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Pattern of quark mass matrices and the mixing-angle hierarchy
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By expressing the quark masses, as well as the quark-mixing angles, in powers of the Cabibbo an-

gle (A,) we show that the up- and down-quark mass matrices are proportional to each other up to
terms of order A.2. This implies that the mass ratio of these two types of quarks should be roughly

the same in each generation except for the lightest quarks. %e then demonstrate that this is the key

ingredient that enables the Fritzsch ansatz for quark mass matrices to reproduce the observed pat-
tern of Kobayashi-Maskawa (KM) mixings and predict that the KM angle 83——0(A, '). Some of the

phenomelogical implications, including that for the kaon CP-violation parameter e, are worked out.

I. INTRODUCTION

Pf (2y3) /PFE
~ l y3 )

=generation independent, (2)

Phenomenologically the SU(3) XSU(2) X U(l) g~~ge
theory of particle interactions with three generations of
leptons and quarks has been very successful. On the more
basic level, however, a certain theoretical question is still
unanswered: Why are there three generations of fermions
with identical gauge couplings? Will this sequential repli-
cation continue to yet another generation'? Related to this
deficiency, all fermion masses and mixing angles are free
parameters of the theory. Clearly it will be desirable to
have some simple mechanism that will account for the ob-
served systematics of these parameters. Such study may
turn out to be helpful for various formulations of genera-
tion symmetries, and it will aid in our search for the
fourth generation if such leptons and quarks indeed exist.

In this paper our discussion will be confined to the
three-generation case. A simple model with "maximal CP
violation" allows us to express all the quark-mixing angles
and phase in terms of the masses. Namely, the famous
four-quark result' for the relation of the Cabibbo angle
and quark masses,

8c (me/m, )'r (1)

is extended to all the Kobayashi-Maskawa2 (KM) angles.
In the accompanying papers this simple model will be ex-
tended to the four-generation case. Some of the principal
conclusions of these two papers have already been present-
ed in a previous publication.

This paper is organized as follows. In the next section,
following Woifenstein, s the quark mass and mixing-angle
hierarchies are presented as series in powers of the Cabib-
bo angle (1I,). It is then shown in Sec. III that the up- and
down-quark mass matrices are approximately proportion-
al to each other with the difference of the (normalized)
mass matrices being of the order A, . Thus we suggest
that, apart from the light quarks, the ratio of these two
masses in each generation should be roughly the same,

and in this way the case for m, =40 GeV (Ref. 8) is
favored. In Sec. IV we show that the Fritzsch ansatz9 for
quark mass matrices when combined with the above result
and a ~Iiarticular version of maximal CP-violation postu-
late'o'' will yield a set of KM quark-mixing angles
5=0(l), 8i ——O(A, ), 82 ——O(A, ) which are in agretnnent
with the known phenomenology, and the prediction
8&

——O(A, i) which leads to
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Finally in Sec. V the above result is applied to the "box
diagram" calculation of the kaon CP impurity parameter
e and it yields

e 1.9& 10 9g,
where B» is the conventional parameter of the dLS=2
short-distance operator between the K and K states.
(These numerical results are of course sensitive to all of
the uncertainties in our knowledge of the quark masses. )

II. SYSTEMATICS OF FERMION MASSES
AND MIXING ANGLES

The masses and mixing angles of the known quark
states reveal some distinctive regularities. The following
ones are most prominant.

Mass hierarchy. Just like the case of the charged lep-
tons m, «m„«m, we also find that the mass ratios of
the same charge particles in different generations all differ
significantly from 1. The running masses at the energy
scale of 1 GeV have berm estimated to have the values'

m~ 8.9+2.6 MeV, n, 175+55 MeV,

mb 5.3+0.1 GeV,

m„=5.1+1.5 MeV, m, =1.35+0.05 GeV .
And if we tentatively accept the interpretation of the pp
colhsion data as indeed indicating the production of the t
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quark, we then also have

m, =30—50 QeV . (5)

where the rows are u, c, and r and the columns are d, s,
and b We. note that the small off-diagonal elements also
display a distinctive hierarchy.

To organize our thinking of the nine parameters in (6)
with their disparate magnitudes, we shall parametrize
them as powers of some common small parameter A, . Fol-
lowing Wolfenstein, we choose to use the Cabibbo angle
for A, ,

U =0.225—=A, ,

and after imposing the requirement of unitarity, the KM
matrix is parametrized, up to an 0 (A, ) correction, as

1 —A, /2 A,

1 —1, /2

(1—cr —i ri)A iL —A A,
i

(rr i ri)A A- ,

AA, , (8)

I

where A=1.15 and (cr +ri )'~ &0.7.
In the same spirit we also choose to express the quark

masses in (4) and (5) as powers of the same small parame-
ter:

mr. mc.mu = &:~~:~~~2, 6

m, :m, :m, = la, z:d,X',

where we have the 0 (1) coefficients

c, =(m, /m, )/1, , u, =(m„/m, )/A,
sb ——(m, /ms )/A, , di, (md /mi, )/A——,

(9)

%e wish to emphasize that this is merely a parametriza-
tion of the magnitudes of quark masses and it has no par-
ticular physical significance. The regularity unveiled by
this parametrization is that the mass of each succeeding
generation increases by A, =20. This pattern is broken
only by the "anomalously light" u quark.

III. PATTERN OF QUARK MASS MATRIX
ELEMENTS

In gauge theory the more fundamental theoretical ob-
ject is the mass matrices defined with respect to fermion
states that carry definite gauge interaction quantum num-
bers. %'hen diagonalized to get the physical mass eigen-
states the matrix eigenvslues yield the mass spectra and
the product of the diagonalizing unitary transformations

Mixing an-gle hierarchy Representing the fact that the
charged weak transitions take place dominately between
quark states that are closest in their masses, the KM mix-
ing matrix does not differ significantly from the unit ma-
trix. Namely, intergeneration mixings are all small. In-
corporating the recent experimental result on the 8 life-
time and (b~u)!(b~c) branching-ratio hmit, the mag-
nitude of the KM elements are constrained to be'

0.9733+0.0024 0.225+0.005 g 0.009
0.24+0.03 0.82+0. 13 0.058+0.009, (6}

yield the mixing angles snd phases in the charged weak
couplings. Thus it is these mass matrices that we shall
direct our attention to.

The purpose of this paper is to show that the systemat-
ics of the observed quark masses and mixing angles is
consistent with the hypothesis that the up- and down-
quark mass matrices are closely proportional to each oth-
er. In this section we shall first use the observed mass and
mixing-angle hierarchies to show that the difference be-
tween the (normalized) mass matrices (Md/mb —M„/m, )

is indexl small, of the order A, .
In this section we shall take the mass matrices to be

Hermitian. In the standard SU(3)XSU(2)XU(1) model
this can always be done through a redefinition of the
right-handed quark fields which are gauge singlets.
Beyond the standard model, there are many interesting
models in which the Hermiticity of mass matrices can be
naturally obtained. Notably this is the case for the left-
right-symmetric models and, thus, by extension, for the
important grand-unified-thixiry (GUT) models of O(10)
and E(6}. For the more general situation one can always
carry out the following analysis for the Hermitian product
of MtM instead of mass matrix M itself. '4

The Hermitian mass matrices in the generation spaces,
M„and M~, can be diagonalized by unitary transforma-
tions (instead of biunitary transformations if the Hermiti-
city condition is removed):

V"M„V" =M„,
V'M V"=M

(10)

where M„and Md are the diagonalized up- and down-
quark mass matrices, respectively. The KM matrix U is
simply the product of the unitary transformations

U= V"V

m„/md ——m, /m, ,

mg/mb =m~ /m~

(13a)

(13b)

m, /m, being close to 8 indicates that Eq. (13b) is valid
for the central value of m, (i.e., 40 GeV). We shall as-
sume that it is not an accident and take it as supporting
this interpretation of U=l. The fact that Eq. (13a) is

Phenomenologically the KM matrix [see Eqs. (6) and (8)]
is close to the unit matrix; the only nondiagonal elements
that deviate significantly from zero being U~ and Ud,
(the Cabibbo angle). Through Eq. (11) this implies that
the two unitary matrices V" and V are approximately
equal. Namely, M„and Md almost commute with each
other so that they can be diagonalized by the same unitary
matrix. In fact we shall make a stronger postulate: this
commutivity is achieved simply by having M„and Md
being closely proportional to each other,

Mg ——xM„+6',
where x is a constant and the matrix 5' is a small correc-
tion. In the limit of strict proportionality (b, =0), we
would have V = V" and, thus U= 1. A direct implica-
tion of this postulate is that the ratio of the up- to the
down-quark masses is the same for each generation:
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badly violated can be accounted for by the smallness of
first-generation mass values. Namely, it is expected that
m„and m~ receive significant contribution from the
correction term b, . If we define the "normahzed mass
matrices"

Md =My/mb, M„=M„/m, ,

a priori their difference can be of the order A, :

b, =Md —M„=0 (A, ) .

However, with the mass and mixing-angle hierarchies as
given in Eqs. (8}and (9},we can show that this difference
matrix is even smaller: b =0(A,i}. To demonstrate this,
we shall work in the basis where M„ is diagonal:

A,

a= UM„U' —M„. (14)

first expect). Thus, b, is actually at least quadratic in A, :

—Sb )t,3

s—bA, (c~ s—b }A, AA,

Aok AA, 0

This result follows directly from the parametrization of
masses and KM angles in powers of A, . No further rela-
tion among the coefficients of expansion has been as-
sumed, and thus, sb, c„A, and o are all supposed to be
independent coefficients of order 1. However, we may
wish to keep in mind that the zeroth-order relation (13b)
and the definitions in Eq. (9) imply that c, —sb ——0(A, ).
Equation (19) informs us that the difference of the nor-
malized mass matrices has elements with order of magni-
tude as

[This equation is obtained by making unitary transforma-
tion on both sides of (12) and set x =mb/m, .] The infor-
mation as contained in (8) and (9) can be inserted into Eq.
(14) with (for simplicity of presentation we shall drop the
imaginary part)

&)I, A, &A,

& A.
'

)I,
' 0

(20)

U=l+) Ti+A, T2gA, Ti+

Mg bb —A,
——sb+A, "db,

M„=tt )'c, +X'u—, ,

where

0 l 0 0 0

What are the implications for the mass matrices from
Eq. (20)? The largest element of the normalized matrices
M„and Md is, by construction, 1, the smaller elements
are of the order 0 (A, ), as one would expect froin the input
of U =1+0(A ). However, now we know that 5=0 (A, ),
we have two plausible possibilities for the mass matrices.

Case (i). The small elements of M„and Mq are at
most of the same order as those in b, :

T] —— —l 0 0, T2 ——

0 0 0
0 ——,

'
A

0 —A 0

(A,

Mgg= A,

(A,
(21)

0 0 Ao

0 0 0
A(l —o) 0 0

and no precise cancellation is needed to obtain a differ-
ence matrix b, of the order as given in (20).

Case (ii) The sm. all elements of the M„and M~ can be
of the order A, :

bb ——diag(0, 0, 1), sb ——diag(O, sb, O),

db diag(db, 0——,0), t, =diag(0, 0, 1),
c, =diag(O, c„O), u, =diag(u„0, 0),

(17) Mg —— Ai &k A,

1

(22)

where sb, c„db, and u, are defined in Eq. (9).
%e then have

A( TI bb+bb Ti ) =0, (18)

because the T& matrix has nonzero elements only in the
first two columns and rows while bb vanishes for these
entries. This is related to the input thai U,b and U„are
of the order )I, (rather than linear in A, as one would at

5= ( 1+A T i +A. T2+ A, Ti )(bb —A, sb +A, db )

X(1+A,Ti+A2Ti+A, 'Ti) —(t, —A c, +A, u, ) .

The zeroth order is trivially satisfied [i.e., the right-hand
side (RHS) vanishes] because we have already put in the
consistency condition of (12) for the proportional constant
x =mb/m, . The linear A, term also vanishes,

and the A, terms cancel resulting in a A, term in the differ-
ence.

In a certain sense case (i) is more natural; no fine-tuning
is required whatsoever. However, it turns out that case
(ii) is more interesting. Its form naturally suggests the
Fritzsch-type matrices, and as we shall see the required
cancellation comes out rather naturally.

IV. FRITZSCH-TYPE MASS MATRIX

A notable example of the case (ii) mass matrices is the
one written by Fritzsch. This ansatz states that only the
heaviest generation has a diagonal element and all other
lighter masses arise through mixings between neighboring
families: We have, for a =u, d,
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M, = A, e' a 0 B,e'~a

Be' a Ce'a

0 A, 0

which can be written as M, =P,F,Q„with

where the diagonal phase matrix I' is the product I'„I'd*,

and the other two matrices X and 7 are inserted to
represent the rephasing freedom of the KM elements

through redefinition of the quark phases. Since, for each

a =u and d, the Fritzsch matrix E has only three nonzero

elements A, 8, and C, they can be expressed in terms of
the three eigenvalues M =diag(m, , —mi, mi ) by equating
the invariants (e.g., the trace and determinant):

F, = A, 0 B~

0 8, C,

(23) Pk3Ul2Pg )

W3 —m2+7t1 )

'
j. /2

=(m, m, )'r',

being a real symmetric matrix and P, and Q, are diago-
nal phase matrices. M, has the structure that allows one
to express the resultant mixing angles in terms of the
eigenvalues and the phases of the mass matrix. F, can be
diagonalized by orthogonal transformations 0, :

' 1/2
(mi —m2)(rni+mi)(m~ —m, )

FPl 3
—772 2 +Pl )

=(m, m, )'",

(26)

A
O,F,O, =M, . (24) C =(rn& —m2+rn ~ )=mi,

U =Xa "ao"v, (25)

The KM matrix, being the product of the two (left-
handed) unitary transformations VL Vz —0"P„Pd O—dr,

can be written as

where the approximate equalities on the RHS are valid for
the hierarchical order of mi &«m2«&mi. Namely, the
magnitude of the up- and down-quark mass matrix ele-
ments are given by the Fritzsch ansatz to be

(m„ lm, )'rz(m, lm, )

(mq/m, )'r (m, /mb)

(m„/m, )'i (m, /m, )

(m, /m, )'r'

(md /m, ) 'r'(m, /ms )

(m, /m, )'r'

(rn, /m, )'"

(m, /m, )'"

(27)

However, in order that their difference coming out has the
magnitude as given in Eq. (20), there must be cancella-
tions for the Mz& and M&z elements while not for the M, i
and M2~. But this is precisely the situation one vvould ex-
pect for an approximate proportionality of M„and Md as
discussed above. The hmiting relation (2) is broken dif-
ferently for the light and the heavy quarks. That Eq.
(13a) is poorly obeyed can be expressed as

( gm/ )m'
r(rn„/m, )'—~ =0 (A, ) . (28a)

That Eq. (13b) is approximately valid means that

(m, /ms)'r (m, /rn, )'r =—0(A, ) . (28b)

(Namely, here the difference is much smaller than the in-
dividual ratio. ) Thus Eq. (20) for the difference inatrix 6
is obtained because the up- and down-quark mass ma-
trices differ significantly from each other only for those
elements involving the first generation. In terms of mag-
nitude, the relation of Mq —M„=b, can be written as

o x' o o x' o o x' o

0 A, — A, 0 k = I, 0
0 A, 1 0 A, 1 0 g2 0

In the following we shall demonstrate more explicitly
that the mass relations (28a) and (28b) implied by the ap-
proximate proportionality of M„and Md are just the key
ingredients needed for the Fritzseh ansatz to reproduce
the observed pattern of mixing hierarchy (8).

Since the Fritzsch matrix elements can be expressed in
terms of the masses as in Eq. (26), the diagonalization
procedure will lead to a KM matrix with elements expres-
sible in terms of the mass eigenvalues and phases. It has
already been shown' that compatibility with the observed
mixing angles can be achieved by an adjustment of m,
and the phases. The range of possible values includes
m, =40 GeV and a maximal CP-violation hypothesis. ' ' "
Our approach will be to make systematic expansion of the
matrix elements (in A, ) and the resulting simplified expres-
sion involving only the leading terms will show clearly
that the underlying pattern necessary for the success of
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this approach is just the approximate proportionality of
M„ to M~.

Start with the exact expression' for the orthogonal ma-
trix that diagonalizes the Fritzsch mass matrix with ele-
ments given by (26):

' 1/2
mz(m3+rn, )

(m3+mz)(rnz+ml)

m3(m3 rn—l )a„=
(m 3+m 3)(m3 —ml )

(29)

m3mz(m3 —m3)
011

(m3 —ml )(m2+m l )(m3 —m3+m l )

m3ml(rn3+rnl )

(m3+ml}(rn2+ml )(m3 mp+ml )
' 1/2

m2m ~(ml —
ml )

( rn 3 +m 3 )( m 3
—Irl

& )( rrl 3
—rll 3 +m l )

' 1/2
ml(m3 —ml)

(m3 —ml)(m2+ml)

o23 =—

1/2
In l (m 3 + rrl l )(m 2

—m i )

(m3 ml ){m2+ml )(m3 rn2—+ml)
' 1/2

m2(rn3 —m2)(rnz rn—l )

( rrl 3 + rrl 3 }( rn 2 +m l )(m 3
—m 3 +m l )

1/2
m3(m3 —m2)(m3+m l )

(m3 nl3+nll)(m3+m2}(m3 ml)

Thus for the hierarachical masses m3»ml»ml we
have

0=
1 —(m l /2m 3 )

—(ml/mz) 1/2

(ml/m3)' (m2/m3)

(m, /m )'r —(m, /m )'~

1 —(ml/2m2) —(rnz/2m3) —(m2/m3)'

(ml/m3)'r 1 —(m 2/2m 3)

(30)

This is to be applied for both 0" and 0, and the KM
mixings can then be obtained from Eq. (25). Immediately
we note that for the simple case where all phases are set to
zero, Eqs. (25) and (30) yield

U =(m„/rn, )'~ (rn&/m, )'—~3, (31a)

U,b = (m, /—m, )'~ +(m, /rnb)'r3 . (311)

X =diag(e ' ),
I =diag(e ' ),
P =diag(e «);

Eq. {25}has the components

~ 0+ Od '~k '~i '~~l j~
Ij ~ ik jk~

k

(A) Conuention The X an. d F matrices represent the re-
phasing freedom of the KM elements through the redefi-
nition of quark phases. Thus the choice of a«and P« is a
matter of convention. We pick a, =az+lr and a2 ——a3 so
that the overall phase factor e' ' t at each (i,j ) posi-
tion is either + 1 or —1. For the diagonal terms

I/I —iPI
U~ ——(e + . )e

Through Eqs. (28a) and {281) we see that they have just
the right magnitudes as in (8). We will now demonstrate
that a simple choice of phases can be made to preserve
this desired cancellation together with the attractive possi-
bihty of maximal CI' violation.

Start with the definition of phase matrix elements:

where represent subleading 0()t. } terms, our choice
of pk ——y«will result in having the dominant term being
kept real.

(&) assumption The y. «phases originate from M„and
Mg. Therefore what we choose for their value will reflect
our assumption about the phase structure of the quark
mass matrices. The off-diagonal elements of (31) now
read

U„, =(md!m, )'r —(m„/m, )'~ e

U,b ——(m, /mb)'~ —(m, /m, )'r e

(33a)

(33b)

To maintain the good cancellation of Eq. (311) in (331) re-
quires the choice of y2

——y3. On the other hand, there is
no cancellation in (33a) to require yl ——yz. In fact yl ——yz
would imply a totally real KM matrix and no CP viola-
tion, it naturally suggests that we choose the maximal
phase' "of

yl =y2 —n'/2 . (34)

0
1

0

(35)

(That yl ——yz+m/2 is equally plausible and we shall re-
turn to the question of the sign at a later stage. ) Such a
phase could, for example, be obtained with a real Mz and
an up-quark mass matrix M„which is proportional to Md
up to 0()(. ) with the phase associated to the small A,

4

term:

0 k 0

U„=(e '+ )e

Ub ——(e '+ . )e

0
1,

(36)
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P=arctan(m„m, /m, m&)'~ =O(A), (38}

we can simply ignore this rephasing effect in our calcula-
tion of the KM parameters to the leading power in A, . In
this way, from

U,b ——(m, lmb)'~ —(m, /m, )'/:—AA~,

U„b = (md/—mb)'~ (m, /mb) iAA2(—m„/m, )'~2

AA—(a ,i ri)—

we find

o= (m, lmb) ~ I—
~

U,b ~
=—0.10,

i=r(m„mlm, m}d'~ =0.27 .

(39)

(40b)

With respect to the results (39) and (40), we make the fol-
lowing comments.

(i) In principle the Wolfenstein parameters o and il can
be of the order 1. However, Eq. (40) shows that they are
actually of the order A..

(ii) In terms of the more familiar KM angles, our re-
sults read (s; =—sin8;)

s) ——A, 0.225,

s, =AX'[( I —~)'+ q']'"=A X'=
~
U„~ =0.058,

s, =AX'(~'+q')'"=0. 017,

and, from sos& sin5=A A. ri,

sin5=s2g/s3-[1+(o/ri) ] '~ =0 93 . .

(41)

(42)

Thus KM angles all correspond to different orders of A, :
sin5=0(1), s~ ——O(A, ), s2 ——O(A, ), and ss=O(A, ). In
other words the famous two-generation result of express-

Namely, Pd ——Q~ ——1, P„=diag( —i, 1, I),
Q„=diag(i, 1,1). We should point out that such a phase
choice is also favored by phenomenology: all indications
in kaon CP-violation phenomenology point towards the
need for a large CP-violation phase. (See Sec. V.)

%e are now ready to compare our result with the ob-
served pattern as summarized in the Wolfenstein parame-
trization (8). In principle one should first make a rephas-
ing operation to make U real as in {8). However, since
the phase P in

U~ =(md /m, )'~ i (—m„lm, )'

1s sQ1811

ing the Cabibbo angle in terms of quark mass ratio
8c-(me/m, )' can be generalized to the situation for
three generations:

8)-(me/m, )'~2,

8q-(m, /mb )' —(m, /m, )'~

83-[(m, lmb )'+82'(m„m, Im, md )]'~',

sin5=[1+ (m, mern, ')/(m„mb 8,')]-'" .

(43)

I (b~uev)
(1 8 2 8 b s

I (b~cev}
2

—24x lnx )
' =0.006

cb

if the quark mass values quoted in Eq. (5a) are used for
x =m, Imb ——0.255. This value for the branching ratio is
to be compared to the present experimental upper limit of
0.04.

(v) One should keep in mind that all of the above are re-
sults in the leading A. approximation. They are uncertain
up to some }(,=20% corrections, as well as the uncertain-
ties in the quark mass values used in their calculations.

V. CP VIOLATION IN THE E -K SYSTEM

Finally as an application of the KM mixing-angle result
of Sec. IV we calculate the kaon CP impurity parameter e
in the six-quark standard model. e is dominated by the
short-distance physics as represented by the box diagrams
involving the exchange of heavy quarks

(iii) The sign of the parameter A clearly depends on the
relative magnitude of (m, lmb) and (m, lm, ). This is
also the case for o as its definition involves A. On the
other hand, the sign of ri is sensitive to whether the mass
matrix phase y2 —y~ ——y3 —y, is plus or minus n/2 H. ad.

we picked it to be —n /2 instead of Eq. (34), the resultant
sign for ri would be reversed also. And this will affect the
calculation of CP-violation parameters.

(iv) The immediate "experimental" imphcation of our
result

~
U„b/U, b ~

A,(o +ri )'~ 0.06

is a prediction for the quark branching ratio:

8»fg« 1m',, +ri„(m, /m, ) ImA, , +ri„ln(m, /m, 2)21m', ,A,,],V'212 kmk
{44)

where the expression in the large parentheses yields a
value of 5.52 corresponding to the experimental numbers
of GF ——1.18 X 10 GeV, fk ——0.16 GeV, and
(&mklmb) =0.7X10 ' . 8» is the well-known parame-
ter of the AS =2 short-distance operator between the E
and E states. At present it is a major source of uncer-
tainty in any such calculation. We have, for example,

I

8» 0.33 from current algebra' and 8» ——1.0 from "vac-
uum saturation. "' In Eq. (44) g«-0. 7, g«-0. 6, and
ri«-0. 4 are the QCD correction factors. ' The A, s are
products of KM quark-mixing angles A,;=U;,'U, d which,
given the result of Sec. IV, we can now calculate. Since
what is needed in Eq. (44) is the imaginary part of various
products U~ Utd Ujz Ujd we must extend the parametriza-
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tion of (8}to include the leading terms in the imaginary as
well as the real parts. As we have the freedom to choose
our phase convention so that five of the KM elements are
real (which we pick them to be U„~, U~, U,~, U„, and
U~), only two subleading imaginary parts (those of U„
and U,b ) need to be determined. From the unitarity con-
dition, such as

g tr,'g U„=g tr,'; U„; =0,

we find

ImU„= —A ilk and I mU, b ——Arik,

The leading real and imaginary parts of A,, and A,, are
fixed to be A—iA, —riAan, d —A A+iA , re, , respec-
tively. Thus all of the mixing-angle factors in the box di-
agram are determined:

Im&, = —21m', ,A,, =2A riA,

Imk, , = —2A q~'o.

This leads to an evaluation,

~
e~ =1LOA'qA'[ , O—7+. 0 6A. B'(m, 'ym, '}

+0.4ln(m, Im, )]B»

O. Sx 10 ( —0.7+1.79+2.71}8»

1.9~10 Bg .

Namely, the standard six-quark model can account for the
observed

~

e
I
=2.27X10 i with»»-1. 2.
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