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• The physics community’s acceptance of the photon idea did not come
about until the discovery and analysis of Compton scattering in 1923.
We present a short introduction to this subject. The remainder of this
chapter is devoted to the statistical analysis of photons as identical
bosons.

• Just about all of Einstein’s principal contributions to quantum theory are
statistical in nature: his first paper on the photon, his work on specific
heats, on stimulated and spontaneous radiative processes, and now on
quantum statistics. This last effort was prompted by a paper that S. Bose
sent to him in 1924.

• Bose was dissatisfied with the logical foundation of Planck’s radiation
theory. He presented a derivation of Planck’s distribution using the
particle approach from the very beginning. We present Bose’s deriv-
ation in detail so as to understand the implicit assumptions he made in
this pioneering work.

• In the meantime de Broglie put forth his idea that matter, under cer-
tain circumstance, could behave like waves. This inspired Einstein to
extend Bose’s analysis of radiation to systems of matter particles. Here
he made the discovery of the astounding possibility of Bose–Einstein
condensation (BEC).

• The papers of de Broglie and Einstein directly influenced Schrödinger
in his creation of the Schrödinger equation. This prompted Pais to
bestow onto Einstein the title of “godfather of wave mechanics”.

• The ultimate understanding of Planck’s spectral distribution came about
in modern quantum mechanics with its notion of indistinguishable
particles. A multiparticle system must be described by a wavefunction
that is either symmetric or antisymmetric under the interchange of two
identical particles. The spin-statistics theorem instructs us that particles
with half-integer spin obey Fermi–Dirac statistics and particles with
integer spin (like photons) obey Bose–Einstein statistics.

• Section 7.4 is devoted to some basics of Bose–Einstein condensation.
In particular we show that this phenomenon of a macroscopic number
of particles “condensing” into the momentum space ground state can
only take place when the particles’ wavefunctions start to overlap. The
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production of BEC and a demonstration of its macroscopic quantum
behavior in the laboratory setting was achieved in the 1990s. We briefly
describe this success.

• In SuppMat Section 7.5, we discuss radiation pressure resulting from
photon collisions with the enclosure. In SuppMat Section 7.6, we show
why, in the context of modern quantum statistics, Planck found the right
answer using the statistical weight he wrote down in 1900. In SuppMat
Section 7.7, we discuss the role of particle indistinguishability, making
it possible for BEC to take place.

As we have already recounted previously, there was persistent resistance
to Einstein’s 1905 photon proposal. This lasted till 1923 when Arthur H.
Compton (1892–1962) performed X-ray scattering off a graphite target and
provided the analysis showing that a light quantum has not only energy but
also momentum. This brought about the general acceptance of the photon idea.
Arnold Sommerfeld (1868–1951), one of the leading lights in physics, had this
to say about the result of Compton scattering (Sommerfeld 1924): “It is prob-
ably the most important discovery which could have been made in the current
state of physics.” With this general acceptance, the investigation of radiation
made further progress with the first correct statistical analysis of radiation as
a specific case of Bose–Einstein quantum statistics. These will be the main
topics of this chapter.

Fig. 7.1 The momentum diagram of Comp-
ton scattering: A photon with momentum p
scatters off an electron to produce another
photon

(
p′
)

with the recoil electron having
momentum pe.

7.1 The photon and the Compton effect

Compton carried out experiments with X-rays scattering on a graphite target.
In the classical theory, these incoming electromagnetic waves cause electrons
in the carbon atoms to oscillate with the same frequency as the incident waves
and re-emit the final state waves with the same frequency. In the particle pic-
ture of light, a photon carries momentum as well as energy. The energy E
and momentum p are related1

1This is compatible with a classical radiation
field with field energy density (u) given
by u = (E2 + B2

)
/2 and field momentum

density given by the Poynting vector
S = E× B/c, with their magnitudes related
by u = cS, because, in an electromagnetic
wave, the electric and magnetic field
strengths are equal, E = B.

by ε = pc, which is the m = 0 case of the

general relativistic energy and momentum relation ε2 = (pc)2 + (mc2
)2

. For
a quantized photon energy ε = hν, one has the simple relation between photon
momentum and wavelength

p = hν

c
= h

λ
. (7.1)

The particle description of this scattering of light by electrons leads to a dis-
tinctive result.2

2This analysis was independently worked out
by Compton (1923) and Debye (1923).

From momentum–energy conservation, one expects the final
state photon to have a smaller momentum than the incident photon, hence a
longer wavelength. The exact relation between this shift of wavelength and
scattering angle can easily be worked out (see Fig. 7.1). One starts with the
energy conservation relation:

ε + mc2 = ε′ +
√(

pec
)2 + (mc2

)2
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which, after using (ε − ε′) = (p− p′)c, can be written as[
(p− p′)c+ mc2

]2 = (pec
)2 + (mc2)2. (7.2)

The corresponding momentum conservation relation can similarly be written
down, with the electron recoil momentum being pe = p− p′. This implies an
equation among the magnitudes of the various momenta,

p2
e = p2 + p′2 − 2pp′ cos θ . (7.3)

Eliminate p2
e from Eqs. (7.2) and (7.3), we immediately obtain the correlation

between wavelength shift and scattering angle as

λ′ − λ = λc(1− cos θ ). (7.4)

We have used the definition of the Compton wavelength λc = h/mc, which
is a very small length λc = 0.0024 nm even for an electron mass. In order to
see such a tiny wavelength shift, it helps to work with an electromagnetic wave
having short wavelength in the first place. This explains why the effect was dis-
covered in the scattering experiment involving X-rays. Still, it was remarkable
that Compton was able, in the first experiment making measurements at scatter-
ing angles of 45◦, 90◦, and 135◦, to determine the Compton wavelength λc to
an accuracy that was less than one percent off the modern value. Compton con-
cluded his paper (Compton 1923) this way: “The experimental support of the
theory indicates very convincingly a radiation quantum carries with it directed
momentum as well as energy.”

We have in Section 3.4.3 derived the result for radiation pressure and radi-
ation energy density p = u/3 by way of thermodynamic arguments. It may
be easier for a modern-day reader to understand this result from the view-
point of momentum changes as suffered by photons after collisions with the
enclosure wall (cf. SuppMat Section 7.5). In the next few sections we shall see
how the idea of the photon would finally lead to a more consistent and deeper
understanding of blackbody radiation.

7.2 Towards Bose–Einstein statistics

The Compton scattering result was obtained in 1923. This had finally estab-
lished the reality of photons for the general community of physicists. In 1924
Einstein received a letter from Satyendranath Bose (1894–1974) of Kolkata
asking his opinion of an enclosed paper,33The paper was written in English and sumit-

ted to Philosophical Magazine in 1923. After
its rejection by that journal, Bose sent it
to Einstein who translated it into German
and arranged its publication in Zeitschrift der
Physik (Bose 1924). A re-translation back
into English can be found in the American
Journal of Physics (Bose 1976).

in which Bose used the particle
properties of a photon (having the energy–momentum relation of ε = pc with
p2 = p2

x + p2
y + p2

z ) to obtain another derivation of Planck’s spectral distribu-
tion of blackbody radiation. He stated that he was motivated by the observation
that Planck’s derivation was not logically self-consistent. Planck arrived at
a non-classical physics result of energy quantization while using a relation
between radiation density ρ(ν, T) and average energy U of an oscillator,

ρ = 8πν2

c3
U, (7.5)
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deduced by a classical electromagnetic calculation (cf. Section 3.2.1). In
Section 4.1.3 this result was obtained by a counting of wave states. Bose set
out with a particle approach from the very beginning.

After deriving this density of states, Bose proceeded to deduce Planck’s
distribution. Bose’s approach is to adhere closely to Boltzmann’s procedure.
In contrast to Planck’s method (cf. Sections 3.3.1 and 3.3.2), his statistical
analysis involves a counting of phase space cells. But to have the calculation
ending in Planck’s distribution, rather than Boltzmann’s, clearly he had to devi-
ate from the latter’s procedure. In order to see all this, we shall first provide a
brief review of Boltzmann’s statistical program.

7.2.1 Boltzmann statistics

Boltzmann’s analysis proceeded by identifying particles with cells in position–
momentum phase space. He also used the device of discrete energy packets ε,
but would set ε = 0 at the end of a calculation in order to recover a continuous
energy. One regards the P energy packets as forming P+ 1 energy levels, with
the lowest level having zero energy ε0 = 0, the second level having energy
ε1 = ε, so on up to the highest level εP = Pε. The N particles (cells) can have
various energies; such a configuration (label it as σ ) can be described by a set
of cell numbers

(
N0, N1, N2, . . . , NP

)
. N0 is the number of cells at the ground

level ε0, N1 is the number at the next level ε1, etc. Namely, we have the total
number of particles and total energy as given by

N =
P∑

j=0

Nj, U =
P∑

j=0

εjNj =
P∑

j=0

jεNj. (7.6)

The probability complexion for such a macrostate configuration σ is calculated
by counting the number of ways N cells can have different energies (i.e. N is
divided into different sets of cells). We note that the number of ways we can
select out N0 cells from the total N is N!/[N0!

(
N − N0

)!], then the number of
ways to select out N1 cells from the remaining N − N0 is

(
N − N0

)!/[N1!
(
N −

N0 − N1
)!], etc. Thus the total number of ways one can divide up N oscillators

into a distribution of
(
N0, N1, N2, . . . , NP

)
is the product4 4In the so-called “correct Boltzmann count-

ing” procedure, one would insert the ad hoc
factor of 1/N! in order to make the res-
ultant entropy an extensive thermodynam-
ical function. This is ultimately justified
by quantum mechanics with its concept of
identical particles. We do not make this inser-
tion here because this feature is irrelevant for
our present discussion.

Wσ = N!
N0!
(
N − N0

)! ×
(
N − N0

)!
N1!
(
N − N0 − N1

)! × · · ·
= N!

N0!N1! . . .NP! , (7.7)

leading to the entropy

S = kB ln Wσ = kB

⎛
⎝ln N! −

∑
j

ln Nj!
⎞
⎠

≈ kB

⎛
⎝N ln N −

∑
j

Nj ln Nj

⎞
⎠ ,
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where we have approximated the factorial logarithms by Stirling’s formula
(cf. Appendix A, Section A.3). One then maximizes the entropy, under the
constraint of the two conditions given in (7.6), to find the configuration that
corresponds to the equilibrium state:

0 = δ
∑

j

(
Nj ln Nj + ANj + BεjNj

)
=
∑

j

δNj
(

ln Nj + 1+ A+ Bεj
)

where we have used the Lagrangian multipliers A and B to incorporate the
two constraint conditions (cf. Appendix A, Section A.4). For an independent
variation δNj, the coefficient must vanish

ln Nj = −α − βεj + constant (7.8)

giving the primitive form of the Boltzmann distribution, Nj ∝ exp(−α − βεj).
One then has to appeal to analysis of other systems such as an ideal gas to fix
the parameters of α and β = 1/kBT , etc.

7.2.2 Bose’s counting of photon states

Bose obtained the relation (7.5) by a counting of the photon states (instead
of wave states as done by Rayleigh). His approach was to count the cells in
the particle’s position–momentum phase space, which is quantized in units of
Planck’s constant h3. First, we will show that quantum theory naturally tells us
that the phase space volume for an oscillator is quantized in this way.

As we have already shown in Eq. (3.55) in SuppMat Section 3.5.1, the
energy equation of a 1D harmonic oscillator with frequency ν traces out an
elliptical curve in the 2D phase space dqdp, with an area equal to the ratio of
the oscillator energy to its frequency U/ν. In quantum theory, the oscillator
energy (above the zero-point energy) is quantized, Un = nhν. Thus, each
oscillator state occupies an elliptical area of h. Clearly for 3D oscillators with
phase space d3qd3p, the 6D volume has a volume of h3—each oscillator state
occupies a phase space volume of h3.

Density of photon states
Recall the relation of radiation energy density ρ in terms of the number of
radiation oscillators N and their respective energy U, see Eqs. (3.13) and (4.5);
we have ρdν = (UN/V)dν. Bose counted the number of photon states N by
counting the number of cells occupied in the 6D phase space:

Ndν = 2
d3qd3p

h3
= 2V

h3
4πp2dp (7.9)

where the factor of 2 corresponds to the two polarization states of a photon.5
5Previously this factor of 2 had always been
introduced as the two polarizations of the
electromagnetic wave. But here Bose in 1924
was inserting it when working with photons.
The whole idea that a particle can have
intrinsic spin was not proposed until 1925
(for the electron). Nevertheless, Bose intro-
duced this factor of 2 in his derivation with
the comment: “it seems required”!

The momentum variable p is then replaced by the frequency ν through the
relation of p = ε/c = (h/c)ν so that

Ndν = 8πV

h3

(
h

c

)3

ν2dν or ρ = N

V
U = 8πν2

c3
U. (7.10)

This is Planck’s relation (7.5).
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Bose’s derivation of the Planck distribution
Just like Planck, Bose then proceeded to a statistical calculation of the
complexion that would lead to Planck’s spectral distribution. Recall that all
Einstein’s previous discussions of blackbody radiation had avoided any explicit
statistical analysis. In fact he had mildly criticized Planck’s statistical approach
as being without foundation (cf. Section 3.4.1). But he was supportive of
Bose’s new analysis.

Bose assumed that there are Ns quanta, distributed among Zs phase space
cells (i.e. potential states that a photon can occupy) at frequency νs (the super-
script s is a label of the state, having frequency interval dν). These cells can
be at different energy levels. There are ws

r cells each holding r quanta, having
energy εs

r = rhνs: thus ws
0 cells at ground state εs

0 = 0, ws
1 cells at εs

1 = hνs, and
ws

2 cells at εs
2 = 2hνs, etc. In total there are N photons in the frequency interval

dν. Their relations can be expressed as

N =
∑

s

Ns, U =
∑

s

Nshνs, (7.11)

Ns =
∑

r

rws
r, Zs =

∑
r

ws
r.

The number of microstates, according to Bose, should “simply” be the product
of the number of ways (for each νs) that Zs cells can be partitioned into a
distribution of

(
w0, w1, w2, . . . ,

)
, much like (7.7):

W =
∏

s

Zs!
ws

0!ws
1!ws

2! . . .
. (7.12)

Just as in Section 7.2.1, one then maximizes the logarithm of this statistical
weight δ ln W = 0 with

ln W =∑
s

Zs ln Zs −∑
s,r

ws
r ln ws

r

holding the total number of cells Zs and total energy U fixed. Using the
method of Lagrangian multipliers β and λs (see Appendix A.3), he obtains
the condition6 6From (7.11), we insert into δ ln W = 0 the

factors λsδZs = λs∑
r δws

r = 0 and βδU =
β
∑

s δNshνs = β
∑

s,r rδws
rhνs = 0.

∑
s

∑
r
δws

r

(
ln ws

r + 1+ λs + rβhνs
) = 0 (7.13)

which implies the solution

ln ws
r = −rβhνs + constant

or ws
r = Ase−rβhνs

with the coefficient As related to Zs =∑
r

ws
r by:

ws
r = Zs

(
1− e−βhνs)

e−rβhνs
. (7.14)

Bose proceeds to calculate the photon number distribution by7 7Here one uses the result of
∑

r rxr = x/(1−
x)2, which can be gotten from the famil-
iar geometric series

∑
r xr = 1/(1− x) by

a simple differentiation with respect to the
variable x.

Ns =
∑

r

rws
r = Zs

(
1− e−βhνs)∑

r

r
(
e−βhνs)r

= Zs e−βhνs

1− e−βhνs = Zs

eβhνs − 1
. (7.15)
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Using his result (7.10) for the density of states Zs = 8πνs2V/c3, Bose deduces
the total radiation energy in the interval

U

V
dν =

∑
s

Nshνs

V
dν = 8πν2

c3

hν

eβhν − 1
dν. (7.16)

The Lagrangian multiplier can be fixed as β = 1/kBT by noting that the
entropy is S = kB ln W, and differentiating with respect to energy must be iden-
tified with the absolute temperature T = ∂U/∂S. In this way Bose arrives at the
Planck’s distribution:

ρ(ν, T) = 8πh

c3

ν3

ehν/kBT − 1
. (7.17)

Implicit assumptions in Bose’s derivation
Bose’s statistical counting method, compared to Planck’s, certainly looks more
like the traditional Boltzmann procedure. Clearly he had gone beyond the
established approach so that he was able to arrive at Planck’s distribution
instead of the usual Boltzmann result. Apparently Bose did not realize in what
fundamental ways his derivation departed from the usual classical statistical
mechanical method. He made no comments about these assumptions in his
paper. And in later years he remarked that he did not realize “what he did was
all that new”!

Instead of counting photons directly, he divided the phase space into cells,
and asked how many photons were in a cell (rather than which photons were in
a cell) and thus implicitly assumed indistinguishability of photons. He assumed
statistical independence of cells. Thus there is no statistical independence of
particles. In his calculation he imposed the condition of conservation of phase
space cells (i.e. Zs =∑r ws

r = constant). Since each cell has an indefinite num-
ber of photons, he had implicitly assumed photon number nonconservation
(i.e. N =∑s Ns �= constant). Interestingly, this constant Zs condition is actu-
ally irrelevant for his result, as we see in the above calculation that the
corresponding Lagrangian multiplier λs drops out in the result of the cell dis-
tribution (7.14). Furthermore, he had also assumed that (in modern language)
the photon has intrinsic spin—again without much of a comment.

7.2.3 Einstein’s elaboration of Bose’s counting statistics

Einstein arranged the publication of Bose’s paper and he also sent in a related
contribution (Einstein 1924), extending Bose’s case of photon statistics to
the general case of noninteracting particles (i.e. atoms and molecules). In
the meantime (1923–24) Louis de Broglie made his suggestion that matter,
under certainly circumstances, could have wave-like behavior. Einstein was
very enthusiastic about this idea. His paper (Einstein 1925) was the first of any-
one who actually referred to de Broglie’s new suggestion of matter waves. He
justifies his application of Bose’s photon counting method to matter particles
by saying that if particles can be waves, they should obey similar statistics to
photons.
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Density of nonrelativistic particle states
To count the nonrelativistic gas particle states, Einstein followed Bose by
calculating the corresponding phase space volume in units of h3 as in (7.9):

Ndν = d3qd3p
h3

= V

h3
4πp2dp. (7.18)

Instead of photons, we have nonrelativistic particles with the momentum p
related to the kinetic energy ε by p = √2mε so that

Ndν = 2πV

h3
(2m)3/2 ε1/2dε = Z(ε) dε. (7.19)

The particle density (number per unit energy) Z(ε) is given by

Z(ε) = 2V

√
ε

π

(
2πm

h2

)3/2

. (7.20)

Particles obeying Bose–Einstein statistics are called bosons.

Distribution of identical bosons
Einstein improved upon Bose’s method in his derivation of the distribution
of gas particles. Recall our comment that it is irrelevant to impose the condi-
tion Zs =∑r ws

r = constant. Instead of working with the statistical weight of
(7.12), Einstein wrote down the complexion in a form more similar to Planck’s
Eq. (3.38):

W =∏
s

(
Ns + Zs − 1

)!
Ns!(Zs − 1

)! �∏
s

(
Ns + Zs

)!
Ns!Zs! . (7.21)

This is a counting of the ways that one can distribute Ns identical particles
into Zs cells.8 8Recall in Eq. (3.34) that Planck was count-

ing the ways of distributing P quanta into N
oscillators.

Einstein then maximizes ln W under the constraint of holding
the particle number N = �Ns and the energy U = �Nsεs fixed—by using two
Lagrangian multipliers, which can eventually be identified with 1/kBT and the
chemical potential μ:

Ns = 1

e(εs−μ)/kBT − 1
. (7.22)

This came to be known as Bose–Einstein statistics. Because photon number is
not conserved (that is, photons can be freely emitted and absorbed), there is not
the requirement of N = �Ns, and the Lagrangian multiplier μ, identified with
the chemical potential, is absent (or, μ = 0):

Ns = 1

eεs/kBT − 1
. (7.23)

This is the correct distribution for photons as discussed in Section 7.2.2.
Using the expression for the density of states obtained in (7.20), the total

number density is

N =
∫ Z(ε) dε

e(εs−μ)/kBT − 1

= 2V√
π

(
2πm

h2

)3/2 ∫
ε1/2dε

e(εs−μ)/kBT − 1
. (7.24)
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The discovery of Bose–Einstein condensation
For the case of the ground state (with εs = 0) we have from (7.22):

N0 = 1

e−μ/kBT − 1
.

The requirement that N0 > 0 (i.e. e−μ/kBT > 1) implies that the chemical poten-
tial μ must in general be nonpositive. Einstein discovered that when the
temperature drops below a certain temperature (called the condensation tem-
perature Tc) when the chemical potential approaches zero (from below) the
above expression for the ground state population becomes macroscopic in size:

N0 = kBT

−μ ≫ 1. (7.25)

Einstein commented on this remarkable result:

I maintain that, in this case, a number of molecules steadily growing with increas-
ing density goes over in the first quantum state (which has zero kinetic energy) while
the remaining molecules distribute themselves according to the parameter value of
μ = 0 . . . A separation is effected; one part condenses, the rest remains a ‘saturated
ideal gas’.

Einstein had discovered a purely statistically induced phase transition, which
we now call “Bose–Einstein condensation”. In Section 7.4 we shall provide a
more detailed discussion of this condensation phenomenon.

7.3 Quantum mechanics and identical particles

Modern quantum mechanics came into being in 1925–26. In this new the-
ory physical states are identified with vectors and physical observables with
operators of the Hilbert space. These vectors and operators may appear rather
differently depending on what basis vectors one chooses to represent this geo-
metric space. This is reflected in the two separate discoveries of quantum
mechanics. In the spring of 1925 Werner Heisenberg, following his study of
dispersion relations, had proposed a rather abstract version of a quantum the-
ory, which came to be known as matrix mechanics. At the end of 1925 Erwin
Schrödinger wrote down his wave equation thus initiated wave mechanics.
The hydrogen spectrum was obtained in both matrix and wave mechanics.
Soon, in 1926, P.A.M. Dirac, and independently Heisenberg and Schrödinger,
had shown that wave and matrix mechanics are equivalent to each other:
they were just two different representations of the same theory. In the fol-
lowing discussion we shall mostly use the more accessible language of wave
mechanics.

7.3.1 Wave mechanics: de Broglie–Einstein–Schrödinger

In 1924 Louis de Broglie proposed in his doctoral thesis that, associated
with every matter particle (with momentum p) there was also a wave with
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wavelength λ = h/p (de Broglie 1924). Recall that Einstein had introduced the
idea of light quanta—particle-like properties of radiation; he stated his gen-
eral motivation as wanting to have a more symmetric description of matter
and radiation. In fact de Broglie explicitly acknowledges that his matter wave
idea was inspired by this particle–wave dualism9 9Recall our discussion in Section 6.1 of

Einstein’s 1909 investigation of radiation
fluctuation leading him to the notion of
particle–wave duality. In a paper submitted at
the beginning of 1925 Einstein showed that
a relation, just like Eq. (6.16), holds as well
for his quantum gas of material particles as
discussed in Section 7.2.3.

as stated in Einstein’s 1905
photon paper. Thus we should not be surprised that de Broglie’s matter wave
idea received Einstein’s enthusiastic support. The question: What would be the
equation that governs the behavior of this matter wave? It is also of historical
interest to note that Erwin Schrödinger first became aware of de Broglie’s idea
from reading Einstein’s 1924–25 papers. This led directly to the creation of
his wave equation, which immediately came to be known as the Schrödinger
equation, at the end of 1925.

7.3.2 Identical particles are truly identical in quantum
mechanics

The concept of identical particles in quantum mechanics is qualitatively dif-
ferent from any analogous notion in classical physics. In classical physics
ultimately no particles can be identical. Two electrons with identical charge
and mass can still be distinguished because we can in principle follow their
individual trajectories and tell apart which is which particle. In quantum mech-
anics, it is impossible to have precise particle trajectories. In classical physics
we can also in principle distinguish two particles by putting labels on them (e.g.
paint them different colors) without interfering with their motion. In quantum
mechanics, on the other hand, it is not possible to keep track of particle tra-
jectories or to put extra labels involving an incompatible observable.10 10Because observables are represented by

operators. Two observables are said to be
incompatible if their respective operators do
not commute, ÂB̂− B̂Â ≡ [Â, B̂] �= 0. This
leads to an uncertainty relation of their
observable values, �A�B ≥ h̄. The ‘extra
label’ that one would wish to place on a
particle must be an incompatible one as a
particle has already been labeled by a com-
plete set of compatible observables.

Thus
identical particles are truly identical in quantum mechanics. The interchange
of any two identical particles leaves no observable consequence—no change
in the measurement probability. The wavefunction, being the probability amp-
litude, must therefore be either symmetric or antisymmetric with respect to
such an exchange of identical particles. As we commented at the end Section
6.4, quantum field theory can account for symmetry properties of the identical
particle nature of a field’s quanta. The commutation relation discussed in
Eq. (6.47) is just the elegant mathematical device needed to bring about this
required symmetry.

7.3.3 Spin and statistics

In the meantime the quantum mechanical concept of particle spin had
emerged.11 11Electron spin was first proposed by

Uhlenbeck and Goudsmit (1925).
It was then proposed that there is a direct relation between the

particle spin and the symmetry property of a wavefunction, and hence the
statistical properties of such identical particles. A system of particles having
integer spin (e.g. photons with spin 1) must have a symmetric wavefunction
and obey Bose–Einstein statistics; these particles are called bosons. A system
of particles with half-integer spin (e.g. electrons with spin 1/2) must have an
antisymmetric wavefunction, and obey Fermi–Dirac statistics. They are called
fermions. The spin-statistics theorem was proven by Wolfgang Pauli and others
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in the framework of quantum field theory (based on quantum mechanics and
special relativity) (Pauli 1940).

7.3.4 The physical implications of symmetrization

The physical implications of the concept of indistinguishable particles are
remarkable. The antisymmetric property of the fermionic wavefunction means
that two identical fermions cannot be in the same state. This explains Pauli’s
exclusion principle—crucial, among other consequences, in the explication of
the structure of multi-electron atoms. The totally symmetric wavefunction of
a boson system also leads to highly counter-intuitive results. Just consider the
calculation of statistical weight. Boltzmann’s statistics (7.7) would yield results
that are in accord with our intuition. For instance, compare the two cases of dis-
tributing 10 (distinguishable) particles into two cells: in one case 10 particles
are in one cell and none in the other cell, and in the other case each cell has
five particles. The ratio of weights for these two cases is

10!
10!0! :

10!
5!5! = 1 : 252.

This is to be contrasted with the quantum distribution of 10 identical bosons
yielding the rather counter-intuitive result of the statistical weight for each case
being unity—hence the ratio 1 : 1 for the above-considered situation. In each
case there is only one totally symmetric wavefunction. When Einstein first
worked out the Bose–Einstein (BE) counting, he commented:

The BE counting “expresses indirectly certain hypothesis on the mutual influences of
the molecules which for the time being is of a quite mysterious nature.”

While we now know that this is just the correlation induced by the require-
ment of a totally symmetric wavefunction,1212For a discussion of the role of particle

indistinguishability making BE condensation
possible, see SuppMat Section 7.7.

on a deeper physical level this
mutual influence is still no less mysterious today.

The final resolution of the counting schemes of Bose (1924),
Einstein (1905), and Planck (1900)
We have seen how quantum Bose–Einstein statistics naturally explains how
Bose’s implicit assumptions are all justified. It also justifies Einstein’s ori-
ginal classical statistical mechanical argument of Wien radiation being a gas
of photons. Even though Einstein avoided making an explicit calculation of
the statistical weight, since he used the analogy of a classical ideal gas, impli-
citly he had assumed the Boltzmann statistics of (7.7). However we can justify
it now because in the Wien limit (εs � kBT) the average photon number (7.23)
is vanishing small: Ns = e−εs/kBT � 0. Thus in this limit, the statistical weight
of Boltzmann counting (7.7) is indistinguishable from Bose–Einstein (W = 1).
The Planck spectral distribution is of course understood as the consequence
of BE statistics. Nevertheless it is useful to work out the way of seeing how
Planck’s statistical analysis can lead to the correct result. This calculation can
be found in the SuppMat Section 7.6.
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7.4 Bose–Einstein condensation

Let the energies of the first excited and the (lowest energy) ground states
be ε1 and ε0 = 0 so that they have the energy gap �ε = ε1. If the available
thermal energy is not much bigger than this energy gap kBT � �ε, it would
not surprise us to find many molecules in their ground state. On the other hand,
Bose–Einstein condensation (BEC) is the phenomenon that, at a temperature
below some critical value Tc, a macroscopic number of molecules would stay
in (“condense into”) the ground state, even though the available thermal energy
kBT is much bigger than the energy gap, kBT � �ε. What Einstein had shown
was that the chemical potential can be extremely small (|μ| � ε1) in the low-
temperature regime T < Tc. For example, liquid helium has an energy gap of
ε1 � 10−18 eV. But below a temperature of � O(1 K), i.e. a thermal energy
of � O

(
10−4 eV

)
, the chemical potential of helium13 13Helium exhibits superfluid behavior below

the critical temperature of 2.17 K. We can
estimate the size of its chemical potential by
the relation (7.25), −μ = kBT/N0, with the
approximation N0 � N because a significant
fraction of all molecules would have con-
densed into the ground state. We then obtain
a value −μ = (10−4 eV · K−1

)× (1 K)×
10−22 = 10−26 eV.

has such a small value
μ � −10−26 eV that the Bose–Einstein distribution (7.22) would imply

N1 = 1

e(ε1−0)/kBT − 1
� kBT

ε1
. (7.26)

Comparing this to the ground state occupation number given in (7.25), one
finds that most of the molecules would condense into the ground state,

N0

N1
= ε1

−μ � 1. (7.27)

One must bear in mind this is condensation in momentum space (rather than
the everyday condensation in configuration space).

Bose–Einstein condensation as a macroscopic quantum state That a mac-
roscopic number of molecules are in one quantum state would lead to quantum
mechanical behavior on the macroscopic scale. This was first pointed out in
1928 by Fritz London (1900–54). London suggested that superfluid helium
was an example of a Bose–Einstein condensate. His related work on super-
conductivity also decidedly influenced the later development of BCS theory in
which electron pairs (the Cooper pairs) form the Bose–Einstein condensate.14 14London later substantiated his original sug-

gestion by showing that the phase change
of superfluid helium had properties consist-
ent with a BEC transition (London 1938).
The BCS theory is named after its originat-
ors: John Bardeen, Leon Cooper, and Robert
Schrieffer.

7.4.1 Condensate occupancy calculated

To calculate the condensation temperature, below which a macroscopic frac-
tion of the particles are in the ground state, we must know how to add up
the occupancy for every state. Only then can we compare the occupancy in
the ground state with those in the excited states. In general the total particle
number N is given by (7.24) where the discrete sum can be replaced by integ-
ration using the density of states Z(ε). This replacement, while applicable for
the excited states, is not valid for the ground state, as Z(ε = 0) = 0. We will
simply separate out the ground state with its occupancy labeled N0:

N = N0 + Nex

= 1

e−μ/kBT − 1
+ 2√

π

(
2πm

h2

)3/2

V
∫ ∞

0

√
εdε

e(ε−μ)/kBT − 1
. (7.28)
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As we have already discussed, the chemical potential is extremely small in
the region T < Tc. Nevertheless, μ must be kept in N0 because ε0 = 0, while
setting μ = 0 in Nex,

N = −kBT

μ
+ 2√

π

(
2πm

h2

)3/2

V
∫ ∞

0

√
εdε

eε/kBT − 1
. (7.29)

Let us carry out the calculation for Nex with a change of integration variable
x = ε/kT:

Nex =
(

2√
π

∫ ∞

0

√
xdx

ex − 1

)(
2πmkBT

h2

)3/2

V = 2.612
V

vQ
(7.30)

where vQ =
(

h2

2πmkBT

)3/2
is the particle’s quantum volume.1515The quantum volume is the cube of the

quantum length vQ = l3Q with lQ =
h/(2πmkBT)1/2, also called the “de Broglie
thermal wavelength” because, except for
a O(1) factor of

√
π , it is the de Broglie

wavelength associated with the thermal
momentum p = (2mkBT)1/2.

Rewriting this in

terms of the particle’s physical volume v = V/N, we have

Nex

N
= 2.612

v

vQ
. (7.31)

In other words, the fraction of particles in the excited states is directly propor-
tional to how small a particle’s quantum volume has become with respect to its
physical volume.

7.4.2 The condensation temperature

Because of the absence of a significant number of molecules in the ground state
when T > Tc, we can define the condensation temperature Tc by Nex(Tc) ≡ N.
Namely, we have the relation

Nex = 2.612

(
2πmkBTc

h2

)3/2

V = N (7.32)

or

Tc = h2

2πmkB

(
N

2.612V

)2/3

. (7.33)

Furthermore, taking the ratio of Eq. (7.30) and Eq. (7.32), we have

Nex

N
=
(

T

Tc

)3/2

, (7.34)

which is plotted in Fig. 7.2.

Fig. 7.2 Fractional ground state as a function
of temperature.

Tc for noninteracting helium Let us use (7.33) to calculate the condensation
temperature for the He system: one mole N = NA = 6× 1023 of helium with
molar volume V = 27.6 cm3. This yields Tc(He) = 3.1 K, which is not too far
off from the experimental value of 2.17 K, considering that we have completely
ignored mutual interactions, which are rather complicated collisions involving
many particles.
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Behavior of the chemical potential when T ��� Tc

From (7.34) we can also see the behavior of the chemical potential

N = N0 + Nex = −kBT

μ
+ N

(
T

Tc

)3/2

or
kBT/N

μ
=
(

T

Tc

)3/2

− 1.

(7.35)
Thus

μ(T) =
kBT
N(

T
Tc

)3/2 − 1
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−kBT

N
for T → 0

−kBTc

N

2Tc

3δT
for T → (Tc − δT).

(7.36)

Namely, the chemical potential, which started out being extremely small in
magnitude at low temperature, suddenly increases at the condensation temper-
ature (as shown by the factor Tc/δT). It is this behavior that brings about the
phase transition at Tc.

Overlap of wavefunctions when T ��� Tc

Instead of μ, it is useful to have a more direct way to understand the mean-
ing of the condensation temperature. From Eq. (7.31) Nex/N = 2.6

(
a/lQ

)3
where a and lQ are the interatomic separation

(
v = a3

)
and the quantum

length
(
vQ = l3Q

)
, respectively. Thus at T = Tc when Nex = N, we have a � lQ.

Namely, the condensation temperature is the low temperature when the thermal
de Broglie wavelength ∼ 1/

√
T , hence the effective quantum size of atoms,

becomes so large that atomic wavefunctions begin to overlap. As the temper-
ature falls below Tc the overlap is enhanced, more particles condense into the
ground state, and N0 becomes ever increasing.

7.4.3 Laboratory observation of Bose–Einstein
condensation

The prediction of BEC is for noninteracting bosons. Thus a dilute gas is much
closer to theoretical considerations, rather than the dense helium case. The
helium density has the value(

N

V

)
He

= 6× 1023

27.6
cm−3 = 2× 1022 cm−3. (7.37)

In a modern experiment, using a laser and magnetic cooling techniques, exper-
imenters have achieved the confinement of O

(
104
)

atoms (e.g. rubidium 86) in
a volume V = 10−9 cm3, thus a density of(

N

V

)
gas

= 104

10−9
cm−3 = 1013 cm−3 (7.38)

which is a billion times smaller than the helium case. This implies a decrease
in condensation temperature, through (7.33),
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Tgas
c = mHe

mRb

[
(N/V)gas

(N/V)He

]2/3

THe
c

= 4

86

[
1013

1022

]2/3

THe
c � 10−7 K. (7.39)

Given this extremely low condensation temperature the experimental study
of BEC of a low-density gas is very difficult. One can use laser cooling and at
the same time trap the atoms in a magneto-optical trap. Further manipulation
of the trapped atoms by evaporation cooling enables experimentalists to reach
the critical temperature when the BEC takes place. The positions of the atoms
can be recorded using laser beams. In Fig. 7.3 we display the result of one such
experiment. With this technique, the signature of the BEC is the appearance of
a sharp peak. The atoms in the condensed phase are in the ground state (of
the momentum space) and expand only slowly once released from the trap.
The atoms in the excited states move relatively rapidly out of their steady state
positions.

D
en

si
ty

–400 0 400
Position (μm)

<0.5 μK

<0.5 μK

0.7 μK

1.2 μK

T = 1.2 μK

Fig. 7.3 Observation of BEC in a trapped
atomic gas with Tc = 1.7 µK when a cent-
ral peak appears representing the probabil-
ity |ψ |2. As the temperature is lowered, the
thermal cloud is depleted, and atoms accu-
mulate in the Bose condensate: the number
of particles on the wing-sides (excited state
particles) diminishes while the central peak
(ground state particles) rises. Reproduction of
Fig. 7 from Stenger et al. (1998).

The success of producing dilute-gas BEC in the laboratory setting at
Boulder, MIT, and elsewhere came about some 70 years after its first theor-
etical proposal by Einstein. The 2001 Nobel Prize for Physics was awarded to
Eric Cornell (1961– ), Wolfgang Ketterle (1957– ), and Carl Wieman (1951– )
for their experimental work in this area.

Fig. 7.4 Momentum change of a photon
bouncing off a wall.

7.5 SuppMat: Radiation pressure due to a gas
of photons

The pressure (P) is the force per unit area A and the force is the rate of
momentum change �p/�t:

P = force

area
= 1

�A�t
�p. (7.40)

We denote the photon momentum by p (not to be confused with the pressure
denoted by capital script P). A given photon with energy and momentum of
(ε, p) with ε = cp, colliding with the wall, imparts a momentum of �p = 2pz,
where pz is the photon momentum component in the direction perpendicular
to the wall (call it ẑ). Let n(q) be the photon density function—the number
of photons per unit spatial volume and per unit momentum space volume,
in the momentum interval (p, p+ dp). The total pressure is the sum of the
momenta that all the photons deposit onto the wall; we need to integrate
over the momentum and configuration spaces (see Fig. 7.4). The configuration
space is the volume of the parallelepiped with base area �A and perpendic-
ular height c�t cos θ , with θ being the angle between the photon momentum
and the normal to the area (hence, pz = p cos θ ). All photons in this volume
[c�t cos θ�A] would collide with the wall in the interval of �t. The sum of
(7.40) is then
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P = 1

�A�t

∫
n(p)�pd3p[c�t cos θ�A]

=
∫

gz>0
n(p) 2pzd

3p
[

c
pz

p

]
= 2

3

∫
pz>0

[cp]n(p) d3p. (7.41)

To reach the last equality on the RHS, we have used the fact that radiation
is isotropic p2

x = p2
y = p2

z and thus the momentum magnitude squared is p2 =
p2

x + p2
y + p2

z = 3p2
z . Furthermore, the density function n(p) depends only on

p = |p| so that the integrand must be an even function of p; we can extend the
integration to the full range of (−∞, +∞) and thus remove the factor of 2:

P = 1

3

∫ +∞

−∞
[cp]n(p) d3p = 1

3

∫ +∞

−∞
[ε]n(p) d3p = 1

3
u. (7.42)

Namely, the integral is the radiation density—the sum of all photon energies
(ε) per unit spatial volume—as n is the number per unit spatial and momentum
volumes.

7.6 SuppMat: Planck’s original analysis in view
of Bose–Einstein statistics

We have already explained how Planck’s distribution can be derived as the
μ = 0 case of the Bose–Einstein statistics (7.21). In the context of later devel-
opment, it is perhaps still useful to take a closer look at Planck’s original
statistical weight written down in Eq. (3.34),

WN = (P+ N)!
P!N! , (7.43)

to see how it leads at the correct result despite of its unorthodox analysis.
Let us recall that P is the total number of quanta in a system of N oscillat-
ors. Planck converts this WN into the entropy of the oscillator S = SN/N =(
kB ln WN

)
/N = kB ln W, in term of the statistical weight of a single oscillator

W = (WN)
−N . Planck does not perform any maximization of the entropy, sub-

ject to the energy constraint, but simply makes the substitution U = (P/N)ε
and, after a differentiation of ∂S/∂U = 1/T , obtains the distribution

U = ε

eε/kBT − 1
. (7.44)

We now wish to interpret Planck’s analysis in view of Bose–Einstein statistics.
Accord to Bose–Einstein statistics, one starts with the statistical weight

of (7.21),

WN =
∏

s

(ns + 1)!
ns! . (7.45)

For our purpose, we have the density of states (degeneracy) Zs = 1, and we
have changed the notation for the photon number from Ns to ns (so as not to
have it confused with the oscillator number discussed above). To avoid the
maximization of entropy (with Lagrangian multiplier, etc.), we simply impose
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the energy condition U = �snsεs in the form of U = 〈n〉ε, where 〈n〉 is the
average number of photons in a state having energy εs = ε = hν. With this
average value, the statistical weight of (7.45) is simplified to

WN =
[
(〈n〉 + 1)!
〈n〉!

]〈n〉
. (7.46)

Taking its logarithm and using 〈n〉 = U/ε, we have

S = kB ln W = kB(ln WN)/〈n〉
= kB[(〈n〉 + 1) ln(〈n〉 + 1)− 〈n〉 ln〈n〉]

= kB

[(
U

ε
+ 1

)
ln

(
U

ε
+ 1

)
− U

ε
ln

U

ε

]
,

which is just the entropy expression (3.40) obtained by Planck, leading to
Planck’s distribution of (7.44) or equivalently, the average photon number:

U

ε
= 〈n〉 = 1

eε/kBT − 1
. (7.47)

7.7 SuppMat: The role of particle
indistinguishability in Bose–Einstein
condensation

It will be illuminating to see how Bose–Einstein condensation follows from
the indistinguishability of particles.1616Here we follow Schroeder (2000, p. 321). To see such an effect, we shall contrast
two cases—in one all particles are somehow distinguishable, while in the
other case, they are not.

N distinguishable particles
We shall discuss this case using two different approaches.

The approach of considering one-particle systems separately This is the
most straightforward approach. The partition function

Z1 =
∑
ε

e−ε/kT (7.48)

is essentially the number of accessible single-particle states. Namely, because
higher energy states are exponentially suppressed, it counts all states with
energy on the order of kT. Each state is roughly equally probable, hence there
is about equal chance 1/Z1 for a particle to occupy any one of these states. This
situation is not changed when we consider the whole system of N (independ-
ent) particles. The ground state being one of these many states, the fraction of
particles in the ground state, when compared to the particles in all the excited
state, is negligible. There is no BEC.

The approach of considering all N particles as a system The above
approach, while straightforward in explaining the absence of BEC for distin-
guishable particles, does not really highlight the crucial role played by the
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particles’ distinguishability. Here is an alternative approach of considering
the N particles as a whole. For an excited state of this system with energy
U, the associated probability17 17Since all the probabilities discussed here

have a common partition function in their
denominator, we shall not bother to display it.

is W(U) = e−U/kT . While the ground state
U0 ≡ 0 has a probability of W(0) = 1, a typical excited state with U = NkT
has a probability of W(U) = e−N . Thus it appears that the ground state
probability is overwhelmingly large. This conclusion is incorrect because we
have not taken into account the fact that while an individual excited state
has small probability, there are an enormous number (ν) of such excited
states. This multiplicity ν can be calculated by remembering that each one
of the distinguishable particles can be in any one of these Z1 single-particle
states. Thus ν = (Z1)

N , or Nex = νe−N = (Z1/e)N , which is a large number
as long as Z1 > e. [Comment: While Z1 can be large, the likely situation is
still Z1 � N.] Hence we have the situation that vastly more particles are in the
excited state, confirming the above argument that there is no BEC.

N indistinguishable particles
The probability of an N-particle system being in each of the excited states is
still e−N . However, the number of excited states (of the system as a whole)
ν for the case of N indistinguishable particles is much less than that for
the distinguishable case. Now ν is the number of ways one can distribute N
indistinguishable particles among the various single-particle states (Z1):

ν =
(

N + Z1 − 1

N

)
= (N + Z1)!

N!Z1! � (N + Z1)
N+Z1

NN ZZ1
1

, (7.49)

where we have used Stirling’s approximation of X! � XX . For N � Z1 we have

ν � NN+Z1

NN ZZ1
1

=
(

N

Z1

)Z1

. (7.50)

While this is still fairly large, but the product νe−N � 1, and we expect that it is
now possible for a significant fraction of the particles to be in the ground state.
This indicates why BEC becomes possible in a system of identical bosons.




