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Motivated by the existence of three fermion generations, we consider models with three Higgs
doublets (for each hypercharge). It is shown that, if the basic Yukawa coupling matrices are of the
Fritzsch form or some generalizations thereof (two such examples are presented), then the neutral
flavor-changing couplings have a hierarchical structure given by b„,Qm;mj, where b, ;J is a cornbina-

tion of mixing angles and the m s are the relevant fermion masses. These couplings give a lower
bound of the order of Ad, times 1 TeV on the mass of the exchanged scalar from the neutral-kaon
mass difference. If the Higgs-boson mass is not significantly greater than this limit, one expects DD
mixing comparable to the present experimental bound.

I. INTRODUCTION

Phenomenologically, the standard model of an SU(3)
&& SU(2) && U(1) gauge theory with three generations of lep-
tons and quarks has been very successful. In the minimal
standard model, it is assumed that there is a single doublet
of Higgs scalars. Its vacuum expectation value (VEV)
breaks the gauge symmetry giving masses to the gauge bo-
sons and fermions. Although it still leaves all fermion
masses and mixing angles as free parameters of the
theory, the isodoublet character of the Higgs particle leads
to the correct intermediate-vector-boson mass relation
M~ ——MzcosI9~. In this paper we shall consider models
with multiple doublets of Higgs particles.

Models with two Higgs doublets of opposite hyper-
charge, coupling to the I3 ——+ —,

' and I3 —
2 fermions,

respectively, have often been discussed. Both doublets are
needed in all supersymmetric models (to give mass to all
the quarks) and both are needed in all models in which a
global U(1) (Peccei-Quinn) symmetry is used to solve the
strong CP problem. ' In this paper, however, we will be
interested in models in which several Higgs doublets of
the same hypercharge exist. These doublets can, in gen-
eral, all couple to the same quarks and leptons. Of course,
one could still have a supersymmetric model or one with a
Peccei-Quinn symmetry by having two sets of several
doublets, each set with opposite hypercharges.

Why should one suppose that several "generations" of
Higgs doublets exist? The first reason is primarily
aesthetic. No known principle restricts the number of
generations of fermions, and at least three such genera-
tions are known to exist. Similarly, no known principle
restricts the number of generations of Higgs doublets,
thus several generations could certainly exist. For simpli-
city, we will assume that the number of such generations
(for a given hypercharge) is identical to the number of fer-
mion generations.

The second motivation comes from the current
enthusiasm for the superstring theory. When the ten-

dimensional E8 && E8 heterotic superstring theory is com-
pactified down to four dimensions, the resulting low-
energy theory is a subgroup of E6 with the observed
quarks and leptons in each generation identified with 15
members of the 27 representation of E6, which decom-
poses with respect to SO(10) and SU(5) as

27 = 16+10+ 1

=(5+10"+1)+(5+5*)+1.

Thus, for each generation, besides the right-handed neu-
trino, we have the additional fields in a 5+5*+1 of
SU(5). The 5 (5') contains an SU(2)L doublet with hyper-
charge +1 ( —1). The supersymmetric scalar partners of
these particles have the quantum numbers of the standard
Higgs doublets of the supersymmetric standard model.
Clearly, in such models the number of generations of
Higgs doublets is the same as the number of generations
of quarks and leptons. In phenomenological analyses of
the low-energy limit of superstring theory, it is generally
assumed that only one generation of Higgs scalars couples
to quarks and leptons (this assumption is often masked
by calling the other generations by another name ). Of
course, the hope is that such an assumption will turn out
to be justified for geometric or topological reasons.
Nonetheless, several generations of Higgs scalars do exist
in E6-type models, and in general they will all couple to
fermions.

It is often stated that multiple Higgs scalars, especially
in the sense of multigenerational Higgs scalars, will lead
to the problem of predicting too large a flavor-changing
neutral-current effect. We examine the assumptions
underlying this statement in Sec. II. This will motivate
our consideration of a set of phenomenological Yukawa
couplings which naturally suppress the flavor-changing
effects among light fermions. In Sec. III we consider a
simple example of such a coupling scheme. It leads to
fermion mass matrices of the Fritzsch type [which have
had some phenomenological success in their prediction of
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II. FLAVOR-CHANGING NEUTRAL CURRENTS

We first turn to the question of flavor-changing neutral
currents in multiple-generation models. For simplicity,
we shall assume that there is only one doublet (coupling to
all quarks) per generation. If there are two doublets per
generation (as in supersymmetric models), then our Yu-
kawa couplings should be multipled by a ratio of vacuum
values and by a mixing angle between the weak and mass
eigenstates of the two doublets. Since these factors are ar-
bitrary (but not too different from 1), we will ignore them;
but one should keep in mind that, in models with two
Higgs doublets per generation, the couplings have an un-
known factor of —1 multiplying them.

The basic Yukawa couplings give rise to fermion mass
terms as

~; qjL j,jkqkR:-q jL(u; j jk/+2)qkR
& &O& =1~ !&2

where q's are the quark fields of the same charge. We
have not bothered to display all the details of the
real/imaginary (hence, scalar/pseudoscalar) components
of the Higgs fields H;. The vacuum expectation values
are fixed by the weak scale

g u,
~ =—u = ( v'2GF ) '=(250 GeV) (2)

We diagonalize the quark mass matrix M~'k =
g, u;k,'jk/V2 with respect to quark weak eigenstates q~ z,

qLM qR =qLMqR

by transforming the fields to mass eigenstates qL R

(3)

Kobayashi-Maskawa (KM) mixing angles in terms of the
quark masses ]. We emphasize in particular that such a
Yukawa coupling scheme will lead to a DD mixing at a
level that is orders of magnitude larger than the
standard-model prediction, at a level in fact comparable
to the present experimental upper limit. Other schemes of
Yukawa couplings that lead to fermion mass matrices
that are generalizations of the Fritzsch type will be exam-
ined in Sec. IV, and in Sec. V we present our conclusions.

When we sum over the Higgs generation index i, the re-
sult should reproduce the diagonalized quark mass matrix

g Mg„' ——Mg„= mg5g„.

If the VEV's (for all i) are comparable, u; =u of Eq. (2),
we expect that the Yukawa coupling matrix to have the
order of magnitude

M'"=2 G ' M'
iln = In F In (9)

where M,'d' is the dimensional Yukawa coupling, defined
in Eq. (7), between s, d quarks and the ith Higgs particle
with mass (m~);. We have dropped the scalar coupling
(sd)(sd) in Eq. (11) because it has negligibly small matrix
elements when compared to the pseudoscalar term, which
according to a bag-model calculation" yields

(K
~
(sy5d)(sped)

~

K'j=8.5 X 10 GeV (12)

Lacking any specific knowledge to distinguish one Yu-
kawa coupling matrix M" from others, one usually
makes the assumption that they are all similar in structure
M' '=M for all i and define the characteristic Higgs-
boson mass m~..

In the minimal standard model with one Higgs doublet,
clearly the single coupling matrix must equal the final fer-
mion mass matrix and must therefore be flavor conserv-
ing.

Any model with several Higgs particles faces the prob-
lem of unsuppressed flavor-changing couplings and unac-
ceptably large rates for processes such as prey, p~3e,
K~pp, K~pe, and too large a value for Am&
=mz —mz, etc. Since it is generally recognized that

L S
the most stringent limit comes from b, m~ (Ref. 9), we
shall mainly discuss this quantity:

b, m =2(K
~

W™M2
~

K) .

For the effective AS =2 coupling, the flavor-changing
Higgs-boson-exchange tree diagram yields an amplitude'

Ygzs, ——g V 2GF(Msd ) (ma) (sysd)(sy5d),

qL, R OqL, R

with'

(4)
2Mk
2

m&

M(i)2
jk

(m~ );
(13)

0 M'0 = g (0 )(j g u, k,jk/V2 (0)k„=M(„=m(Sin
j,k

The Yukawa couplings of immediate physical interest are
those defined with respect to the quark mass eigenstates

ku„= g (0 )i)k,'~k(0)k„.
j,k

(6)

It is useful to scale these couplings by a mass factor so we
can associate with the Yukawa couplings of the ith Higgs
particle the "ith mass matrix" M" defined as

M~„' ——v;X;I„/~2 index i not summed .

As for the dimensional Yukawa coupling matrix M itself,
some authors advocate the following estimate: since the
most conservative approach is to take all elements Mjk be-
ing comparable, and since in some sense the heaviest fer-
mion sets the scale for the whole matrix, we can assume
each element Mjk being a product of this mass scale and
some mixing angle factor. As we do not know these mix-
ing angle factors we shall set all of them to 1. Thus M,d
is set to the b-quark mass mb.'

(i)2 2Md mb
(14)

(m~ );
2m~

In this way, one derives the lower bound for the flavor-
changing Higgs-boson mass'
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2v 2GFmb
X 8.5 X 10 GeV =( 150 TeV)

AmK

Is this a reasonable estimate of the lower bound for the
characteristic Higgs-boson mass? We suggest that it is
not. The key assumption in the above derivation is that
all elements of the Yukawa mass matrix Mjk are of com-
parable magnitude, and are of the order of the heaviest
fermion mass (times a mixing-angle factor of order unity),
thus the approximation M,d —m&. This does not seem to
us to be a reliable estimate. After all, one of the most
conspicuous features of the fermion mass spectrum is its
hierarchical structure, e.g. , md «m, «mb, etc. (In the
standard model with a single Higgs doublet the mass ma-
trix Mzk

——mj6;k of course exhibits this hierarchical struc-
ture on its diagonal. ) We are interested in nondiagonal

M~k with flavor nonconservation. We shall demonstrate
that in a broad class of models with phenomenologically
sound fermion mass matrices Mjk, the Yukawa coupling
matrices have the general hierarchical structure of

M/k
——b) +kmjmk, (16)

where KJI, denotes various mixing-angle factors (some of
which were discussed earlier). Even taking b,,d to be unity
the relevant coupling M,d for AmK calculation is reduced
by a factor of (m, md)' /mb —7X10 . Thus the Xmas
lower bound for the Higgs-boson mass correspondingly
decreases by this factor, down to the much more reason-
able neighborhood of 1 TeV. Should A,d be somewhat
less than unity, the bound would be correspondingly
lower.

Since the Higgs-boson self-coupling in the minimal
standard model is proportional to GFm~ it has been fre-
quently remarked that m~ & 1 TeV implies strong interac-
tion among Higgs bosons. Thus if considerations are re-
stricted to the standard model, one notes that tree-
diagram partial-wave unitarity breaks down' and weak
interactions become strong. Of course, given the uncer-
tainties in A,d, the lower bound could be significantly
lower than 1 TeV; thus, strongly interacting Higgs bosons
might not be a problem. Even if the bound is 1 TeV,
however, if the standard model is only the low-energy ef-
fective theory of a larger edifice, this could be viewed as
the threshold effect of some new physics. For example, if
the Higgs scalars are bound states, then all of the above
results would still apply, but the natural scale for the
Higgs-boson masses would be 1 TeV, and the bound on
AmK would not be a problem. Alternatively, given our
motivation for considering multigenerational Higgs sca-
lars as the supersymmetric scalars in the 27 of E6 models,
this new physics could be the opening up of supersym-
metric particle thresholds. In this case, the natural scale
for all of the Higgs-boson masses but one' is also —1

TeV (the one relatively light Higgs boson could have a rel-
atively small value of b,,d). Thus, —1 TeV Higgs-boson
masses are not unreasonable.

If Higgs-boson masses are not significantly greater than
I TeV, even though their contribution to EE mixing may
not be important, it is likely to bring about a DD mixing

that is much larger than the standard-model prediction. '

Let us recall that the usual Glashow-Iliopoulus-Maiani-
(GIM) suppressed box diagrams for the effective bS =2
and hC =2 interactions involve very different quark
masses, resulting in a Ama much smaller than AmK.

~mD m ~d' &D
l
(cy~ysu)(cy ysu)

l

D ~

, sM m, —m„(K
l
(syzysd)(sy ysd) lK)

(17)

where we have ignored the contribution due to the third-
generation fermions because of their small mixings. The
ratio of the matrix elements can be reliably estimated to
be (fD/fx) (mD/m~)=15 by taking the D-meson decay
constant fD-300 MeV (Ref. 17). Thus the standard
model yields

AmD =0.2 .
~mK sM

(18)

Namely, AmD-7 & 10 ' GeV.
For Higgs-boson exchange with the flavor-changing

coupling M~k proportional to Qm, .mk, we have a very
different quark mass dependence:

b.mD m, m„(D
l
(cysu)(cysu)

l
D)

(19)
m md (K

l
(sysd)(sysd)

l
K)mK H

Again if we estimate the matrix elements by the vacuum-
insertion method —recall its good agreement with the
bag-model calculation" (we expect it should be even more
reliable for the ratio of two matrix elements),

3 2
m, +md

4.
~ D

l
(cysu)(cysu)

l
) fD mD

(IC
l
(sysd)(sysd)

l
K) f~ mc +mu

(20)

Even though this ratio does not quite favor the AmD as in
the axial-vector case we still get

hmD

AmK
(21)

Thus if the Higgs-boson-exchange mechanism saturates
the b, mx bound we would have (b,mD)z;ss, -7X10
GeV, or, more generally, '

(~mD)~;, —7X(TeV/I ) X10 ' GeV . (22)

III. AN ANSATZ FOR YUKAWA COUPLING
MATRICES: THE SIMPLE FRITZSCH SCHEME

An example of the (weak-eigenstate) fermion mass ma-
trix M' that summarizes well the phenomenology of fer-
mion masses and mixings is the Fritzsch mass matrix

This should be compared to the present experimental 1imit
of AmD & 6.5 X 10 ' GeV (Ref. 19). In any case the
point we are making is that the Higgs-boson-exchange
mechanism can potentially account for a much larger DD
mixing than the standard model. (Note that TT mixing
would be enormous, with b, mT = 10 ' GeV. )
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0 A 0 R =—I (b uev)/I (b cev)=0 00. 6, (28)

M'= A 0 B
0 B C

(23)

A=(m~m2)', B=(m2m3)', C=m3 (24)

The Hermitian matrix M is diagonalized by the orthogo-
nal transformation (0 M'0);& —m;5,J with

1 (m /m )' —(m /m )'

O= —(m, /m, )'" 1 —(m2/m3)'~

0 (m2/m3)'

(25)

When both the charge ——,
'

quark and charge + —', quark
mass matrices have the Fritzsch form, the resulting
Kobayashi-Maskawa (KM) mixing V=0„Od will also be
close to the identity matrix with small nondiagonal ele-
ments:

Expressing the matrix elements in terms of the mass
eigenvalues, we have, in the limit of m 3 &&m2 &~m &,

0 A; 0

0 B;
0 B; C;

(29)

with the elements having roughly the same hierarchical
structure as the mass matrix itself:

A;=a;(m&mz)', B; =b;(mqm3)', C;=c;m3 (30)

is also compatible with the present experimental upper
limit of R &0.04 (Ref. 21).

In this section we shall study an ansatz for Yukawa
coupling matrices (defined with respect to the fermion
weak eigenstates) which gives rise to mass matrices of the
Fritzsch form (23) and which, as we shall see, yields the
desired hierarchical coupling matrices (defined with
respect to the fermion mass eigenstates) with suppressed
flavor-changing elements for the light generations. In this
scheme, "the simple Fritzsch scheme, " all the weak eigen-
state Yukawa matrices are prescribed to have the Fritzsch
form:

V„d—V„=(md/m, )' —(m„/m, )' =(md /m, )'

and

V,g —(m, /mg )' —(m, /m, )'~

(26)

(27)

where the coefficients (a;,b;,c;) are of order 1. Namely,
the M'=Q, . U;A, ',Jl, /V 2 requirements, Eqs. (6)—(8),

(31)

Thus the Cabibbo angle Oc —V„d—V„=0.225 comes out
correctly, and the experimental value of V,„=0.06 can
also be accounted for with an m, in the reasonable range
of 20 to 80 GeV. Namely, for the Fritzsch mass matrix
ansatz to account for the observed hierarchy among the
KM mixing angles there must be an appropriate cancella-
tion between the two large terms in Eq. (27). [This can-
cellation is not too delicate; the first term in Eq. (27) being
only —, times V,b.] Fortunately this "fine-tuning" can be
interpreted simply as reflecting an approximate constancy
of the quark mass ratio in each generation: m, /m,
=mb/m„which may result from the approximate pro-
portionality of the entire M„' and Md mass matrices.
We should also note the Fritzsch mass matrix prediction
for the KM element V„b,

~
V„q/V, q ~

=(m„/m, )' =0.06,

and thus the branching ratio,

are satisfied not through any strong cancellations among
the different Yukawa couplings. This is certainly the
simplest ansatz one can make to reproduce the Fritzsch
mass matrix. In other words the Fritzsch mass matrix M'
in Eq. (23) being the sum (over the Higgs generation index
i) of the Yukawa coupling matrices in Eq. (29), the sim-
plest way to have the Fritzsch zeros
M ] ] —M22 —M ]3 —M3 &

——0 without fine-tuning is to
have zeros located at the same positions in each of the
Yukawa coupling matrices initially.

Using the expression for the orthogonal transformation
given in Eq. (25) we can immediately work out the Yu-
kawa coupling matrices for the mass eigenstates:

(A,;)ij, = g O~, OI,g(A. ,'),g

a, b

or, in terms of the dimensional coupling in Eq. (7),

(2a; 2b;+c;)—m~

M"= (a; 2b;+c;)+m&m2—

(b; —c;)+m, m3

( 2b;+c;)m2-
(b; —c;)Qmpm3

(b; —c;)Qm2mq

cim 3

(a; 2b;+c;)Qm&m —
(2b; —c;)Qm&m3

(32)

MJ'I", ——b,jl, (mj™1,) ' (33)

and thus the lower bound on the mass of the Higgs scalars
could easily be much less than 1 TeV (Ref. 24).

This result satisfies the requirement of Eq. (8) and has the
hierarchical feature of

IV. OTHER EXAMPLES OF YUKAWA COUPLING
MATRICES WITH HIERARCHICAL STRUCTURE

In the preceding section it was noted that models in
which the mass matrix is of the Fritzsch form allow the
successful prediction of all mixing angles in terms of
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masses, and it was shown that multiple Higgs models in
which the Yukawa couplings were of the Fritzsch form
have neutral flavor-changing couplings of the form
dLJQ Qmi m ~

Let us restate the Fritzsch ansatz: the only nonzero ele-
ments of the mass matrix, M~I„occur when (a) j= k+1
or (b) j=k =a, where a is chosen to be 3. In models
with multiple doublets, however, the ansatz must be gen-
eralized to a third-rank tensor k,'~I, rather than the
second-rank tensor MJ'~. The "simple" Fritzsch ansatz of
the last section postulates that A, ,'-~~, for each Higgs genera-
tion index i, has the identical structure as the MJ'& in
Fritzsch forms: the only nonzero elements of A, ,'~I, occur
when (a) j= k+1 or (b)j = k =a, where a is chosen to be
3. Here, we consider other generalizations, which we term
"cyclic" Fritzsch and "extended" Fritzsch couplings.

A. The cyclic Fritzsch scheme

Ei Ai 0 E'2 A2 0
H, H2

q' A& Di 0 q'+ q' Az D2 B2 q'
V) U2

0 0 0 0 Bp C2

0 0 0
+ q' 0 D3 B3 q'

V3

0 B3 C3

and the mass matrix M' is

E) +E2 A )+Ap 0
1

A i+A~ Di+Dz+D3 B~+B3v'2
0 C, +C,*

(36)

(37)

H)
q' A)

V)
0

0 0 A2 0
H2

0 B& q'+ q' A2 D2 B2 q'
U2

B) 0 0 B2 0

In the simple Fritzsch scheme, the choice of the
nonzero diagonal element was the same for each Yukawa
coupling, i.e., a was independent of i. It would seem
more natural, if the Higgs scalars are associated with fer-
mion generations, to have the choice of nonzero diagonal
element depends on the fields to which the Higgs scalars
couple. The cyclic Fritzsch ansatz says that A, ,'JI, &0 when
(a) j=k+1 or (b) i =j =k. Such an ansatz treats the
Higgs scalars more equally and does not pick out one gen-
eration as special. The Yukawa couplings are thus

This ansatz should be of special interest to superstring de-
votees. If the heterotic superstring theory is compactified
on an orbifold, the various 27's of E6 may lie in different
twisted sectors. As discussed in Ref. 25, the communica-
tion between sectors is exponentially suppressed. As a re-
sult, the Higgs field and fermions within a given 27 will
have relatively large interactions, couplings between two
fields in one 27 and one in another nearby sector will be
smaller, and the other couplings will be much smaller
still. Thus, the extended Fritzsch ansatz may arise natur-
ally in a superstring compactification. Of course in such
an orbifold compactification one would expect the Yu-
kawa couplings in (34) marked with asterisks to have the
largest values. In the following we shall, however, not im-
pose this restriction and keep our discussion in terms of a
more general range of parameters.

and thus the mass matrix

0 A3 0
H3+ q' A3 0 B3 q'
V3

0 B3 C3

(34)

C. Masses and mixing angles

Neither of these two mass matrices (35) or (37) is
Fritzsch type, and so we must consider the mixing-angle
predictions for them, and then calculate the magnitude of
the neutral flavor-changing couplings. Rather than con-
sider each separately, we consider the general 3)&3 sym-
metric matrix

1M'= ~
Ei

gA; D2 gB, (35)

E A 0
M'= A —D B

0 B C

0 gB; C3

B. The extended Fritzsch scheme

Although the cyclic Fritzsch ansatz treats the Higgs
scalars more equally, it still clearly distinguishes between
Higgs scalars and fermions. The extended Fritzsch ansatz
simply states that A, ,'JI, &0 when either i =j =k or when
any two are equal and differ from the third by one
(i =j=k+1, i =k =j+1,j= k =i+1)

mb —C,
m, =max(D, B /mb ),
md —max(E, A /m, ) .

(38)

As expected, this result says that the down (strange) quark
gets its mass either through the diagonal element or
through mixing with the strange quark (bottom quark).
We can readily calculate the Cabibbo angle, and find that

Without loss of generality, we take C &&D,E and we re-
quire that the hierarchy of eigenvalues does not arise
through very delicate cancellations. If the eigenvalues are
mb, m„and md, it is straightforward to show that
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Ad
sinOC-

m, m,
(39)

0 A 0 0 A 0
M') —— A 0 8, Mz —— A —D 8

0 8 C 0 8 C
(40)

where, in Mz, 8 &&DC =m, mb.
M& is just the Fritzsch mass matrix, whose mixing-

angle predictions were discussed in the last section. Mz is
new. The orthogonal transformation that diagonalizes
Mz is the matrix

where Ad(A„) is the mass matrix A parameter for the
g = ——, ( —, ) quarks. Since Ad & md m, and A„&m„m„
the second term is much smaller than the observed sinO&
and thus Ad —m, sinO&. However, experimentally, sinOt-

=+md/m„so Ad -mdm, or md-Ad /m, . Thus
A /m, &&E in Eq. (38) (Ref. 26) and the down quark
must get its mass through mixing with the strange quark.
The only remaining option corresponds to choosing
whether the strange quark gets its mass through a diago-
nal element or through mixing with the bottom quark.
The two choices correspond to the mass matrices

D. Flavor-changing neutral currents

Even though the Yukawa coupling matrices k,'Jk in the
cyclic and extended cases (34) and (36) do not have the ex-
act Fritzsch form, we shall demonstrate that for a broad
range of parameters, we again recover the simple Fritzsch
scheme result of M~k =bjj, +m~. mk. Let us represent a
generic coupling matrix in these two schemes as

Ei
1

(A, ,') k ———a;
0

e; 0

5; p;

p; y;

(43)

+(8, —e, )&md/m, . (44)

and work out explicitly the similarity transformation by
the orthogonal matrix Oz of Eq. (41). Although this
form is appropriate for the Mz mass matrix with
B «Qm, mq, the result can be easily converted to that
for the M'~ case by setting B=+m, mb We .shall not
bother to write down all of the flavor-changing couplings,
but will concentrate on the ds H; couplings, correspond-
ing to l = l, n =2 in Eq. (6):

Md,
"—a; —2P;(Bdjm~)+md/m, +y;(Bdlm~) QmdIm,

02= —Qm (/m2

0 (B/m3)

—(Blm3)
1

Qm ~ Im2 —(B/m3)+m /m3

(41)

The specific expressions for a, P, y, 6, and e, can be read
off directly by comparing Eq. (43) with (34) and (36).

Again we shall assume that each Yukawa coupling ma-
trix (k') has the same hierarchical structure as the final
mass matrix M'. Namely, in the sum Mjk
=Q,.U;A, ,'Jk/W2 there are no delicate cancellations. Thus,
for the cyclic case, for either M

&
or Mz, we have

This yields the quark mixing elements as

V„,=V,d —Qmdlm, ,

Vd, —(Bd /m b ) —(B„/m, ),
V„~—+m„jm, [(Bd Iml, ) —(B„Im, )]

=Qm„/m, V,b .

(42)

A;—:a;Qmdm, with a&+a2+a3 ——1,
E)-0, C3-mb,

(45)

a; are —1—in fact all such parameters b; and c; in the
expressions below will be assumed to be —1. We can easi-
ly find from Eq. (44) that all the dimensional couplings
Md,

' are proportional to Qmdm„with coefficients

The Cabibbo-angle result remains the same as the Fritzsch
case, of course; and interestingly it also has the same re-
sult for the ratio ( V„&/V,q) as the Fritzsch case, Eq. (28)
(thus a specific prediction that is quite consistent with
present experimental 1imit). The expression for V,~ is,
however, different as Bd(B„)corresponds to the B param-
eter in the down (up) sector and is bound from above by
the Fritzsch value of +m, m~(Qm, m, ). The significant
point is that since in the Mz case Bd and B„can be arbi-
trarily small, the KM element V,& in Eq. (42) can easily
be small enough without requiring m, to be approximate-
ly equal to m, mb/m, as in the Fritzsch case. Hence,
should m, be greater than 80 G-eV, the Fritzsch matrices
will be disfavored and Mz remains a viable option.

Thus, we find that within the framework we are work-
ing and assuming no delicate cancellations, only two types
of matrices give correct values for the quark mixing an-
gles. One is the Fritzsch matrix M&. The other Mz
predicts a small value for V,b which, unlike M'&, does not
require a particular range of values for m, .

M =a
&

—2b &, M =az —2bz,(&) (2)

M =a3 —2b3+ 1(3) (46)

for the cyclic M'& case with Dz-0 and B;=b;Qm, m&
(thus b~+bq+b3 ——1), and

M =a&, M =az —1, M =a3(1) (z) (3) (47)

for the cyclic Mz case with Dz -m, and 8;
=0 (Bd ) « Qm, m~.

Similarly, for the extended case

A;=a;+mdm, with a, +aq ——1,
C;=c;mb with cz+c3 ——1,
E;=0,

(48)

M —a &, M =az —2bz+cz, M =—2b3+c3(&) (z) (3) (49)

we find the coupling Md,
' being proportional to V'mdm„

with coefficients
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for the extended M'~ case with B;=b; Qm, mb (thus
b2+b3 ——1) and D; =0; and

M =a& —d&, M =a2 —d2, M =—d3|&) (&) (3) (50)

for the extended Mq case with 8; =O(8d) «Qm, mb
and D; =d; m., (thus d~ +dq+d3 ——1).

In this section, we have presented two alternatives to
the Fritzsch ansatz which are more appropriate to
multiple-Higgs-scalar models, and shown that each can
accommodate the observed masses and mixing angles. We
have also shown that the flavor-changing neutral cou-
plings will, if the products of the Yukawa couplings and
expectation values of the Higgs fields are comparable, be
0 (+md I, ) and thus the lower bound on the Higgs-
boson masses is —1 TeV. It should be emphasized that
we have neglected various mixing-angle factors, possible
cancellations between Higgs-boson exchanges, etc., which
could lower this bound significantly.

V. DISCUSSION AND SUMMARY

In this paper we have considered the aesthetically pleas-
ing possibility that there is a multigenerational Higgs-
boson structure which matches that of the fermions.
(This is also a requirement in supersymmetric E6 models. )

However, the notion of multiple Higgs scalars runs
counter to the prevailing theoretical opinion that such a
Higgs-boson structure will bring about unacceptably large
flavor-changing neutral-current effects (especially too
large a kaon mass difference b,mz) and the accompanying
new source of CP violation (due to Higgs-boson exchange)
may imply too large an e'/e ratio in the neutral-kaon sys-
tem. In more quantitative terms it has been shown '
that Am& places a lower limit of 150 TeV for the mass of
the neutral Higgs particle with flavor-changing couplings.
Such a result is based on the assumption that all Yukawa
couplings are proportional to the heaviest fermion mass of
the given charge; in particular, the relevant coupling for
hmz is taken to be proportional to M,d-mb. In this pa-
per we have argued that Yukawa couplings, being closely
related to the fermion mass matrices, are likely to have a

structure reflecting the observed fermion mass hierarchy.
Three examples of phenomenological Yukawa couplings
schemes are presented in this paper. They yield either the
Fritzsch mass matrix, in our notation M&, or another
type, the Mz. In both cases we have the successful rela-
tion of Cabibbo angle Oc-+md/m, and the prediction
I (b~uev)/ I (b~cev)=0. 006. The mixing V,b can be
small (as experimentally observed) in the M'& scheme if
m, lies in the range of 20—80 GeV, while the M2 type al-
lows for an arbitrarily small V,b with no constraint on
m, . All three examples of Yukawa couplings have a
hierarchical structure of Mzk —Qm~mk, thus for b,m~ a
coupling of M,d —Qm, md. This lowers the mH limit to
—1 TeV. If I& is not significantly above this range we
may encounter the Higgs flavor-changing effects in the
extremely sensitive neutral K, B, D, and T systems com-
peting with the standard gauge-boson contributions. The
standard model predicts that Am& is particularly
suppressed; here the Higgs-boson contribution may actu-
ally dominate, yielding a value comparable to the present
experimental limit. Thus a discovery in the near future of
an Am~ value significantly greater than the standard-
model prediction can be interpreted as indicating a mul-
tigenerational Higgs-boson structure as discussed here.

Finally we should remark that with mH-1 TeV the re-
sulting CP violation is of the superweak type since the
Higgs effective four-fermion coupling, when compared to
the Fermi strength, is

GH;ss, /GF -(mq /mH ) & 10

Consequently this possible new source of CP violation
makes a negligible contribution to the e /e ratio in the
neutral K system.
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