4.8}

Ths suppression factor is

the corresponding contribution from diagram (a}.
Let us now consider the cr~q" contribution coming
from diagram (a).

(i) The (LL) diagrams. With each gauge coupling
being of the (V- A) type, the leading contribution
for each intermediate fermion -eg'/M~'. This
would yield a branching ratio I (p ey)/I'(p-evv}
=0(a/v). This is just the famous result known
since the late 1950's that in a weak-interaction
theory with intermediate vector bosons and one
neutrino the p-ey rate mould be much too large. "
This result played a pivotal role in the formulation
of the two-neutrino hypothesis. Here, these I.ead-
ing (LL) amplitudes are independent of the masses
of the intermediate leptons, and the coupling struc-
tures are such that they precisely cancel. This
satisfies the requirement (2} discussed in Sec. III;
that such a cancellation must take place is obvious
when the intermediate fermions are labeled by the
weak eigenstates: (n,)~ and (s„}~ Th.e next lead-
ing term must be proportional to the square of the
intermediate lepton masses. Hence only (N, ,)~
contribute. But in this model their coupling to p,

and e is such that they also cancel each other.
(ii) The (BB) dicgrcms. Again there is a GM

cancellation of the leading term. The surviving
contribution is calculated in Appendix B [see Eq.
(B13)]"

Still, the couplings of this model are such
that they precisely cancel in the sum. One can
easily understand the origin of this rather remark-
able cancellation if the intermediate states are
labeled by the weak eigenstates: the sum of N»
contributions must be proportional to the n,n„mass
term, which is absent in this model. This is of
course our condition (2b) discussed in Sec. III. The
next leading contribution is negligibly small be-
cause the coupling is proportional to the electron
mass.

(iv) The (LR) disci, ram'. The surviving "three-
mass-insertion" contribution is of the same order
as the (RR) diagrams [see Eq. (813)]:

f„(LR)= f„'(LR)-=-3~. (4.10)

where we have used g'/8M~' =G~//2 and
I"(p-e v„v, ) =6

r2m „'/192m'. For an off-diagonal
mass sing cosP(m, ' —m, ') =1 GeV' and an M~ = 60
GeV (corresponding to a Weinberg angle sin~st
= 3) we have B(p ey)=-4x10'".

If these decays are in fact observed, " then the
next step shouM be the measurement of the asym-
metry parameter n through Eqs. (4.4) or (4.6). Our
model predicts it to be -1 [see Eqs. (4.6), (4.7),
and (4.10)] corresponding to an outgoing right-
handed electron.

Independent calculations by Bjorken et al.23 agree
with this result. This, when combined with the
amplitude in Eqs. (4.7} and (4.8), leads to a branch-
ing xatio. for p. -ey as

B(u--y) = I'(g —ey) 75
5~~, (4.11)

I'(p, -ev v ) 32

6„=sing cosP(m, ' —m,~)/Mv; (4.9)

m, and m, are masses of lepton', 2

(iii) The (RL) diagrgm. The leading contributions
by each intermediate lepton N, 2 are proportional to

B. p~eee

There are basically three classes of one-loop
diagrams contributing to the decay p, -eee. They
are shown in Fig. 3.

Treiman, %ilczek, and Zee' were the first to
emphasize the importance of the ratio I (p, -3e)/
I'(p. - ey) for this model. They have already cal-
culated the p-3e rate by keeping only amplitudes
proportional to ln(M v'/m'). In this approximation

hf]g 8

(c)

FIG. 2. One-1oop contribution top-ey. The inter-
mediate ferrnions are neutral 1eptons. The dominant
contributions to the final result come from && 2 in dia-
grams vrith {LR) and (RA) couplings.

pc 8

|'a) (s)
FIG. 3. Three classes of diagrams for p--3e decay

via photon and weak-intermediate-vector-boson ex-
changes.
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only the "weak amplitudes" in Figs. 3(b) and 3(c)
contribute, and the calculation is relatively
straightforward. " Since a priori this "leading log
approximation" may not be all that reliable (1nMv'/
m' is expected to be about 6 for a reasonable range
of heavy-lepton masses), we have carried out a
detailed calculation by keeping all the constant
terms. In this case diagrams belonging to Fig.
3(a) must be included.

For the momenta assignment of

p(p) - e(k, )+ e(k, )+ e(k, ),
we have the amplitude

(R) (R)

N, ~
W

N]q
e

(R)
(a)

FIG. 4. Two types of box
& graphs and (b) & graphs.

(R)

A.) A )

(b)

diagrams for p eee: (a)

't Hooft gauge. While each diagram is gauge-de-
pendent, the sum of all the diagrams should be
gauge-independent.

'The weak amplitude can be parametrized as"
3R(p - 3e) =3R(k„k,) -3R(k» k, )

with

3R(k„k,) =SR "(k„k,)+3R (k„k,),

(4.12)

(4.13)

3Rv(k„k, ) = [u,(k,)(1 —y,)y„u„(p)]

x (u(k,,)[g~2(1+y, )

+ g k(1 -y.)]y'v. (k.)]. (4.17)
where 3R" is the one-photon-exchange amplitude
and % is the "weak amplitude" corresponding
to both the Z- exchange and two W-exchange con-
tributions.

The one-loop-induced p, ey vertex is calculated in
Sec. Bof the Appendix. From Eqs. (Bl), (B13),and

(B14)we can easily compute the amplitude corre-
sponding to Fig. 3(a).

SR"(k„k,) = -{u,(k, ) (1 —y~)[if~ m„o'„„q"

+fe(y), q' —gqi)]u„(P))

&& [u,(k, )y "v,(k,)]/q', (4.14)

where q=p -k„and

The diagram in Fig. 3(b) is

-iG [u,(k, )(1- y,)y„u„(P)] (--,'+ sin'8~)
W

x [u,(k,)y" v(k~)] . (4.18)

G~ is the one-loop effective p, eZ coupling constant,
and it has been calculated in Appendix [Eq. (C8)]:"

Gx=2cot8~x ln, +
m' /4) (4.19)

&3)

Thus the contribution of Fig. 3(b) to g~ and g„ in
Eq. (4.17) is

5f„==,ex, fe= 2ex

with

e g
18' 8M z

(4.15}

(4.16)

g~(Z) =g„(Z)

(-1+2sin'8~) ln, +
ex . , m' (4&

sin 8v M~

(4.20}

As noted in Sec. Bof the Appendix, f„is computed in
the general $ gauge and is explicitly verified to be
(weak-group) gauge-invariant. This must be so
since it is the physical amplitude for p - ey. On
the other hand, the results for fe as well as the
"weak amplitude" have been obtained only in the

Figure 3(c) includes two types of box diagrams,
as shown in Fig. 4. The N diagrams and v dia
grams belong to "type a" and "type b" box graphs
as discussed in Appendix [see Eqs. (D11) and
(D12)]. For Fig. 4(a) we also need to calculate the
quantity"

cos'/[I(x„x, ) -I(x„x,)]+sin'/[I(x„x, ) I(x„x,)]= ln-, +
~ ~

(x, —x,),
m'

(1+cos P)-

where x, =m, '/M~', x, =m, '/M~'. For Fig. 4(b) we note

I(x„O) I(x„O)= In, +-(x, -x,) .m (2)
w (lj

We then find their contribution to the weak amplitude of Eq. (4.17) as

gr, (2W»i, .}= 0 ~

(4.21)

(4.22)

(4.23)
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gz(2W»), 2) = a» 2 +
~

w ))) (1+cosRy)

e)I m2 (8)
g~{2W, v)= . , 41n, +~sm 8I, M)),

(4.25)

gz(2W, I)) =0.

Combining Eqs. (4.20) and the above results we have

e)I . , m' /4+ 8 sin'8~'}
gg = . q (3+ 2 sin 8I)) ln i +

(1+6 sin'8~)
(4.2V)

8)I . ~ III ( -g+ 8 sill 8v

(-2+ 6 sin'8~+ cos'p)J
{4.28)

We have calculated the decay rate" for the amplitudes defined in EIls. (4.12), (4.13), (4.14), and (4.1I):

)'(p-)e)= ~14, I4(4)a 2
" -+) )f„['—)2Re()gfz)+'))f )'

+ [g, ('+2ig„i'-2He[(f, —2f„)*(g,+2g, )] . (4.29)

In writmg this, we have rescaled all the amplitudes
f„, fs, g~, and gs by taking out the common fac-
tor e)I. The branching ratio is given by

E( 3 )
f(P ~e&)
I'(P, - el)P)

6„'{r"+ r)"+1 "'}.
64

B(ll -3e)
&(u-n}

plV

ping

(0.06i

&0.08)

(4 34) .

Taking the results from Eqs. (4.15), (4.2&), and
(4.28), with (e)I) factored out,"

I""=4 4ln

These x esults ax'e close to the value 8 = O.OV ob-
tained by keeping only the ln(m'/M~') terms. This
is due to some complicated cross-tex'm cancella-
tion and not to dominance of logarithmic tex'ms.

-12 He(f„*f,)+ 3 ~f, I'=478, (4.31) C. Muonium-antimuonium transition

(2260'l

(34'f6 '
1'"'= -2 Re~(fs —2f~)*{g's, + 2gsH

882 )I

10S2j

(4.32)

(4.33)

Here we have taken 1n(m'/M~'} = -6 and sin'8~
From EIl. (4.11)we then obtain the ratio,

which depends on ln{m'/M~') only

The px"ocess g p, ~ pe has been studied lIl con
nection with the possibility that there is a "mul-
tiplicative scheme" for the ILL- and 8-lepton-num-
ber conservation. " Namely the p, -type and e-type
leptons corresponds to opposite "parity" states.
If this is the case, then p. -ey will be forbidden
while ep, - p, e is allowed. A paxticularly interest-
ing physical xeaction of this type is that muonium
can spontaneously turn into an antimuoniUm
Feinberg and %einberg have made a detailed analy-
sis of this conversion in vacuum and in various
environments. "

In our model this process can also occur, albeit
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FIG. 5. The box diagram for pe ep.
FIG. 6. Feynman graphs for (a) pg —e& and (b) pd ed

processes with an effective peZ vertex.

of order G', much like the situation for the
(K'-l7') transitions. The effective Lagrangian is
eRsy to cRlculRte. It corresponds to the diagram
in Fig. 5.

From the result in Sec. D of the Appendix (this
is a "type a" box) we easily obtain"

normally "captured" in the reaction

p+ (A, Z) - v„+ (A, Z —1) . (5 1)

%e shall study the possibility of it being, on a
rare occasion, "converted" into an electron in the
reaction

(4.35) p, + (A, Z) - e+ (A, Z) . (5.2)

(in

The present generation of experiments" can prob-
ably make a measurement at the level of g,«= Gz.

V. SEMII.EPTONIC PROCESSES

In this section we calculate p, —e conversion in
a nucleus, K~-ep, and K-7tep, etc. To study
these semileptonic processes we adopt the follow-
ing simple approach: %e first calculate the ele-
mentary lepton-quark interactions; the amplitude
so obtained is used as the effective Lagrangian for
the appropriate semileptonie process. This in-
volves evaluating the matrix elements of the two-
body free quark operators between hadron states.
For weak interactions of quarks we shall, for
simplicity, use the standard model of Eq. (2.1).
However, in Sec. VA, where we discuss pe con-
version in a nucleus, we shall also consider the
possibility that this model may have to be extended
to include right-handed currents and new heavy
quarks.

A. pe conversion in a noc1eus

A muon trapped in the field of nucleus (A, Z),
after it undergoes transition to the K shell, is

This is an interesting and important process to
study 81nce stx'Ulgent bounds already exkst Rnd

significant improvements over these limits are
feasible in the not-too-distant future. "

The basic theoretical work on this subject is a
paper by%einberg and Feinberg. Once we have
obtained the effective Lagrangian in this model we
shall lean heavily upon that work to obtain our final
estimates.

The relevant quark-lepton reaction for this pro-
cess is

(5.3)

(5.4)

The calculation is similar to that for p, —eee. It
involved the same three classes of diagrams shown
in Fig. 3. However, for this process we shall use
the leading log approximation. From our experi-
ence with the 'p- Se calculation, it probably does
not introduce a large error. Since the uncertainties
due to strong interactions and nuclear physics will
be considerably larger, this expediency is perhaps
justified. Our task then is simply to calculate the
In(m2/M~2) contributions coming from the Z-ex-
change and the two W-exchange diagrams (see
Fig. 6 and Fig. 7). With only these "weak ampli-
tudes, " the effective Lagrangian may be parameter-
lzed Rs

(5.5)

(5.6)

2„,= (s~/sin'8~) In(m'/M~') [e(1 —y,)y„p]

x(n [~g(1+y, )/2+ ~ (I-y.)/2h"u+ ale~~(I+ y5)/2+ &s(i -ys)/2b'&] .
In calculating the weak amplitude we shall allow for the possibility that Mz and/or dz may belong to some

weak isodoublets. Their contributions will be specified by the parameters p„and p„:
Q

p„= 1 if is present, p„=0 otherwise,

t
p~= 1 if is present, p„=O otherwise,

g
(5.V)
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where b and t are new heavy quarks.
Let us first calculate the Z-exchange contributions: The amplitude for the graph in Fig. 6(a) is

iG-e [e (1 —y, )y„p](ig/cos8v)(u [(o —2 sino8~/3) (1+y, )/2+ (o p„—2 sino8»/3) (1 —y,)/2]y" uJ .
The amplitude for the graph in Fig. 6(b) is

-iG e [e (1 y—o)y„p](ig/cos8»)(Z [( o-+ sino8»/3) (1+y, )/2 + (- o p, + sin'8~/3) (1 —y, )/2]y'dJ,

(5.6)

(5.9)

where Ge is given by Eq. (C8} in the Appendix.
They contribute to Eq. (5.5) as

a~g)=1 —4sin'8~/3, aug)=p„-4sin'8~/3,

Z,« = (e&(/sin'8») ln(m'/M»') [e (1 —y, )y"p]

x (G(o) V(o)+ G()&V(o&+ G(o) A(o)+ G(1&A (» )v )t v )t w )t x )t

(5.13)
(5.10)

8 g) =-1+2 sin'8~/3, 8„g)= -po+ 2 sin'8~/3 .

We next compute the contributions from the box
graphs in Fig. 7. They correspond precisely to
the four "types" as classified in Sec. D of the Ap-
pendix [see Fig. 16 and Eq. (D12)]. Two of them
have also been evaluated in our calculation for the
decay p, -eee [see (4.24) and (4.25)]. Their con-
tributions are simply

aq(2W) = -1, a&)(2W) = -4p„,

8i(2W) =4, 8&)(2W) = po.

From Eqs. (5.10) and (5.11), we obtain

a ~ = -4 sin'8~/3,

as —-3p„—4 sin'8~/3,

8~ = 3+ 2 sin'8»/3,

8+=2 sin'8»/3.

(5.11)

(5.12}

Now we can proceed to place the effective La-
grangian of Eqs. (5.5) and (5.12) between the initial
and final nuclear states. For this purpose we re-
write it in terms of the isoscalar and isovector
vector and axial-vector currents:

where

G»' = (a~+ ae+8~+8e)/2,
V~(o& = (uy" u+dy~d)/2, etc.

(5.14)

(5.15)

For coherent processes the axial-vector current
contributions are suppressed, and the vector cur-
rent matrix elements are

(5.1V)

(5.16)

We have assumed that the density of the initial K-
shell muons is Z,«Z 'o. 'm„'." Compared to the
ordinary muon capture (here we ignore some nu-
clear physics factor; see comment e in Table I)

&L&(p,
—v)= (1/4» )Z„, a'm 'Gz (C» +3C„)

(5.19)

(C»=1 and C„=1.25), we have, for isoscalar nu-

cleus,

= 6.2 &&10-'E( )(A'~F(" ~'/Z)
(d(p u)

' pl »

((A, Z)'~ V(o'~ (A, Z)) =-.*AF,"', (5.16}

((A, Z)'I Vo('&
l
(A Z)) = g -A/2)F'"

where Fv' and Ev ' are the isoscalar and isovector
nuclear form factors with F»o'(0) =F» '(0}= 1. For
our case they are, of course, evaluated at q'
=m„2.~ The p, e transition rate is then given by

(o(p-e) =(1/2&(')g„,'Z 'a'm, ')

&& [(e&(/sin'8~) ln(m'/M ~')]'

x ~oAG' 'F„' '+(Z-A/2)G"'F' '~'.

L) 0)

x [(a/&()5„1n(m'/M~')]',

or, in terms of the p. - ey branching ratio,

(5.20)

=2.6 &&10 oE(p )(A ~F '~ /Z)(a/&&)
(d(&) - u)

(d) where

&& [ln(m'/M~')]'B(&( —ey), (5.21)

FIG. 7. Box diagrams for pq —eq with both V- A and
V+A quark couplings.

(5.22}
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TABLE I. Summary of our principal results for the
branching ratios of muon-number-nonconserving pro-
cesses. (For the reaction p& e& it is the pe conver-
sion rate divided by the ordinary p capture rate p& p&.)
The theoretical predictions of our model all contain a
combination of the mixing angles and heavy-lepton mass
differences as [sin/cusp(m) -m2 )/i)f)» ]2. The numerical
estimates shown in the second column are given for ~nP
=sinpcosp(m~2 —m22)=1 GeV2 and ~=60 GeV. [In our
previous communications (Refs. 2 and 3) we took ~= 50
GeV in our numerical estimates. ]

(0()1-e) = 0 4&(.V ey—),
(o(i) —) )

or, for sin(P cos(t)(m, ' —m, ') =1 GeV',

(5.23)

Weinberg and Feinberg4' have estimated that the
"coherent factor" (A2 ~E» '~2/Z) reaches a maxi-
mum of about 30 for nuclei near copper. Taking
this value, 1n(m2/M~2) =-6, and assuming the ab-
sence of right-handed couplings for the u quark
E(0) =60, we obtain from E(l. (5.21)

Process Our result Experimental bound Comments

Kg~ eP

K ~ 7t' 8IT

Z~- Z0ep

4 x 10 i0

3xM"
10 "/C

3x10 '2/C

yp-i0

10-13

XO-~5

&2.2x10 (Ref. 51)

& 1.9x10 (Ref. 18) a, b

a, c,d, e
&1 6x10 (Ref. 19) a, c,e, f

&1.6x10 0 (Ref. 52) g

& 1.4 x 10 8 (Ref. 53) g

~%'e have taken ln(MI 2/m2) =6.
%e list here the average value for the two cases of

m 2 ~ 2 and rn 2 ~~ 2

This is the "leading log approximation" result w'ith

maximal coherent; effects for nuclei near Cu.
d For standard V —A four-quark theory.
~ C is a nuclear physics factor which can be as small

as 0.1 for Cu. H. Primakoff, Revs. Mod. Phys. 31, 802
(1959) and S. %einberg and G. Fein~rg, Phys. Rev.
Lett. 3, 244 I) (1959). %'e would like to thank Dr. A.
Sanda for calling our attention to these references.

~ For theories include the &+& current: b(1-&5)7y~.
~ For asymmetric lepton masses. %e took rnf/m2 = 4

and m, = 1.8 GeV.

(5.24)

e =E(1)/E(0) = —,', ; (s.2s)

the V+A current for the d quark makes no contri-
bution to this process. We note in particular that
a weak-interaction model which has had consider-
able phenomenological success4'

would have p„=1 and thus a small rate for p, -e
conversion.

Lastly, for the incoherent processes the p, e tran-
sition rate is given by

This is to be compared with the present experimen-
tal limit of 1.6)(10 '. (Here we ignore a nuclear
physics factor, see comment e in Table 1.)

It is interesting to note that the presence of a
right-handed current, p„=1, would significantly
suppress this p, e transition. From E(l. (5.22) we

see that the suppression factor is

(0'(}1- e) = (1/2)(2)(Z„,'Z '(2'm„')[(e)(/sin28~) ln(m2/M~2)]2

X(Z[(2G (0)F (0)/2+ G(l)F ll)/2)2 + 2 (2G (0)F (0)/2+ G(1)F(1)/2)2]

+ (g Z)[(2G(0)F (0)/2 G(1)F(1)/2)2+ 2(2G (0)F (0)/2 G(1)F(1)/2)2) ) {s.26)

The elementary interactions

8. Muon-number-nonconserving E decays

+p. +8 (5.27)

which change both muon number and strangeness are simply given by the box graphs shown in Fig. 8.
From this we calculate the effective Lagrangian for muon-number-nonconserving E decays. The box graph
shown in Fig. 8 is of "type b*' as classified in Sec. D of the Appendix. From the calculations given there
we have"

2, , g4(64s2M~2) ' sin(p cos(p sin8c cos8c K[e(1 -yo)y"i1][s(1+y,)y„d+d(1+y, )y s]

= (sin8cGz/v 2 )eK [e(1—yo)y"ii][s (1+y, )y„d+ d(1+y,)y„s], (s.26)
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FIG. 8. The Feynman graph for sp-de.

where

z = (a/2v) sing cosP cos8c/sin'8 ~, (5.29)

K=[I(x,0) I(x,-0)] [I(x—., y) —I(x,y}],
(5.30)

we obtain B(K~- ep) = 10 '0, with m, = 1.8 GeV."
K-mep, . The amplitude for K-me@, is given by

SR(K- vep, ) = (sin8cGz/M2)eK[e(1 —y, )y"u]

x &x Isrid+dris IK& (5 40)

This is to be compared to the amplitude for K'
-m vp, '. Again SU, calculations yield '

&s'I srid+dyi~ IKs& = &v'l synod+ dyes IK'&

( I/~2)~olsy, ulK'&.

(5.41)

Folding in the branching ratio of K'- m'vp, ', etc.
we obtain

f(x, y)=[Z(x) -Z(y)]/( -y),
J(x) =(1 —x) '+x'lnx/(1-x}',

(5.31)

(5.s2) I'(K' all) (5.42)

with x, =m, /M~, y =m, '/M~', and m„'/Mv = 0.
Fermion masses are expected to be small when
compared to M~; this rather complicated expres-
sion for K can be simplified. The resulting limits
depend on the relative sizes of lepton and quark
masses:

K = (m, '/M ') ln(m, '/m, '),
for m~ » m2 with m2 & m, (5.33}

K=(m, ~ —m2 )/2M'', for m~=m2=m, (5.34)

K=m, m(m, —m2 )/(m M~ ), for m, =m2»m, .
(5.s5)

K~ - e p. . The amplitude for K~- e p, is given by

%(K~-eu, ) = (sin 8cG~ /v 2 )&K[e(1 -y, )y"p]

x &0
I srsr„d+dy, y„s IKx& (5 35)

A straightforward SU, calculation" can relate this
hadronic matrix element to that for the leptonic
decays of K'.

&0 I sr,r, d +dr, res IKi& = ~2&0
I sysyiu IK'& .

(5.sv)

From this we can immediately conclude (recall we
set m, =0) that

I'(K~- ep, )
I'(K'- vP)

(5.38)

1"~~ all (5.se)

where e and K are given by Eqs. (5.29} and (5.30),
resyectively. The various limiting expressions of
K are given by Eqs. (5.33)-(5.35). As an illustra-
tive example for (m, /m, ) = 4 and sing cosP = 2,

Folding in the branching ratio of K'- vp.
' and taking

into account the different lifetimes for K' and K~,
we obtain

I'(Ks - s'e u, ')
(Ks - all) (5.43)

For m, /m2 = 4, sing cosP = ~, these branching
ratios are 3 ~10 "and 2 x10 ", respectively.

Vl. SUMMARY

In renormalizable gauge theories we must allow
for all possible fermion and Higgs-scalar couplings
that are compatible with the requirement of gauge
invariance. Unless we impose some discrete
symmetries beforehand, these would include
scalar couplings to fermionic weak eigenstates be-
longing to different multiplets. When spontaneous
symmetry breaking takes place and Higgs scalars
develop vacuum expectation values, these Yukawa
couplings generate mass terms which are off-
diagonal with respect to weak eigenstates. It is
this source of flavor-changing interactions in
gauge theories" which we have discussed, in con-
nection with the question of possible muon-number
nonconservation. These off-diagonal masses are
in effect the coupling constants that determine the
magnitude of the corresponding flavor-changing
interactions.
As was pointed out in our earlier communica-

tions,"in models where the muon and electron
have both the V-A and V+A couplings, one would
anticiPate that these off-diagonal mass terms
would be in the GeV range. Consequently muon-
number-changing effects would be dramatically
larger than. the simplest V-A theory where one
would a priori think that the off-diagonal mass
terms should be comparable to the neutrino
masses.

We have proposed a simple model of leptons,
Eq. (3.1) [or see Eq. (Al)], which incorporates a
"leptonic GIN mechanism. " (The requirements of
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FIG. 9. The Basic IQechaQlslQ fol pg t'raQsltioQ iQ ool
model. There is another diagram where (&~)~ is replac-
ed 4v (+T)g.

a, natural GIM mechanism in theories mith V+A
currents are amplified in Sec. III.) In this model
parity-violation effects in high-Z atoms are strong-
ly suppressed. And the basic mechanism for p, e
transitions is the one shomn in Fig. 9. The cou-
plings of these tmo diagrams, by inspection, must
he proportional to &m' = (m„,m,„+m„m„). In
terms of the physical masses and mixing angles
this factor is precisely [see Eq. (A30)] the familiar
combination of sin(t» cos(j»(m, ' —m, ') which appears
in every result of our calculations. If all Yukama
couplings [f„in Eq. (A3)] are comparable in mag-
nitude, then me do not expect ~m2 to be signifi-
cantly smaller than the average heavy-lepton mass
»»»'=-{m, '+m, ') [see Eq. {A29)]. Thus a value of
fern GeV seems reasonable to us. In presenting
our results in numerical form me have set Am.
=- 1 GeV'. This should set the scale of our esti-
mates. These estimates, together with the pres-
ent experimental limits, """""are listed in
Table I.

Note added. While this manuscript mas being
typed, me received the folloming papexs on muon-
number nonconservation: M. A. B. Beg and A. Sir-
lin, Phys. Rev. Lett. 39, 1113 (19VV); R. Decker
and J. Pestieau, Univ. de Louvain report (unpub-
lished); T. Kaneko, Meijo Univ. Report No. MJU-
DP-V03 (unpublished); S. M. Barr and S. Wandzura,
Phys. Hev. D 15, VOV (19VV); W. J. Marciano and
A. Z. Sanda, Rockefeller Univ. report (unpub-
lished). The last two papers also present calcula-
tions on p, eee and p, 8 conversion ln a nucleus
%e mould like to thank Dr. Marciano for pointing
out a sign error ln our ol lglnal calculation for the

888 amplitude.

need to compute the one-loop-induced p,ey and

p, eZ vertices, 38 meH as the box diagrams corre-
sponding to the exchange of tmo W' intermediate
vector bosons. These objects are computed in
Sec. 8& C„and 0& respectively. The method for
diagram calculations in gauge theories is by nom

mell knomn. In particular me shall perform many
of the calculations in the general Q gauge. " Non-
Abelian gauge invariance then demands that phy-
sically meaningful quantities must be independent
of the f parameter. Some of the results me pre-
sent here have been obtained before in connection
mith studies of the various strangeness-changing
neutral-current effects in the standard model. A

particularly useful reference is the paper by
Gaillard and Lee."

A. Lagrangian, mass matrix, and Feynfnan rules

TAP L»NgAFNgMN

In our SU, &U, gauge model of meak and electro-
magnetic interactions, there are tmo doublets
(f =-,') of four-component fermions: one e type,
one jL{. type, mith meak hypercharge p =-1, and
tmo left-handed tmo-component fermions mith
I =y= 0. (This is to ensure that after spontaneous
symmetry breaking, there miQ still be tmo mass-
less neutrinos):

and y .'sop, ATL ~ A1

There is one set of (complex) scalar fields
(I =-'„y=1)

» =(»:)
The Lagrangian ls given by (with c =8» p, and
b=o, r)

&=-4W(v "W"' ~&„v~""+&Icy &x4s+f6& &a&(

+(D~C)'(D"+)-&(+)-~.7.4.—(f.~~4.4+H c )

In this Appendix me shall provide some details
of our calculations. '4 In Sec. A, me specify the
Lagrangian of our model and present the relevant
Feynman rules. We shall discuss important fea-
tures of the lepton mass matrix. For the sake of
completeness, some familiar relations for the
SU, X U, gauge models mill also be included. The
various physical processes discussed in this pa-
per often involve similar Feynman diagrams: Ne

gf j P
—8jIBfj ~ P Bjf y

D»,4.=(sx-&gT @x-&g'2y&r )4.

D»@ =(sr -4"2& W) & Z'r&», )-@'

&(@)=- v'(@t@)+p(@'&)'.

V(C ) is such that spontaneous symmetry breaking
takes place
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~ = (u'/p)' " .
Shifting the scalar field

(
I, (&t&I+i &]&, +V)/V2 $

The Ileutl'Rl Q 18 the physlcR1 Higgs scR1RI' IIIeso11.
The remaining scalar fields (t)', $, are the "would-
be Goldstone bosons"; when combined with the or-
iginal massless gauge fields they provide us with
the three massive intermediate vector bosons 8"~,
Z'z. The Zz and the photon field A & are linear
combinations of 8'z' and Bq.'

A. q
= cos6~- hz+sin6~%'z',

vacuum expectation value

V
C.-1=f.1 g2

—TI. 6+h c
= m„(II,in, „)+m„(n, iII,„)
+ m, „(II,iII„„,)+m, „(n,iII„„)+H.c. (A15)

(A15)

We collect the mass terms of neutral leptons in
Eqs. (A.14) and (A. 15) (and also extend the "1eft-
hand index" 5 to include all e, p. , o, and v types),

= (4, }R3ll „(4,)i + H. c.
with

Z)t = -8 lng g By + cos Gg; 8'y

where 6}~ is the Weinberg angle:.

tan6~ =g'/g .
Substituting (AV) back into the original Lagrangian
we have the couplings ofA~ and Z& to the fermions
as

(m, 0 m„m„}
( 0 m„m„m„,)

4~ and 4~ are weak eigenstates

(A18)

(A19)

with

e(Ij'QI g}A„+(g/coseI )[$(T, —sin'&„Q)I' Ij'] Z1

(A9)
The mass matrix is diagonalized with respect to
the physical states

-Z. =(4,'), 3)l',, (4,'),

e =gsin6~ . (A10)

The vacuum expectation value 8 gives rise to mas-
ses for the intermediate vector bosons:

with

(m, 0 00'}
0 m, 00) (A21)

(Al 1) The mass eigenstates

Mz =M~/cos 8~ ~

This last relation reQeets the feature of this model
that only a Higgs doublet develops vacuum expecta-
tion value. We also recall the famous relation

M~=2 ' 'Gz ' 'e/sing„=(37/sin8~) Qeg. (A13)

Present experimental data are consistent with
sin'8~ = —,'. In numerical estimates we shall adopt
this value, which also implies that M~ = 60 QeV.

I.epfon muss mu prix

For the lepton masses, we have the bare mass
term'6

=m~ (ee + II+ tl~ ) + m
& (Ji P, + H& II

& )

and the mass terms rising from the Vukawa eou-
plings of the leptons to the scalar which develops

(A22}

are related to the weak eigenstates in Eq. (A19)
by unitary transformations

tJ%'L =4'~,

@~9'U =BR'

with

(A23)

(A24)

(A25)

cosg sin(t)
-sing cosQ

~~

~~

~

Equation (3.2) is just Eq. (A23). We can fix the
elements of U in Eq. (A25). A straightforward
calculation yields
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U~ = (m, /m, )cosQ, U„= (m, /m, )sing,

U„, = -(m„/m, )sing, U„, =(m„/m, )cosp
(A27)

too different from the average of the heavy-lepton
mass squared.

The Feynman rules

Part of Eq. (A24) is shown in Eq. (3.4). The re-
lationship between the initial six parameters in
%„and the four physical masses, two mixing
angles can be worked out. %e note that

2gm„, ~,
tan2$ g( 2 2) y

a

PE + PB = PPl

0 ~

(A26)

(A29)

For us the most interesting combination of mixing
angle and mass factors is

sing cosg(m, '-m, ') = —(m„m, „+m„m, „),
(A30)

which controls the size of p,e transition processes.
If Yukawa couplings f„are all comparable in mag-
nitude, then the combination in (A30) should not be

Here we shall provide all the relevant couplings
used in our calculations. The gauge couplings of
leptons are shown in Fig. 10. Some examples of
these couplings in terms of the physical states
are

G(i ~y) =-ieri, (A31)

G(y. p Z) = (ig/cos 6„)(--,'+ sin'P~)yz, (A32)

G~(pN, W) = ( ig—sinPm„/M2m, )y„(1—y, )/2,
(A33)

Gs(iJN, W}=(-igsinQ/~2 y~(1+y, )/2. (A34)

Except for the case of unitary gauge, the contri-
bution due to the "would-be Goldstone bosons"
(Q', P, ) must be taken into account in order to
maintain gauge invariance and to obtain unitary
results. We give explicitly an example of their
couplings to leptons: the case where P' replaces
the W' in Eqs. (A33) and (A34):

G(pÃ, P) =(-igsinP/W2M~)(m, —m„'/m, )(l+y, )/2

=(-igsinP/v 2M~)[(m„/m, )[m, (1—y, )/2 —m (1+y,)/2]+ [m, (1+y,)/2 —m„(1 —y, )/2D.

(A35)

(A36)

From the second expression, we can easily check
that contributions due to these scalars precisely
cancel the unphysical pole in the S' propagator
[the second term in Eq. (A37} below]. Comparing
the expressions in Eqs. (A33}, (A34), and (A36)
one can easily read off the Yukawa couplings for
other leptons.

The relevant trilinear gauge and gauge-scalar
couplings are displayed in Fig. 11.

w+a Wp

(g

—ie (p q)ug~&+(p+ p-)&go)3

'(q-~-)p g~. .

le Mwg

yQ)

G(ffy) =ieQy&

yQ)

P P -ie(p -p, )&

G(f QZ)=(ig/cos8w')

x(T&LL+ T&&R-sin 8WQ) y
W

~ G,(yyW)=(g/+2)T;y„L
(L)

w+

Gg (pfW) =(ig/+2 ) TR+y~ R

rR)

Wa+

ZQ)
a p

ZQ, )

pp p

R

-Ig COSH/ (p -q)y gp),

+(p+-p ) g,&+(q-p, )&g„,

igM+sin8+ ton8+g &

ig (y-sin 8+)/cos8~ (p-p )&

FIG. 10. Feynman rules for lepton gauge couplings
where T~+& are the isospin-raising matrices for the left
and right multiplets: L =(1—ys)/2 and A =(1+ps)/2.

FIG. 11. Trilinear gauge couplings and the correspond-
ing couplings with 8'bosons replaced by the unphysical
Higgs scalars.
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in (k, $) = i(k —Mv'$ ') '. (A38)

Many of our calculations are performed in the
g gauge. In this general class of linear gauges,
the propagators for the W' bosons and the unphysi-
cal Higgs scalars Q' are given by

i&~~(k, $) =-i[(g —k"k"/M~')(k' —M~') '

+(k~k"/M 2)(k M ( ') '] (A3$)

f„(c)= 5 f/6 —Vu($)/3+ 4v($)/3,

fu(d) = 5$/8+u(()/3 —v($).

The (LR) amplitudes:

f (s) = -8 —4u(5)+ 2v(t),

fu(b) =25,

f„(c)= —$+ 2u(() —v($),

f„(d)=-t+2u(5) —v(5).

(H4)

(B5)

(H8)

(s'r)

(H8)

(B9)

B. Induced gey vertex

Because of the GIM cancellation mechanism dis-
cussed in the text, all the p, e transitions proceed
through the heavy leptons, which in the limit of
m, =0 couple to the electron only through the right-
handed currents. The most general form of the
pey transition vertex is given by [compare with
Eq. (4.1)]

T„=if,(P')(1 —y, )[im„fucr~q"

+f (y q' —q yq„)]u„(P), (&1)

where q =P -P'. Current conservation requires
that the "total charge" must be zero. In calculat-
ing the higher-order weak contributions to T„, we
may ignore the diagrams [Figs. 2(b) and 2(c)]
where the photon (real or virtual) is attached to
the external fermion lines. They contribute to
the p, e charge, hence must be canceled by the
corresponding contributions coming from other
diagrams. Basically we must calculate the four
diagrams in Fig. 12. We have calculated the f„
term in the general $ gauges. The contributions
due to each of the diagrams in Fig. 12 for the dom-
inant right-right (RR) and left-right (LR) couplings
are listed below: The (RR} amplitudes:

(K/2) = (e/32m')(g'/8M~')

x[sinQ cosP(m, ' —m, ') /Mv'];

u and v are the combinations of

u(&) = $/($ —1)[1—in)/($ —1)],

v(() = (ln]/(( —1).
Thus we have

f„=fN(RR) +fu(LR) = (1 —6)K/2

= -5x/2.

(H10)

(a11)

(B12)

We have not completed our calculations of the
p, e "charge radius" fs. However, Petcov" has
calculated it in the standard V-A theory (in the
't Hooft gauge). Since the calculation with (LL)
couplings is identical to the (RR) couplings and
because for this amplitude the (LR) contribution
is smaller by a factor of (m /m, ), we can directly
use his result to obtain

f, =2~,

where x is given by Eq. (B10).

(a14)

In each of the above expressions we have taken out
a common factor of

f„(a)= 1+2u($) - v($)/3,

f„(b)=-5$/3,

N(~ e

(a)
N(g e

(s)

(»)
(»)

C. Induced j((eZ vertex

Here we shall compute the one-loop induced
p, eZ vertex and keep only the leading y~ term.

Consider the Z-exchange contribution to the
process p.e- ee as shown in Fig. 13. We shall
define the p.eZ effective coupling G~ as

Sgs( pe - ee) = -iGs[V(1 —y, )y„g](ig/cos8v)

x (--', + sin'8~)(py'e)], (C1}

where we have taken the momentum transfer to be

N(, e

(c)
N(g e

(~)

FIG. 12. One-loop contributions to p ep vertex. The
broken lines are the unphysical Higgs scalars.

FIG. 13. The effective peZ vertex in the process
pe ee.
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m, » m2. They are In(m, '/Mv') and ~, respective-
ly. ] The results are

G (a) =ln(m /M~ )+ (c2)

(d)

(g)

(e)

G (b)+G (c) = —2+sin'8~,

G (d} = 3 cos 8)(tt

G (e)+Ge(j) =2 sin'8~,

Ga(g) = O[(m'/M~') In(m2/M~')],

G (h) = (--,'+ sin'8~)))-"-d "I'(2 —d/2)
1

x dz1 —o 1 —nM2
0

+am' o'm '~ "
J

Ge(i) + Ge(j}= -Ga(h}.

(c3)

(c4)

(c5)

(c6)

(cv)

FIG. 14. One-loop contributions to the effective pe&
vertex .

small compared to M~'. The one-loop diagrams
that contribute to G are shown in Fig. 14. Since
we are only interested in the leading contribution
to the y~ term, "we are allowed to set the exter-
nal momenta equal to zero in these loop integrands.
This considerably simplif ied the computation. The
results for each diagram are listed below. [In ob-
taining the final expression in E(I. (C2) we have
distinguished two cases: (i) m, = m, . In this case
the m in the ln factor should be the average heavy-
lepton mass and the constant factor is —'„(ii)

4
G =2 cot8~)(; ln(m /Mv )+

~(3)
where

(c8)

x = (e/16m')(g'/8M~ }[sin(t) cosP(m, ' —m, ') /Mv]

(c&)

Diagrams (h), (i}, and (j) are individually divergent
(we have used a dimensional regularization pro-
cedure with d =dimension). But both the divergent
and constant terms cancel in the sum of these three
graphs. In the above expressions we have factored
out a constant g' sin(t) cosP(m, ' —m, ')
x (64v' cos8~Me') '.

The sum of E(Is. (C2)—(C5) is then"

D. Box diagrams

Consider the four-fermion process 1+3-2+4 by exchanging two W bosons, Fig. 15. We are interested
in the limit where all the external momenta are small'4 (compared with Mv and masses of the heavy fer-
mions that appear in the internal lines). With this approximation, this diagram can be easily calculated
in the 't Hooft gauge":

d4
B(x,y) =-i(ig/v 2)', [u„(4)y"(y ~ k+m„)yea(3)]

(D1)

tt( 4) ( d /44*,)f=d-'4(&'/4)('M-M ')'(M- .*) '(&-,')-
x [u(4)y"y y' —'(I+y, )u(3)][u(2)y,y y„—,'(1+y,)u(1)]. (D2)

After making the Wick rotation we can reduce the momentum integration to a simple form that can be in-
tegrated explicitly:

f d'k(M/4)(tt —M ') '(4'-,*) '(4' —,') ' =-( /4M )f dt(' t ~*1)*(t'~ *) '(t +1) '
0

= -(iv'/4M, '}f(x,y),
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where x =m, '/M~', y =m„'/M~', and

f(x, S) =[~(x)-~(y)]/(x-S)
with

J'(x) = (1—x) '+ (x ' inx)/{1 —x)'. (Ds)

The Dirac matrices can be simplified by the identity

y"y'y' =g""y'+g ~y" g"-'y" f&-"""y,y, (D6)

Thus we have
FIG. 15. The box diagram with intermediate fermions

x andy.

[y"y"y'(1+y, )/21[y,y„y„(1+y,)/2]=10[y'(1+y, )/2][y„(1+y,)/2]+e" 'a, [y,y,(1+y,}/2][y,y'(1+y, )/2].

(D7)

Using

(DB)

y, (1+y,) =(1+y.),

we have for the particular box diagram in Fig. 15

B(x,y) = -g'(64m'M ~')-'f(x, y) [u(4)y"-,'(1+y,)u(3) ][u(2)y„-,'(1+y, )u(1)]. (D10)

Next we shall classify four types of box diagrams
as shown in Fig. 16 depending on their couplings
and on the relative direction of momentum flows
in the intermediate fermion lines. " The general
results can then be written as

B(x,y) = —g(g'/16m ')(g '/SM~')f(x, y)

(D11)

They are determined by the relations in Eqs.
(D8} and (D9} and

gvxPoq 6g 0
vip'

y, (1 —y, ) =-(1—y,). (D14)
The two parameters g and q take on the following
values for the four types of diagrams shown in
Fig. 16:

The overail minus sign for f(c) and f(d) reflects
the direction of fermion flow in these diagrams.

(R) (R) (R) (R) (R) (R) (R) (R)

FIG. 16. Four types of box diagrams.
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