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We examine the validity of the decoupling theorem for a superheavy neutrino in the standard model
augmented, in one case, by a sequential fourth generation of lepton doublet, and, in another, by a singlet
neutrino field. We present a detailed R& gauge calculation of the prey decay amplitude with its exact
dependence on the neutrino mass m. Our calculation shows clearly that the resultant amplitude is non-

vanishing in the large-I limit because of the contribution coming from the longitudinal gauge bosons.
In such diagrams the usual decoupling theorem is invalidated as the Yukawa coupling grows with m.
Other higher-order processes such as p —+3e, pe conversion in the nucleus, etc., as well as the p parame-
ter, are also studied. The large-m behavior of various amplitudes are summarized in a table. If the
source of the large mass does not involve a large coupling constant, as is the case in the seesaw model for
neutrino masses, then the decoupling property is recovered when the mass dependence of the heavy-light
mixing angle is taken into account. In several cases, notably the induced peZ vertex and the p parame-
ter, this recovery of the decoupling suppression involves some complicated cancellations.

I. INTRODUCTION

In recent years the emphases of particle-physics phe-
nomenology have been on the test of the standard model
(SM), and on the search for new physics beyond the elec-
troweak scale. In addition to direct searches, an impor-
tant approach has been the precision measurements that
are sensitive to virtual effects of such heavy particles [1].
For example, a bound on the top-quark mass can be de-
duced from the study of radiative corrections. One of the
key features that makes this possible is the violation of
the decoupling theorem. Ordinarily we expect heavy par-
ticles to decouple in low-energy processes. Namely, the
effects of heavy particles in the virtual intermediate states
are suppressed by inverse powers of the heavy-particle
mass. Physically this seems reasonable: the study of any
physical phenomena at a given distance scale should not
depend sensitively on our knowledge of the physics on
much shorter scales. The proof of this decoupling
theorem has been given by Applequist and Carazzone [2].
However, their proof is valid only for the unbroken gauge
theories, and instances of nondecoupling of heavy parti-
cles in theories with spontaneous symmetry breaking
have been noted [3]. Nondecoupling is very interesting
because it allows exploring the physics at a high-energy
scale through low-energy processes. Because of its im-
portance, we would like to have a better understanding of
how and where such nondecoupling can occur. In this
paper we will provide further details of the mechanism by
which heavy particles evade the decoupling theorem, and
of the mechanism by which heavy particles which are
singlets with respect to the electroweak group recover the
decoupling property in the end.

In addition to the problem of a general understanding

of the decoupling theorem, we are interested in specific
instances where heavy particles yield definite corrections
to the SM, particularly those by heavy fermions. In this
connection, we have in mind the top quark, technicolor
and supersymmetric fermions, and heavy leptons. The
importance of calculating the t-quark radiative effects has
long been recognized: as a guide to its eventual discovery
(by providing bounds on the top-quark mass), and as the
important background that must be subtracted out when
searching for other new physics. Recently there has been
an upsurge of interest to calculate and classify the radia-
tive effects of the technicolor and supersymmetric parti-
cles [4]. Here we shall concentrate on the discussion of
"heavy neutrinos. " (Our results can obviously be
transferred to superheavy quarks. ) By heavy neutrinos
we mean neutral, weakly interacting fermions with
masses much greater than the 8' and Z gauge bosons.
What we have in mind are two categories of models,
which we shall call (a) sequential doublet neutrino mod-
els, and (b) seesaw singlet neutrino models.

(a) Sequential doublet neutrino models. These models
are straightforward extensions of SM to more than three
generations of quarks and leptons. The SLAC Linear
Collider (SLC) and CERN e+e collider LEP results of
course have excluded models with more than three light
neutrinos [5]. But there is always the possibility that
there are lepton doublets having heavy neutrinos with
masses m & 45 GeV which could not be pair produced in
Z decays. Such a sequential scenario is conceptually very
simple; it is worthwhile to consider some of its conse-
quences.

For definiteness, we shall discuss a model with a fourth
generation of a heavy lepton doublet. We denote the neu-
trino Qavors as v, with a=e,p, ~,l. and the neutrino
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We shall assume that m
& z 3 are small while m4 is large,

perhaps much greater than the electroweak scale.
(b) Seesaw singlet neutrino models .Here we have

right-handed neutrino states, which are singlets under the
electroweak group. Thus Majorana mass terms bilinear
in such right-handed fields as well as the usual Dirac
mass terms connecting the right- and left-handed neutri-
nos are present. Such Majorana terms, which can result
from the vacuum expectation value of a singlet Higgs
field or direct bare mass terms, are expected to have a
magnitude (call it M) much larger than the electroweak
scale, while the Dirac mass terms should be comparable
to the familiar fermions (call its scale p). The resultant
mass eigenstates comprise two classes of Majorana parti-
cles, one being heavy O(M ), one being superlight
O(p /M). This is the well-known seesaw mechanism for
generating superlight neutrino masses [6]. In such mod-
els every left-handed neutrino state of a given flavor is an
admixture of these light- and heavy-neutrino mass eigen-
states with very small O(p/M ) mixing coefficients for the
heavy components.

Again for definiteness we will consider a simple version
of such models where only one right-handed singlet field
is present. The three flavors of the left-handed neutrino
states v, with a=e, p, ~ are superpositions of four Ma-
jorana mass eigenstates: three states v& 2 3 being super-
light (in fact because the symmetric 4 X 4 mass matrix has
rank 2, two states v, z are actually massless) and one
heavy state v4. Thus the pattern of mixing is somewhat
similar to (1) except that the mixings of the heavy neutri-
nos in the left-handed Aavor states are strongly con-
strained. Details of this model have been studied by
Jarlskog [7]. Here we shall display U„ in terms of her

par ametrization:

Iv, &=cp v(&+c splv3&+s splv4&

lv„& = —sps lv, &+c, lv, )

+c cpsr lv3 ) +s cpsr lv4)

lv, &= —spc lv, &
—s, lv, &

+c~cpcr lv3) +s~cpcy lv4)

(2a)

mass eigenstates as v&, v2, v3, and v4. They are related
through a unitary mixing matrix:

4

lv. ) = g U., v ) .

where the mixing angles dg and y (there are altogether
three angles in this 4 X 4 orthogonal matrix because of the
v, -v2 degeneracy) are related to ratios of Dirac mass
terms and are a priori unrestricted, but the mixing of
heavy component is given by

s:—sina=
717 3

m3+m4

]. /2

(2b)

which is of order p/M because m 3
-—p /M and m4-—M.

The basic difference of the heavy neutrinos in these two
models is that in the sequential model (a) the neutrino
state has a nontrivial SU(2) X U(1) quantum number and
a bare mass term is not compatible with the electroweak
gauge symmetry. Thus the neutrino mass term comes
from spontaneous symmetry breaking, and is proportion-
al to the Yukawa coupling constant. On the other hand,
the dominant neutrino mass term in the seesaw model (b)
is gauge invariant by itself. Hence, in (b) the large mass
limit does not entail a large Yukawa coupling. This basic
difference accounts for the decoupling of the seesaw neu-
trino but not the sequential doublet v. Although the un-
derlying mechanism is not dificult to understand, to see
how important such nondecoupling effects are in any
specific process and to see how decoupling is restored
through, as we shall see, a rather intricate interplay of the
heavy-light mixings, we must carry out explicit calcula-
tions.

In Sec. II we present a detailed one-loop calculation of
the p —+ey amplitude without making the usual assump-
tion of the intermediate neutral lepton mass being small
(compared to gauge-boson masses). Furthermore we do
the calculation in the general R& gauge so as to display
the important role played by the unphysical Higgs boson
(i.e., longitudinal gauge bosons) in avoiding the usual
decoupling theorem. Other higher-order electroweak
processes where a superheavy neutrino can be potentially
important are also studied: In Sec. III we discuss p —+3e
and pe conversion in a nucleus and other muon-number-
changing processes; in Sec. IV the question of coupling
versus nondecoupling in the higher-order correction to
the p parameter will be discussed.

To fix the normalization of the relevant amplitudes, let
us write down the effective Lagrangian for these low-
energy weak processes [8]. We can first concentrate on
the pey and p3e processes:

GF em„ CLm pL' ff 2 T(x )eLCtkvPRF + E(x )eLY3)J'L(eL Y eL )
2 (4m) 4m

am„+ 2" [F(x)eLy~L+m&G(x) '8 eLo'~~R](ey e) +H. c. ,
4& sin Ogr

where x =m /M~ with I being the neutrino mass. GF
is the Fermi constant, 0~ the weak mixing angle, I' "
the electromagnetic field tensor. The functions
T(x ), E(x ), F(x ), and G(x ) are dimensionless. T is the

I

pey amplitude, and E, F, and G are those for p3e. The
semileptonic processes such as pe conversion in the nu-
cleus, KL —+pe decays, etc., can also be described by an
effective Lagrangian with some of the leptonic bilinears
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replaced by appropriate quark currents. For all these
processes the exact x-dependent results can be read off
from the paper of Inami and Lim [8]. We will only study
its large-x limit, and see how the decoupling results can
be recovered for the singlet case.

In Sec. V we discuss and summarize our results for the
various processes in a table.

II. prey
The most general gauge-invariant amplitude for the de-

cay p~e+y, where the photon is on shell (q =0), has
the form

M(prey)=ie u, q oz (a+by5)u„,
where e (q ) is the photon polarization, a and b are the in-
variant amplitudes. In the approximation of m, =0, we
have the decay rate

m
1 (prey) = "

( I~ I'+ Ibl') .
8~

In the SM, these amplitudes are related to that in the
eff'ective Lagrangian (3) as

Gz em„a= —b=-- ".T
&2 (4m)

V;

(c}

FIG. 2. (a) WW, (b) WP, (c) PW; and (d) PP one-loop contri-
butions to prey.

and

b(k, c)=
k —M~/

The results [9] for the four diagrams (Fig. 2), modulo a
common mixing angle U„'; U„, are

T~~ =I3(x)+I2(x)

2E2 A, x

b~ (k, g)=— k„k
k2 —M~2

(4)

As the pey amplitude (the first term in L,fr) corresponds
tp a dimension-five operator it must be represented by a
set of loop diagrams. They must be finite contributions
since there can be no renormalizable counterterms to ab-
sorb the infinities. The lowest-order one-loop diagrams
(Fig. 1) naturally divide into two classes: where the pho-
ton line is attached onto external charged lines (p or e)
or onto internal lines. Since the former class can only
yield amplitudes of the charge form factor type y&, one
only needs to concentrate on the second class, to get the
magnetic-moment form-factor-type terms cr& .

In this paper we are interested in the pey transition as
mediated by intermixing neutrinos, in particular, the ex-
act neutrino mass m dependence of the prey ampli-
tudes. Since the issue involves a possible violation of the
decoupling theorem in a theory with spontaneous sym-
metry breaking, where the large fermion mass limit cor-
responds to the large Yukawa coupling limit, it will be il-
luminating to perform the calculation in the general R&
gauge where the unphysical Higgs boson P's are not ex-
plicitly eliminated. In this general class of gauge choices,
the W'and P propagators have the respective forms as

+—f [a(a —1)Eo(a,x )+aE, (a,x )]da

xg t a (1—a)
4 o a+(1—a)xg

xT~~= —f a[Eo(a,x)—E, (a,x)]da

xg & a(l —a)(2 —a)
cEcK

4 o a+(1 —a)xg

T
xg' & a(1 —a)(2 —a)

8cx
2 o a+(1—a)xg

where

I„(x)—: d a,
o a+(1—a)x

E„(a,x )
—= f0

dP.
(1—a —P)g '+P+ax

+( —,'a + —,'a ——', )E,(a,x )]da,
1 1 g —1T = f E (a,x)da —— f (1—3a)WP 1 2 g o

X [(1—a)Eo(a, x ) E, (a,x )]d—a

(sa)

(5b)

(5c)

(5d)

p e

(b}

FIG. 1. One-loop diagrams for p —+ey via intermixing neu-
trinos.

The W' and P couplings to the fermions are displayed in
Fig. 3. Physically the unphysical Higgs boson is simply
the longitudinal gauge boson. We note that its Yukawa
coupling has a term proportional to the heavy fermion
mass.

As a check with the previously known result [10] (and
as a simple way to see the cancellation of the g depen-
dence), we take the small mass limit x~0. By keeping
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p
r r y 2v'2 A(l-"Is)Uyi

TS'w~o ~

T~&~ ' f—a da+ —f [a(a —1 )Ko+aE, ]daWP

2v'2M~
jmi. (I-g ~) —rnid(l ~5)JUL,.

FIG. 3. The W and the unphysical-Higgs-boson couplings to
the heavy neutrino v;.

12 43

1 x
T&~~ —

4 f a(2 —a)da+ —f a(KO —K& )da
0

(13)

terms up to O(x ), we obtain

Tww -', —,'g(k) —
4 [1—

—,'f(g)+2g(g)],
r

T~p~ ,'g(g) ———+—f(g) ——g(g)
x 5g 4 7

(Sa)

(Sb)

1

T~~~ ,' a—(2—a)da= —,
' .

Here we have used the limits of
)n+1

I„(x)~0 and K„(a,x)~

Tyw —
4 6

—f(k)+ -,'g(k)x 5g (Sc)

where

x 5g
4 3

(Sd)

f(g)=, g(g) = 1+
g —1' g —1 g

—1

Clearly the sum is independent of g and agrees with the
well-known small mass limit result [11]:

Thus the 28 amplitude vanishes, as to be expected from
the decoupling theorem, while the other amplitudes
which involve at least one unphysical Higgs line do not
(although the constants in the limits of T~& and T&z,
happen to cancel). To understand the result, we note that
the heavy fermion mass m appears in the denominator of
the propagator and in the numerator as the Yukawa cou-
pling of the unphysical Higgs scalar. Thus in the large-m
limit, the important contributions are those diagrams
containing unphysical Higgs bosons. It is also important
to take into account the helicity structure to see whether
the heavy fermion propagator gives m ' or I factors.
We give the results for each graph below:

T=— —x6 4 (Se)
gf+g+m

Tww u, yd 1 y5)—
DZ

For the result in (5) which is exact in x, we note that in
the 't Hooft gauge (g= 1 ), the amplitudes can be comput-
ed easily and are

=u, y& y (1—y~)u„=O(m ),P+k 2

Pl
(14a)

T~~=I3(x )+—,'I2(x ), T~&= ,'I2(x ), T&~—=0,
(9)

T~~ =—[2I,(x )
—3I2(x )+I3(x )] .

In the unitary gauge (/=0) the unphysical Higgs bosons
P's are not present, and correspondingly the T~~ ampli-
tude is equal to the sum of the amplitudes in (9):

P+k+mT~4~u, m (1+y5)

=u, y„(1—y~)u„=const,

I(+g+ m
T~ u, yq(1 —y )

y,(1—y, )u„

m(1 —y~)u„

(14b)

T(x)=I3+I2+—(I3 —3I2+I, ) .2 2 3 2

This can be combined into a simple expression as

a daT(x)=—,'+ —',
o a+(1—a)x

(10)
=u, yz(1 —y5)u„=const,

gf+k+ m
T~~ —&u, m (1+y~)

m

=u, (P+k)(1 —y~)u„=const .

(14c)

(14d)

Now let us examine the large mass limit x ~ ac. From
the result of (11) it is clear that T does not vanish [12],re-
sulting in violation of the decoupling theorem:

Note that, in the amplitudes with only one unphysical
Higgs line Twy, Ty, w, even though the power counting in-
dicates that there are terms which are finite as m —+ ao,
these terms do not have the right Lorentz structure to
contribute to the p —+ey amplitude.

Let us apply the exact result of Eq. (11)with its limits:

To understand better the origin of this nondecoupling re-
sult, let us examine the limit of the individual terms in
(5):

T(0)=—', and T( oo ) =—,
'

to the two models mentioned in Sec. I.

(15)



1506 T. P. CHENG AND LING-FONG LI

A. The sequential model

We make the simple observation that, when we apply
the small-x result of Eq. (8) and sum over the light neutri-
nos in the SM with three generations,

(b)

W

(c)

3

pl Uei'+ 3 Up4U84 p p4Ue4
i =1

(17)

where we have used the unitarity property of the mixing
matrix. This yields a branching ratio of

B(prey ) = I U„'4U, 418~
(18)

3
T= g U„*,U„.( —,

' —
—,'x;+ . ) .

1

The unitarity of the mixing matrix then leads to the can-
cellation of the leading constant term and to an ampli-
tude being suppressed by neutrino mass difference. This
is just the leptonic version of the Glashow-Iliopoulos-
Maiani (GIM) mechanism [13].

When we add the fourth doublet with a heavy neutrino
m4 &)M~ the amplitude becomes

FIG. 4. Three classes of diagrams for p~3e decay via pho-
ton and weak-gauge-boson exchanges.

one then finds that f, contributes to f, fz to G, f, to E
and E, and Bii, to E, etc. From (3) we can then calculate
the decay rate (cf. Ref. [14]).

Similarly for other muon-number-changing processes
the same nontrivial loop diagrams enter. For example, to
obtain the effective Lagrangian for pe conversion in the
nucleus we have the same set of diagrams as Fig. 4 only
with the e lines replaced by the nonstrange quarks: u and
d. Thus again we need to concentrate on the invariant
amplitudes of pey, peZ, and the box diagram. Such a
calculation has already been performed in Ref. [8]. For
our purpose of studying the question of decoupling versus
nondecoupling we shall merely state the large mass limit
(x ~ &n ) of their result:

thus clearly showing an absence of GIM suppression as
well as the evasion of the decoupling theorem. The
present experimental limit then places stringent bounds
on the mixing angle factors U„*4U,4.

B. The seesaw model

f, ( x)~ O(l nx),

f2(x) const,

f, (x)~O(x),

Bii,(x)~O(lnx ) .

(21a)

(21b)

(21c)

(21d)

III. p —+3e AND OTHER
FLAVOR-CHANGING PROCESSES

Fot the decay process of p~eee there are basically
three classes of diagrams (Fig. 4): (a) induced pey ver-
tices, (b) induced peZ vertices, and (c) box diagram [14].
Their invariant form factors in momentum space can be
written down:

I dVey ) =u, (1+y5) I (y~q' q~4)f i(—x )

+im„q oz f2(x)]u„,
I i(iMeZ) =f, (x)u, ( 1+y, )you„,

B(p3 )=eB ( i)iu,x(1+y )you„u, (1+y )yzsv, .

(20b)

(20c)

In terms of the invariants in the effective Lagrangian (3),

Exactly the same results apply to the singlet heavy neu-
trino case. Using the angles of Eq. (2a), one has

B(prey)= Is s&c&c&s~I
36K 2

Sm.

But in this case the decoupling is recovered when one
takes account of the fact in this model the mixing angle
sina is restricted as in Eq. (2b); hence, the process is in
fact suppressed by powers of the heavy-neutrino mass.
We can easily check that the exact degree of suppression
(14a) is recovered as well. In other words, the small mix-
ing angle (-m ') just cancels the large Yukawa cou-
pling, and the m dependence comes entirely from the
propagator —as in the symmetric theory.

For a qualitative understanding of these results (up to
logarithm), we have already discussed the result (21a) and
(21b) for the iMey vertex in Sec. II. From (21c) we see
that the peZ vertex grows as m in the large mass limit.
As there is a direct coupling between the Z boson and the
internal line of the heavy neutrino, the peZ diagram with
a virtual Higgs boson (Fig. 5) has two heavy fermion
propagators and two Yukawa couplings each proportion-
al to m. Symbolically we can represent the loop integral
of Fig. 5 as

d4&
E+m

&
I'+m 1

2 2 ~ 2 2 2 2l —m l —m l —M~
(22a)

The helicity structure is such that the m terms in the fer-
mion propagators can contribute, then

d l

(I —m . )
(22b)

p L

FIG. 5. Induced peZ vertex with intermediate states of heavy
neutrino and unphysical Higgs boson.

as the integration over I has important contribution com-
ing from the l-m region. For the box diagram result of
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W W

seesaw singlet neutrino model (b) they also contribute
O(m ) in the large mass limit, because

V g;4= y U;*, U4, g, = —U;I U4Lg, =O(m ')g, , (25c)

FIG. 6. Box diagrams for (a) p~3e, and (b) p+e ~p e

(21d) we have, from Fig. 6(a),
2

m d l ~const,2 4

(l —m . . )
(23)

where the I factor in the numerator comes from the fer-
mion propagators, and the two powers of m in front cor-
respond to the Yukawa couplings to the heavy neutrino.
In this connection, we remark that a similar box diagram
[Fig. 6(b)] involving a double fiavor number change (such
as p+e —+p e+ as relevant in muonium transition to
antimuonium) will have an O(m ) large mass limit, as
there are four powers of Yukawa couplings to the heavy
neutrinos.

Let us now discuss the recovery of decoupling for the
singlet neutrino case. We have already discussed the pey
case in Sec. II: its two factors of mixing angles each con-
tributing I ', leading to an overall O(m ) suppres-
sion. Similarly for the box diagrams: each of the Yu-
kawa couplings is matched by a mixing angle factor; this
leads (up to logarithms) to an overall suppression of I

For the peZ vertex the same Yukawa mixing angle
mechanism. reduces two powers of m to a constant ampli-
tude. The final decoupling result is achieved only when
one realizes that the coupling between Z boson and the
singlet neutrino involves an m factor itself. We can
best explain this by contrasting the coupling Zv4v4
(denoted by g„~) in the sequential model (a) to that in the
seesaw model (b). We can always choose to write g44 in
terms of the coupling between Z and neutrino states of
definite fiavor (the weak eigenstates):

and because U;*, U~„=O(m ') we again recover the m
decoupling suppression.

~w
p

Mz cos 6
(26)

In SM p is fixed to be one at the tree level. This comes
about because after spontaneous symmetry breaking the
custodian SU(2) of the SM constraints the mass term for
the neutral W3 to be the same as W, and W2 (i.e., the
charged W bosons). The diagonalization of the mass ma-
trix in the space of the W3 and the U(1) gauge boson then
leads to p=1. In higher orders this result is modified by
the custodian SU(2)-breaking eifects through their contri-
bution to the gauge-boson self-energies. In fact the
correction hp can be expressed simply as the difference of
8'3 and 8'& self-energies:

2

bp= [II„(0)—II33(0)] .
M~

(27)

The loop integral for the vacuum-polarization diagram in
Fig. 7 with the two fermion propagators having unequal
masses can be calculated (omitting the couplings) to yield
[15]

11(m &,I~ ) = — A ——( m
&
+m 2 )ln

1 2 3

m)m2

IV. THE p PARAMETER

The p parameter relates the masses of the 8 and the Z
gauge bosons:

g44 r 4a U4aga (24) 3 m ~+my m~+ — ln
4 m2 —m~ m

g~4=sin ag, =O(x ')g, . (25a)

Namely we can regard this extra suppression factor as re-
sulting from the nonunitarity of the mixing angle factors:

g, =g/(2 cos8+, ) is the same for all fiavors. Thus in the
sequential model (a) where a =e,p, r, L the unitarity con-
dition of the mixing matrix immediately leads to the
equality of g~=g, . But in the seesaw model (b) there is
no fourth generation and the sum over a=e, p, ~ only
leads, see Eq. (2a), to

——(m f+m2)

where A is a cutoff. For equal mass, this reduces to

II(m, m)= —
2

A —3m ln
1 2 p A

96~ m

For the simplest case of one doublet,

(28a)

(28b)

U4 U4 =1 U40U40=sin a (25b) (29)

Taking this into account, we recover the suppression
power of the symmetric theory.

We should also note that there is a subleading order-1
term in the induced peZ vertex coming from diagrams
with nondiagonal Zv;v4 couplings (i.e., g;~ with i%4).
This can be verified by a power-counting procedure en-
tirely similar to that used in Eq. (22). However, for the FIG. 7. The gauge-boson vacuum-polarization diagram.
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we have

II33(0)= II(m„m, )+ II(mb, m& ),
II„(0)=2II(m„mb) .

Equations (27) and (28) then yield [16]

(30)

64~'~w
b

n
m —m mb b

which for large m, leads to the well-known nondecou-
pling result of

Ap —+ mt
64m M~

(31)

we have

II33(0)=II(m, m, )+c II(m3, m3)

+s II(m~, m~)+2s c II(ms, m~), (33)

II»(0) =2c II(m„m3)+2s II(m„m„) .

These quantities have, in addition to a common divergent
factor, the large-m4 limits

II33(0)~— (2s m 41nm 4
—s c m 4 + . )

64m

IIii(0)~ — (2s m41nm& —s m&+ ) .
64~

(34)

Consequently, the resulting correction to the p parameter
does have the required suppression factor of m4 to
overcome the original nondecoupling m 4 growth:

2

~p~ 2 2 m4sa .
64~ M~

(35)

Since the large mass limit goes as m one may wonder
how the m decoupling suppression can be recovered,
in view of the fact that the relevant Feynman diagram
(Fig. 7) has only two vertices, thus presumably at most a
suppression by two powers of the heavy-light mixing an-
gle (each —m '). I.et us first examine this question in
the seesaw model (b). We shall, for simplicity of presen-
tation, take the unessential mixing angles (f3 and y)
among light neutrinos to zero (i.e., v, =v, and v„=v2).
Then only the tau neutrino is an admixture of the heavy
component v4 and the superlight component v3.

C~V3+S~V4
(32)

which immediately leads to the result in (35). Related to
this, the m „1nm ~ terms of (34) get canceled in bp because
such terms, like the divergent A and lnA terms, appear
in both II(m, m ) and II(m, m '). We also remark that the
subleading terms lnm also decouple since they are multi-
plied by at least one power of sin a. This decoupling re-
sult is not surprising because without the mixing the sing-
let fermion does not couple to the 8 to Z gauge bosons.

It is also instructive to examine this nondecoupling is-
sue in the sequential model (a). If we also take v, =v,
and v„=v2, then we have the third generation doublet as
in (32). What differs from the seesaw model (b) is that we
must add the fourth generation:

T

SaV3+ Ca V4

(37)

The efT'ect of this extra doublet is that the combined con-
tribution of (32) and (37) eliminates all the cross (i.e., un-
equal mass) terms in II33(0)—just another manifestation
of the GIM cancellation mechanism. Consequently the
s c m~ term in Eq. (34) is absent and the additional con-
tribution by (37) to II»(0) of a I'actor c m~ will lead ex-
actly to the expected single doublet result of Eq. (31).

V. DISCUSSION

In this paper we have examined the issue of decoupling
versus nondecoupling of a superheavy neutrino in the
SM. We have presented a detailed calculation of the
p —+ey decay amplitude in the general R& gauge. Our
calculation shows clearly that the resultant amplitude is
nonvanishing in the large mass limit because of the con-
tribution coming from the diagrams involving unphysical
Higgs bosons (i.e., the longitudinal gauge bosons). In
such diagrams the usual decoupling theorem is invalidat-
ed as the Yukawa coupling grows with the fermion mass.
But if the source of the large mass does not involve a
large coupling constant as is the case in the seesaw model
(b) then the decoupling result is recovered when the mass
dependence of the heavy-light mixing angle is taken to
account.

We have discussed other higher-order processes. The
feature that holds in all cases is that one can discern the
decoupling by simply examining (in the nonunitary
gauges) the diagrams not involving any unphysical Higgs

TABLE I. Large mass m behavior of the amplitudes. The
two pep amplitudes f, and f, are defined in Eq. (20); for on-
shell processes only fz contributes. One of the box amplitudes
is relevant for the p —+3e decay and the other is for muonium-
antimuonium transitions.

It is actually not diKcult to see where the sin a factor
comes from. We note from Eq. (28) that the quadratic
m4 term appears in II(m, m') only when

mmmm'.

Thus
only the vacuum-polarization diagrams involving light-
heavy mixings need to be included in this consideration
of bp. Collecting the relevant terms in (33) we have

II33(0 ) —II i i (0 ) =2s c ~ II ( m 3 y Pl 4 ) 2$ ~ ( ni go 4 )

(36)

fi(S er)
f2(ue)')
peZ
Box(pe —ee )

Box(pe —ep)
P

Seesaw model

{decoupling)

m lnm
m
m
m lnm
m
m

Sequential model
(nondecoupling)

lnm
1

m
lnm
m
m
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bosons. In Table I we have summarized the decoupling
suppression factors for each of the cases considered.
Nondecoupling comes about because of the contribution
by diagrams involving unphysical Higgs bosons with its
large Yukawa coupling constants. But there should not
be such nondecoupling when the large mass does not
originate from a large coupling, as in the singlet neutrino
case. We have demonstrated in this case that the decou-
pling suppression is recovered when one takes into ac-
count the fact that the heavy-light mixing angle itself
goes as m '. (However, in some cases such as the p pa-
rameter the degree of mixing angle dependence is rather
subtle. ) Similarly in the case of the induced peZ vertex
one must also include the fact that the neutral-current
couplings of the singlet fermion have mass suppression
factors themselves.

Of course the simplest way to see that such singlet fer-
mion contributions obey the usual decoupling theorem is
to work directly with weak eigenstates instead of the
mass eigenstates. However, in such an approach one has

to calculate in the less familiar situation involving nondi-
agonal propagators. We remark that the recovery of
decoupling also includes the case where the strong Yu-
kawa coupling involves a physical Higgs boson which
does not contribute to gauge-boson masses, and thus the
longitudinal 8' coupling does not grow in the large mass
limit.

It should be clear that much of the results concerning
superheavy neutrinos can be generalized to situations in-
volving heavy-quarks-singlet or -nonsinglet cases. In fact
we discuss, in a separate communication [17], the loop
effects of a model where a heavy singlet quark mixes with
the top.
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