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• An introduction to the gauge theory is presented in this chapter. We start
with a review of gauge invariance in electromagnetism. That is followed
by a discussion of gauge symmetry in quantum mechanics, showing that
the gauge transformation must involve a spacetime-dependent change
of the phase of a charged particle’s wavefunction (i.e. field). This can
be viewed as a transformation in the (internal) charge space by changing
the particle field’s label.

• If we reverse the above procedure, instead of going from the change in
EM potential then to the wavefunction transformation, we start first with
the phase transformation in quantum mechanics. This initial step may
be understood as changing a spacetime-independent symmetry of the
quantum mechanics equation to a local symmetry—a procedure called
“gauging a symmetry”. EM potentials are viewed then as compensating
factors needed to implement such a local symmetry—the presence of
potentials (with appropriate transformation properties as gauge fields)
is required so that the physics equations are covariant under such local
symmetry transformations.

• We demonstrate how Maxwell’s electrodynamics can be “derived” from
the requirement of a local U(1) symmetry in the internal charge space.
In this way we understand the essence of Maxwell’s theory as special
relativity and gauge invariance. Much like the elevating by Einstein
of the equality of gravitational and inertial masses to the equivalence
principle of gravitation and inertia, we call the approach of finding
dynamics by promoting a global symmetry to a local symmetry, the
gauge principle. Using the gauge principle, we can then generalize this
approach to electromagnetism to the investigation of other fundamental
interactions.

• In 1919 Hermann Weyl first attempted to derive electromagnetism
from a local scale invariance. He was inspired by the success of gen-
eral relativity, Einstein’s new theory of gravity formulated as a local
spacetime symmetry. Weyl was ultimately successful in this endeavor;
this came after the advent of modern quantum mechanics (QM) in
1926 when Vladimir Fock discovered that QM wave equations with
electromagnetic coupling are invariant under local phase transforma-
tions. It was pointed out that Weyl’s scale change in spacetime should
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be understood as a spacetime-dependent U(1) phase change in the
charge space. However, Weyl’s original terminology of gauge (i.e.
scale) transformation has been retained in common usage.

• A U(1) phase change, being commutative, is an abelian transformation.
This was extended by C. N. Yang and R. L. Mills to the case of non-
communtative symmetries. The resultant equations are nonlinear—the
gauge fields themselves are charged (unlike the abelian case of the elec-
tromagnetic field being electrically neutral, but like gravity where the
gravitational field is itself a source of gravity). This richness is one
of the key ingredients that allowed nonabelian gauge theories (also
called Yang–Mills theories) to be the framework for modern particle
theory.

• We describe briefly the steps of going from quantum electrodynamics
to the formulation of the new theory of fundamental strong interaction,
quantum chromodynamics. The gauge theory of electroweak interac-
tions has a more complicated structure because its local symmetry
must be spontaneously broken (via the Higgs mechanism) to account
for the short-range nature of weak interactions. In sum, the success-
ful formulation of the Standard Model shows that fundamental particle
interactions are all gauge interactions. This is a mighty generalization
of Einstein’s symmetry principle, from spacetime to internal charge
spaces. It allowed us first to have a deeper understanding of electromag-
netism, which was crucial to our finding new theories for the strong and
weak interactions.

• Abelian gauge symmetry is discussed in detail (Sections 16.1–16.3)—
up to the point of seeing how Maxwell’s equations follow from gauge
symmetry. Quantum field theories of QED, QCD, and the Standard
Model are described qualitatively in the subsequent sections.

16.1 Einstein and the symmetry principle

One of Einstein’s greatest legacies in physics has been his bringing about of our
realization of the importance of symmetry in physics. His theory of relativity
was built on the foundation of invariance principles. Before Einstein, sym-
metries were generally regarded as mathematical curiosities of great value
to crystallographers, but hardly worthy to be included among the funda-
mental laws of physics. We now understand that a symmetry principle is not
only an organizational device, but also a method to discover new dynamics.
Einstein’s relativity theories based on coordinate symmetries have given us a
deeper appreciation of the structure of physics. His formulation of the sym-
metry among inertial frames of reference showed us the true meaning of the
Lorentz transformation; this allowed us to deduce all the (special) relativistic
effects in a compact way and to discover new equations for other branches
of physics (relativistic mechanics, etc.) so they could be compatible with the
symmetry principle of relativity. The extension of this principle from a special
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class of coordinates to all reference frames, his creation of general relativity,
showed us the way of using spacetime-dependent (local) symmetry to generate
dynamics—in the case of general relativity (GR), its gravitational interaction.

Ever since Einstein, a symmetry principle has been an essential guiding light
in our effort to make new discoveries in theoretical physics. The topic of sym-
metry in physics is a rich one, especially in quantum physics. In this chapter
we shall concentrate1 1We omit other important topics such as

the relation between symmetry and conser-
vation laws and degeneracy in the particle
spectrum, and discrete symmetries (parity
and time reversal invariance, etc.) and their
violation, etc.

on the gauge symmetry. It is one of the most import-
ant principles in fundamental physics. Local symmetry in some “internal” (or
“charge”) space has been the key to our discoveries of new basic physics, lead-
ing to the formulation of the Standard Model of particle physics. Starting from
the work of Hermann Weyl (inspired by Einstein’s GR discovery), we gradually
learnt that electromagnetism could be understood as arising from a spacetime-
dependent local symmetry (gauge symmetry) in the charge space. Namely, we
discovered another profound lesson contained in Maxwell’s equations: Besides
teaching us the proper relation among inertial frames of reference (as given by
the Lorentz transformation), these equations have such a structure as showing
that electromagnetism is a gauge interaction. This simple U(1) local symmetry
associated with electromagnetism was later generalized to the noncommuting
(Yang–Mills) gauge symmetry, which is a key element in the foundations of
modern particle physics.

16.2 Gauge invariance in classical
electromagnetism

We present in this chapter a pedagogical introduction to gauge theory. Since
most students have their first exposure to gauge invariance in classical elec-
trodynamics, this is where we will start—with a review of electromagnetic
(EM) potentials and their gauge transformation. We then discuss gauge trans-
formation in quantum mechanics. Because a quantum mechanical description
is through a Hamiltonian (or through other energy quantities such as a
Lagrangian), which can include a system’s coupling to electromagnetism only
through EM potentials, gauge symmetry plays an integral role in the QM
description.

Classical electromagnetism2 2Here we repeat the essential elements of
Maxwell’s equations, first in familiar 3D vec-
tor notation (as already discussed in Sections
A.1 and 3.1 as well as in Chapters 9 and
10) and then in the 4D spacetime formalism
(in Section 16.4 as we have already done in
Section 11.2.3).

Any field theoretical description of the inter-
action between two particles involves a “two-step description”. Call one the
“source particle”, giving rise to a field everywhere, which in turn acts locally on
the “test particle”. This two-step description can be represented schematically
as follows:

Source particle
field eqns−→ Field

eqns of motion−→ Test particle

The “field equations” tell us how a source particle gives rise to the field every-
where. For the case of electromagnetism, they are Maxwell’s equations. The
“equations of motion” tell us the effects of the field on the motion of a test
particle: how does the field cause the particle to accelerate. For the case of
electromagnetism, they form the Lorentz force law.
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• Equations of motion (Lorentz force law):

F = e

(
E+ 1

c
v× B

)
(16.1)

we note that this equation has a “double duty”: It gives the definition
of the electric and magnetic fields as well as acting as the equation of
motion for a test charge placed in the electromagnetic field.

• Field equations (Maxwell equations):

– Inhomogeneous Maxwell equations:

∇ · E = ρ Gauss’s law (16.2)

∇ × B− 1

c

∂E
∂t
= 1

c
j Ampere’s law (16.3)

– Homogeneous Maxwell equations:

∇ · B = 0 Gauss’s law for magnetism (16.4)

∇ × E+ 1

c

∂B
∂t
= 0 Faraday’s law. (16.5)

16.2.1 Electromagnetic potentials and gauge
transformation

It is easy to solve the homogeneous Maxwell equations (16.4) and (16.5) by
noting that the divergence of any curl, as well as the curl of any gradient, must
vanish:33See the discussion leading up to Eq. (A.20)

in Appendix A1.
Eq. (16.4) can be solved if the B field is the curl of a vector potential A:

B = ∇ × A. (16.6)

Substituting this into (16.5), the vanishing curl ∇× (E+ 1
c
∂A
∂t

) = 0 implies
that the term in parentheses can be written as the gradient of a scalar potential
�:

E = −∇�− 1

c

∂A
∂t

. (16.7)

Thus we can replace (E, B) fields by scalar and vector potentials (�, A) through
the relations (16.6) and (16.7). Substituting these expressions into the inhomo-
geneous Maxwell equations of (16.2) and (16.3), we obtain the dynamics of
the potentials once the source distribution (ρ, j) is given. In other words, one
can regard the homogeneous parts of Maxwell’s equations as the “boundary
conditions” telling us that fields can be expressed in terms of the potentials,
and the true dynamics is contained in the inhomogeneous Maxwell equations.

Gauge invariance in classical electromagnetism
As outlined above we can simplify the description of the EM interactions by
using four components of potentials (�, A) instead of six components of (E, B).
However this replacement of (E, B) by (�, A) is not unique as the fields (E, B),
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hence also Maxwells equations, are invariant under the following change of
potentials (called a gauge transformation):

� −→ �′ = �− 1

c

∂χ

∂t
(16.8)

A −→ A′ = A+∇χ (16.9)

where χ = χ (t, r) (called a gauge function) is an arbitrary scalar function of
position and time. This invariance statement (gauge symmetry) can be easily
verified:

B = ∇ × A −→ B′= ∇ × A′ = ∇ × A+∇×(∇χ ) = ∇ × A = B

because the curl of a gradient must vanish. Similarly,

E = −∇�− 1

c

∂A
∂t

−→ E′= −∇�′ − 1

c

∂A′

∂t

= −∇�+ 1

c

∂∇χ
∂t

− 1

c

∂A
∂t
− 1

c

∂∇χ
∂t

= −∇�− 1

c

∂A
∂t
= E.

Gauge symmetry in classical electromagnetism does not seem to be very
profound. It is merely the freedom to choose potentials (Coulomb gauge, radi-
ation gauge, Lorentz gauge, etc.) to simply calculations. One can in principle
avoid using potentials and stick with the (E, B) fields throughout, with no arbit-
rariness. On the other hand, the situation in quantum mechanics is different.
As we shall see, the QM description of the electromagnetic interaction must
necessarily involve potentials. Gauge symmetry must be taken into account in
the QM description. As a consequence, it acquires a deeper significance.

16.2.2 Hamiltonian of a charged particle
in an electromagnetic field

Before moving on to a discussion of gauge symmetry in QM, we undertake
an exercise in classical EM of writing the Lorentz force law (16.1) in terms of
the EM potentials. This form of the force law will be needed in the subsequent
QM description of a charged particle in an EM field.

Lorentz force in terms of potentials
The ith component of the force law (16.1) may be written out in terms of the
potentials via (16.7) and (16.6):

m
dvi

dt
= −e∇i�− e

c

∂Ai

∂t
+ e

c
εijkvjεklm∇lAm. (16.10)

For the last term, we shall use the identity εijkεklm = δilδjm − δimδjl:

e

c
(v× B)i = e

c
εijkvjεklm∇lAm = e

c
[v · (∇iA)− (v · ∇)Ai] . (16.11)

The above expressions involve the differentiation of the vector potential A(r, t)
which depends on the time variables in two ways: through its explicit depend-
ence on t, as well as implicitly through its dependence on position r = r(t).
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(The particle is moving!) Thus its full time derivative has a more complicated
structure:

dAi

dt
= ∂Ai

∂t
+∇jAi

drj

dt
= ∂Ai

∂t
+ (v ·∇)Ai. (16.12)

The two factors on the RHS of this equation are just those that appear on
the RHS’s of Eqs. (16.10) and (16.11); thus they can be combined into a
− e

c
dAi
dt term:

m
dvi

dt
= −e∇i�− e

c

dAi

dt
+ e

c
v · (∇iA) (16.13)

which is then the expression of the Lorentz force in terms of (�, A) that we
shall use in the discussion below, cf. Eq. (16.19).

Hamiltonian of a charged particle in an Electromagnetic field
Recall in QM that we do not use the concept of force directly in our description
of particle interactions. Instead, the dynamics is governed by the Schrödinger
equation,44Here we start with elementary nonrelativ-

istic quantum theory. However, all the results
can be extended in a straightforward manner
to relativistic Klein–Gordon and Dirac equa-
tions. For these cases, the simplest approach
is (instead of the Hamiltonian) through the
Lagrangian density as discussed in Section
16.4.2.

which involves the Hamiltonian of the system. How do we introduce
EM interactions in the Hamiltonian formalism? What is the Hamiltonian that
represents the Lorentz force?

Recall that the Hamiltonian H(r, p) is a function of the position coordinate
r and the canonical momentum p, and the classical equations of motion are
Hamilton’s equations

dri

dt
= ∂H

∂pi
,

dpi

dt
= −∂H

∂ri
. (16.14)

One can easily check that for H = p2

2m + V(r), the first equation is just p = mv
(i.e. the canonical momentum is the same as the kinematic momentum) and the
second, the usual F = ma. Now we claim that the Hamiltonian description of
a charged particle (with mass m and charge e) in an EM field (represented by
the potentials �, A), is given by

H =
(

p− e

c
A
)2

2m
+ e�. (16.15)

To check this claim, let us work out the two Hamilton’s equations:

1. The first equation in (16.14): � being a function of r only,

vi ≡ dri

dt
= ∂

∂pi

⎡
⎢⎣
(

p− e

c
A
)2

2m
+ e�

⎤
⎥⎦ = 1

m

(
pi − e

c
Ai

)
.

Thus the canonical momentum (p) differs from the kinematic momentum
(mv) by a factor related to the charge and vector potential,

p = mv+ e

c
A, (16.16)

and the first term in the Hamiltonian (16.15) remains the kinetic energy
of 1

2 mv2 (the second one, the electric potential energy).
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2. We expect the second equation in (16.14) to be the Lorentz force law.
Let us verify this. Using the relation (16.16) between canonical and
kinematic momenta, we have the LHS as

dpi

dt
= m

dvi

dt
+ e

c

dAi

dt
. (16.17)

The RHS may be written as

−∂H

∂ri
= −∇i

⎡
⎢⎣
(

pj − e

c
Aj

) (
pj − e

c
Aj

)
2m

+ e�

⎤
⎥⎦

=
(

pj − e

c
Aj

)
m

e

c
∇iAj − e∇i�

= vj
e

c
∇iAj − e∇i� (16.18)

where we have again used the relation (16.16). Equating (16.17) and
(16.18) as in (16.14), we have

m
dvi

dt
+ e

c

dAi

dt
= e

c
v· (∇iA)− e∇i�, (16.19)

which we recognize as the expression (16.13) of the Lorentz force in
terms of the potentials, verifying our claim that Eq. (16.15) is the correct
Hamiltonian for the Lorentz force law.

We have demonstrated that the Hamiltonian for a charged particle moving in
an electromagnetic field can be compactly written in terms of the EM potentials
(�, A) as (16.15). Perhaps the more important point is that there is no simple
way to write the Hamiltonian, hence the QM description, in terms of the field
strength (E, B) directly. As a consequence, we must study the invariance of the
relevant QM equations under gauge transformation.

16.3 Gauge symmetry in quantum mechanics

Before launching into the study of gauge symmetry in QM, we shall take
another look at the Hamiltonian (16.15) for a charged particle in the presence
of an EM field. This prepares us for a new understanding of the theoretical
significance of EM potentials (�, A).

16.3.1 The minimal substitution rule

Given the Hamiltonian (16.15), the Schrödinger equation H� = ih̄∂t�, with
the coordinate space representation of the canonical momentum p =̇ − ih̄∇,
can be written out for a charged particle in an electromagnetic field as⎡

⎢⎢⎢⎣
(

h̄

i
∇ − e

c
A
)2

2m
+ e�

⎤
⎥⎥⎥⎦� = ih̄

∂�

∂t
. (16.20)
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After a slight rearrangement of terms, it can be written as

− h̄2

2m

(
∇ − ie

h̄c
A
)2

� = ih̄

(
∂t + ie

h̄
�

)
�. (16.21)

When (16.21) is compared to the Schrödinger equation for a free particle,

− h̄2

2m
∇2� = ih̄∂t�, (16.22)

we see that the EM interaction (also referred to as the “EM coupling”) can be
introduced via the following replacement:

∇ −→
(

∇ − ie

h̄c
A
)
≡ D and ∂t −→

(
∂t + ie

h̄
�

)
≡ Dt. (16.23)

This scheme of introducing the EM coupling is called the minimal substitution
rule.55This is “minimal”, because of the absence of

other possible, but more complicated, coup-
lings, e.g. those involving the spin operator
and magnetic field σ · B, etc.

This procedure follows from the Hamiltonian (16.15) and is thus equival-
ent to the assumption of the Lorentz force law. While the procedure is simple,
one is naturally curious for a deeper understanding: Is there a natural justific-
ation for this minimal coupling scheme? Namely, why does the EM coupling
have the structure that it does?

Incidentally, the combinations (Dt, D) of ordinary derivatives with EM
potentials as defined in (16.23) are called covariant derivatives. As we shall
discuss below they have the sane geometrical and physical significance as the
covariant derivatives we encountered in our study of general relativity.

16.3.2 The gauge transformation of wavefunctions

Since QM must necessarily involve the EM potentials, one wonders how gauge
invariance is implemented here. A direct inspection of the effects of the gauge
transformations (�, A)−→ (

�′, A′
)

would show that the Schrödinger equation
(16.21) is not invariant under the transformation (16.8) and (16.9):

LHS −→ − h̄2

2m

(
∇ − ie

h̄c
A′
)2

� = − h̄2

2m

⎛
⎝∇ − ie

h̄c
A− ie

h̄c
∇χ︸ ︷︷ ︸
⎞
⎠2

�,

RHS −→ ih̄

(
∂t + ie

h̄
�′
)
� = ih̄

⎛
⎝∂t + ie

h̄
�− ie

h̄c
∂tχ︸ ︷︷ ︸
⎞
⎠�. (16.24)

Namely, there are these extra terms . . .︸︷︷︸ involving the gauge function χ that

do not match on two sides of the transformed equation; hence gauge invari-
ance is lost under (16.8) and (16.9). However, as observed by Fock (1926),
the invariance could be obtained if we supplement the transformations of
(16.8) and (16.9) by an appropriate spacetime-dependent phase change of the
wavefunction �(r, t),

�(r, t) −→ � ′(r, t) = exp

[
ie

h̄c
χ (r, t)

]
�(r, t), (16.25)
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so that the above-mentioned extra terms can be cancelled. The function χ in
the exponent is the same gauge function that appears in (16.8) and (16.9).
Let us see how the various terms in the Schrödinger equation (16.21) change
under this combined transformation (16.8), (16.9), and (16.25). First consider
the RHS:(
∂t + ie

h̄
�

)
� −→

(
∂t + ie

h̄
�′
)
� ′ =

(
∂t + ie

h̄
�− ie

h̄c
∂tχ

)
exp

(
ie

h̄c
χ

)
�.

When the time derivative ∂t acts on the product
[

exp
(

ie
h̄cχ
)
�(r, t)

]
, two

terms result: exp
(

ie
h̄cχ
)
∂t�(r, t)+ ( ie

h̄c∂tχ
)

exp
(

ie
h̄cχ
)
�(r, t), thus the effect of

“pulling the phase factor exp
(

ie
h̄cχ
)

to the left of the ∂t operator” will result in
another extra term which just cancels the unwanted term in (16.24):(

∂t + ie

h̄
�

)
� −→ exp

(
ie

h̄c
χ

)(
∂t + ie

h̄
�− ie

h̄c
∂tχ + ie

h̄c
∂tχ

)
�

= exp

(
ie

h̄c
χ

)(
∂t + ie

h̄
�

)
�. (16.26)

Similarly we have(
∇ − ie

h̄c
A
)2

� −→ exp

(
ie

h̄c
χ

)(
∇ − ie

h̄c
A
)2

�. (16.27)

As a consequence, the transformed equation

− h̄2

2m

(
∇ − ie

h̄c
A′
)2

� ′ = ih̄

(
∂t + ie

h̄
�′
)
� ′ (16.28)

becomes

exp

(
ie

h̄c
χ

)(
∇ − ie

h̄c
A
)2

� = exp

(
ie

h̄c
χ

)(
∂t + ie

h̄
�

)
�.

The same exponential factor exp
(

ie
h̄cχ
)

appears on both sides of the transformed
Schrödinger equation; they cancel, showing that the validity the transformed
equation (16.28) follows from the original equation (16.21), and we have gauge
invariance restored. From now on, whenever we refer to gauge transforma-
tion it is understood to be the combined transformations of (16.8), (16.9), and
(16.25).

16.3.3 The gauge principle

We will now turn the argument around and regard the transformation (16.25)
of the wavefunction as being more fundamental, and from this we can “derive”
the gauge transformation of the EM potentials, (16.8) and (16.9). The rationale
for doing it this way will become clear as we proceed. Our wish is to generalize
gauge symmetry beyond electromagnetism, and to use this symmetry as a tool
to discover new physics. In such an endeavor it is much easier to start with the
generalization of the gauge transformation of the wavefunction rather than that
for the potentials. More importantly, as we shall see, this reversed procedure
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will also explain why the electromagnetic couplings (16.23) have the structure
that they have.

This is similar to what Einstein did when he elevated the empirically
observed equality between gravitational and inertial masses to the principle
of equivalence between gravitation and inertia. With this focus, he then
applied EP to the physics beyond mechanics (cf. Sections 12.2 and 12.3).
In the same way, once the approach is formulated as the gauge principle for
electromagnetism, we can then apply it to the physics beyond, to strong and
weak interactions, etc.

The Schrödinger equation for a free charged particle
has global U(1) symmetry
It is easier to start the generalization process by starting with the gauge
transformation of the wavefunction because we can associate this part of the
gauge transformation to a more familiar symmetry transformation. Consider
the Schrödinger equation for a charged free particle,

− h̄2

2m
∇2� = ih̄∂t�. (16.29)

This equation is unchanged under the global phase change:

�(r, t) −→ � ′(r, t) = exp

(
ie

h̄c
χ

)
�(r, t). (16.30)

In contrast to the transformation as given in (16.25), here the phase factor
is a constant χ �= χ (r, t). Namely, we make the same phase change for the
wavefunction at all space-time points! This simple phase change is a “unitary
transformation in one dimension”;66The transformation U = eiχ is “unitary”

because it satisfies the condition U†U = 1; it
is in one dimensional because it is specified
by one parameter.

hence called a “global U(1) transforma-
tion”. Clearly Eq. (16.29) is invariant, as every term acquires the same phase
that can be cancelled out, and this theory possesses global U(1) symmetry. This
symmetry has the associated electric charge conservation law, as expressed by
the continuity equation

∂tρe +∇ · je = 0 (16.31)

with ρe = |�|2 and je = −ih̄
2m

(
�∗∇� −�∇�∗). We leave it as an elementary

QM exercise to prove that this continuity equation follows from the free
Schrödinger equation (16.29).

Gauging the symmetry
One may be dissatisfied with this global feature of the transformation: Why
should the wavefunctions everywhere all undergo the same phase change?
A more desirable form of symmetry would require the theory to be invari-
ant under a local transformation. Namely, we replace the phase factor in the
transformation (16.30) by a spacetime-dependent function

[χ = constant] −→ [χ = χ (r, t)], (16.32)



16.3 Gauge symmetry in quantum mechanics 265

just as in (16.25). That is, we want the freedom of choosing the phase of the
charge’s wavefunction locally: a different one at each spacetime point.

Now the Schrödinger equation (16.29) is not invariant under such a local
transformation as the derivative terms would bring down extra terms (because
of the spacetime-dependent phase) that cannot be canceled, indicating that the
equation is no longer symmetric. We can overcome this difficulty by repla-
cing ordinary derivatives (∂t, ∇) by covariant derivatives (Dt, D) as defined
in (16.23). They have the desired property that covariant (“change in the
same way”) derivatives of the wavefunction transform in the same way as the
wavefunction itself. Namely, just as � ′ = exp

(
ie
h̄cχ
)
�, we have

(Dt�)
′ = exp

(
ie

h̄c
χ

)
(Dt�) (16.33)

and similarly,

(D�)′ = exp

(
ie

h̄c
χ

)
(D�) and also

(
D2�

)′ = exp

(
ie

h̄c
χ

) (
D2�

)
. (16.34)

This replacement of derivatives

(∂t, ∇) −→ (Dt, D) (16.35)

calls to mind the principle of general covariance when going from special
relativity to general relativity as discussed in Section 13.4. Similar to the situ-
ation here, when proceeding from SR to GR we go from a global symmetry
to a local symmetry. This replacement (16.35) turns the Schrödinger equation
(16.29) into

− h̄2

2m
D2� = ih̄Dt�. (16.36)

Under the gauge transformations of (16.8), (16.9), and (16.25), we have

− h̄2

2m

(
D2�

)′ = ih̄(Dt�)′. (16.37)

The invariance of the equation can be checked because, through the relations
in (16.33) and (16.34), it is

− h̄2

2m

[
exp

(
ie

h̄c
χ

)] (
D2�

) = ih̄

[
exp

(
ie

h̄c
χ

)]
(Dt�) . (16.38)

With the exponential factors [. . .] canceled, this is just the original equation
(16.36). This completes the proof of the equation’s invariance7 7Properly speaking we should say “covari-

ance of the equation”, as the terms in an
equation are not invariant, but they trans-
form “in the same way” so that their rela-
tion is unchanged, and the same equation is
obtained for the transformed quantitites.

under such a
local transformation.

The covariant derivatives (16.23) are constructed by an artful combination
of the ordinary derivative with a set of newly introduced “compensating fields”
(�, A) which themselves transform in such a way to compensate, to can-
cel, the unwanted extra factors that spoil the invariance. The replacement of
ordinary derivatives by covariant derivatives as in (16.35) justifies the “prin-
ciple of minimal substitution”, used to introduce the EM coupling as done in
(16.23). Equation (16.36) is just the Schrödinger equation (16.21) for a charged
particle in an EM field that we discussed earlier. Thus we can understand this
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coupling scheme as resulting from requiring the theory to have a local U(1)
symmetry in the charge space (i.e. with respect to a change of the wavefunc-
tion phase associated with the particle’s charge). The general practice is that
such local symmetry is called gauge symmetry and the process of turning a
global symmetry into a local one as in (16.32) has come to be called “gauging
a symmetry”.

One can then understand the “origin” of the electromagnetic potentials
(�, A) as the gauge fields88From now on we shall often refer to (�, A)

as “fields”, rather than “potentials”, and the
equations they satisfy as field equations. This
is compatible with the general practice in
physics of calling any function of space and
time “field”.

required to implement such a gauge symmetry.
This procedure of understanding the origins of some dynamics (e.g. electro-
magnetism) through the process of turning a global symmetry into a local one
is now called the gauge principle.

We would like to emphasize the similarity of ‘gauging a symmetry’ and
‘turning the global Lorentz symmetry in special relativity into the local
coordinate symmetry of general relativity’. In both cases, we need to replace
the usual derivatives by covariant derivatives. In the case of gauge theory, this
introduces the gauge field; in the case of relativity this inserts a gravitational
field intensity (in the form of Christoffel symbols) into the theory.

16.4 Electromagnetism as a gauge interaction

The above discussion has allowed us to have a better understanding of the EM
coupling as displayed in the Hamiltonian of (16.15), which is equivalent to
the Lorentz force law. We will now show that gauge symmetry, together with
special relativity, allows us to “derive” the electromagnetic field equations, the
Maxwell equations. For this purpose we need a language that will simplify
the expression of relativistic invariance. This is provided by Minkowski’s four-
dimensional spacetime formalism (cf. Chapter 11). We first provide a rapid
review of this subject. Not only will this allow us to understand Maxwell’s
equations, it will also provide us, in a simple way, to infer the pattern of the
± signs and factors of c that have appeared in Eqs. (16.6)–(16.9), which were
written in non relativistic notation.

16.4.1 The 4D spacetime formalism recalled

Gauging the U(1) symmetry requires us to introduce the potentials (�, A)
and thus the existence of electromagnetism. As we shall demonstrate, the
requirements of gauge symmetry and Lorentz invariance (special relativity)
can basically lead us to Maxwell’s equations. For this we shall adopt the lan-
guage of 4-vectors and 4-tensors in 4D Minkowski spacetime (as discussed in
Chapter 11) so as to make it simpler to implement the condition of Lorentz
symmetry.

The principal message of special relativity is that the arena for physics
events is 4D Minkowski spacetime, with spatial and temporal coordinates
being treated on an equal footing (cf. Section 11.3). In this 4D space, a position
vector has four components xμ with index μ = 0, 1, 2, 3.

xμ = (x0, x1, x2, x3
) = (ct, x). (16.39)



16.4 Electromagnetism as a gauge interaction 267

Noting that the contravariant and covariant tensor components are related, as
shown in (11.19), by the Minkowski metric ημν = ημν = diag(−1, 1, 1, 1), we
list some of the 4-position and 4-derivatives:

4D del operator ∂μ =
(

1

c
∂t, ∇

)
and ∂μ =

(
−1

c
∂t, ∇

)
(16.40)

momentum 4-vector pμ =
(

E

c
, p
)

with pμpμ = −E2

c2
+ p2 = −m2c2.

(16.41)

Maxwell’s equations
The six components of (E, B) are taken to be the elements of a 4× 4 antisym-
metric matrix: the “EM field tensor”, Fμν = −Fνμ as displayed in Eq. (11.34).
The inhomogeneous Maxwell equations (16.2)–(16.3) can then be written
compactly as

∂μFμν = −1

c
jν Gauss + Ampere (inhomogeneous Maxwell) (16.42)

where jμ ≡ (cρ, j) is the “4-current density”, and the homogeneous (16.4)–
(16.5) as

∂μF̃μν = 0 Faraday + mag-Gauss (homogeneous Maxwell) (16.43)

where F̃μν = − 1
2ε

μνλρFλρ is the dual field tensor.9 9The duality transformation (9.41) discussed
in Section 9.5.1 corresponds to Fμν → F̃μν .

Electromagnetic potentials
It is easy to see that, with the “4-potential” being Aμ = (�, A), namely,
� = A0 = −A0, the relation between potentials and the field tensor, (16.6) and
(16.7), can be summarized as (Fμν as the 4-curl of Aμ)

Fμν = ∂μAν − ∂νAμ, (16.44)

while the gauge transformations (16.8) and (16.9) can be compactly written in
the Minkowski notation as

Aμ−→A′μ = Aμ + ∂μχ . (16.45)

The electromagnetic field strength tensor Fμν , with components of (E, B),
being related to the potentials Aμ as in (16.44), is clearly unchanged10 10F′μν = ∂μA′ν − ∂νA′μ =

(
∂μAν − ∂νAμ

)+(
∂μ∂νχ−∂ν∂μχ

)=Fμν because ∂μ∂ν=∂ν∂μ.
under

this transformation (16.45).
Such a notation also simplifies the steps when showing that (16.44) solves

the homogeneous Maxwell equation (16.43):

∂μF̃μν = 1

2
εμνλρ∂

μFλρ = 1

2
εμνλρ∂

μ
(
∂λAρ − ∂ρAλ

) = εμνλρ∂
μ∂λAρ = 0.

The two RHS terms are combined when the dummy indices λ and ρ are
relabeled. The final result vanishes because the indices μλ are antisymmet-
ric in 4D Levi-Civita symbols ενμλρ but symmetric in the double derivative
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∂μ∂λ. When the relation (16.44) is plugged into the inhomogeneous Maxwell
equation (16.42), we have

∂μ
(
∂μAν − ∂νAμ

) = �Aν − ∂ν
(
∂μAμ

) = −1

c
jν

which, after imposing the Lorentz gauge condition ∂μAμ = 0, reduces to the
simple wave equation �Aν = − 1

c jν that we displayed in Section 3.1.
Similarly, the covariant derivatives Dt and D defined in (16.23) can be

combined into a “4-covariant derivative” as Dμ =
(

1
c Dt, D

)
so that

Dμ ≡
(
∂μ − ie

h̄c
Aμ

)
, (16.46)

and the minimal substitution rule is simply the replacement of ∂μ −→ Dμ.
We also take note of a useful relation between the commutator of covariant

derivatives and the field strength tensor [cf. Eq. (14.17)]

[
Dμ, Dν

] = − ie

h̄c
Fμν . (16.47)

This operator equation is understood that each term is an operator that
acts, from the left, on some spacetime-dependent test function (such as a
wavefunction). This can be verified by explicit calculation:[

Dμ, Dν

]
ψ

=
(
∂μ − ie

h̄c
Aμ

)(
∂ν − ie

h̄c
Aν

)
ψ −

(
∂ν − ie

h̄c
Aν

)(
∂μ − ie

h̄c
gAμ

)
ψ

= − ie

h̄c

{
∂μ (Aνψ)+ Aμ (∂νψ)− ∂ν

(
Aμψ

)− Aν

(
∂μψ

)}
(16.48)

= − ie

h̄c

(
∂μAν − ∂νAμ

)
ψ = − ie

h̄c
Fμνψ .

The relevance of this relation in a generalized gauge symmetry will be
discussed below—see the displayed equation (16.68).

16.4.2 The Maxwell Lagrangian density

We now add further detail to the statement: “the electromagnetic interaction is
a gauge interaction”, or equivalently, “electrodynamics is a gauge theory”. So
far we have concentrated on the “equation of motion” part of the field descrip-
tion (the Lorentz force law). Now we discuss the “field equation” part. In the
case of electromagnetism, it is Maxwell’s equation. A field can be viewed as
a system having an infinite number of degrees freedom with its generalized
coordinate being the field itself q = φ(x), where φ(x) is some generic field. For
such a continuum system, the field equation, as discussed in Section A.5.2, is
the Euler–Lagrange equation (A.64) written in terms of the Lagrangian density
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L (with a Lagrangian L = ∫ d3xL and an action S = ∫ d4xL(x)) which is a
function of the field and its derivatives L = L(φ, ∂μφ

)
:

∂μ
∂L

∂
(
∂μφ

) − ∂L
∂φ

= 0. (16.49)

Knowledge of the (Lorentz invariant) Lagrangian density L is equivalent to
knowing the (Lorentz covariant) field equation. Thus, knowledge of Maxwell’s
Lagrangian density:

L(x) = −1

4
FμνFμν + 1

c
jνAν (16.50)

is tantamount to knowing Maxwell’s field equations. The Euler–Lagrange
equation for the Aμ(x) field is [namely, Eq. (16.49) with φ(x) = Aν(x)]:

∂μ
∂L

∂
(
∂μAν

) − ∂L
∂Aν

= 0, (16.51)

which is just the familiar Maxwell equation (16.42), as we have

∂L
∂Aν

= 1

c
jν , (16.52)

∂L
∂
(
∂μAν

) = ∂

∂
(
∂μAν

) (−1

4

(
∂αAβ − ∂βAα

)2)

= ∂

∂
(
∂μAν

) (−1

2
∂αAβ

(
∂αAβ − ∂βAα

))

= −Fμν . (16.53)

16.4.3 Maxwell equations from gauge and Lorentz
symmetries

From the above discussion, we see that a derivation of Maxwell’s Lagrangian
density (16.50) is tantamount to a derivation of Maxwell’s equations (16.42)
themselves. Gauging a symmetry requires the introduction of the gauge field;
in the case of U(1) symmetry, it is the vector Aμ(x) field. To have a dynamical
theory for the Aμ(x) field, we need to construct a Lagrangian density from
this Aμ(x) field and its derivatives ∂μAν (because the kinetic energy term must
involve spacetime derivatives). The simplest gauge-invariant combination of
∂μAν is

∂μAν − ∂νAμ = Fμν . (16.54)

The Lagrangian density must also be a Lorentz scalar (i.e. all spacetime indices
are contracted) so the resulting Euler–Lagrange equations are relativistic
covariant. The simplest combination11

11In principle, higher powers (FμνFμν )n are
also gauge and Lorentz symmetric. However
such terms are “nonrenormalizable” and our
current understanding of quantum field the-
ory informs us that they should be highly sup-
pressed (i.e. at the relevant energy scale we
consider, they make negligible contribution).

is the expression

LA = −1

4
FμνFμν . (16.55)
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One can then add 1
c jνAν as the source term to arrive at the result in (16.50).

(Factors like − 1
4 and c are unimportant—all a matter of system of units and

convention.)
The Maxwell equations were discovered by experimentation and deep

theoretical invention; but this derivation shows why the four equations,1212Of course these equations have already
been greatly simplified with the vector nota-
tion embodying rotational symmetry, which
is part of Lorentz invariance.

(16.2)–(16.5), take on the form they take. Their essence is special relativity plus
gauge invariance. With this insight of electromagnetism we can then generalize
the approach to the investigation of other fundamental interactions.

16.5 Gauge theories: A narrative history

The above discussion shows that we can understand electromagnetism as a
“gauge interaction”. From the requirement of a local U(1) symmetry in charge
space, the presence of a vector gauge field Aμ(x) is deduced. In the rather
restrictive framework of special relativity, its dynamics can be fixed (to be that
described by Maxwell’s equation). This way of using symmetry to deduce the
dynamics has been very fruitful in our attempts to understand (i.e. to construct
theories of) other particle interactions as well.

One of the crowning achievement in the physics of the twentieth cen-
tury is the establishment of the Standard Model (SM) of elementary particle
interactions.1313The progress of physics depends both on

theory and experiment. A proper account
of the experimental accomplishments in the
establishment of the Standard Model is how-
ever beyond the scope of this presentation.
This omission should not be viewed in any
way as the author’s lack of appreication of
their importance.

This gives a complete and correct description of all nongrav-
itational physics. This theory is based on the principle of gauge symmetry.
Strong, weak, and electromagnetic interactions are all gauge interactions. In
this section we give a very brief account of this SM gauge theory of particle
physics.

16.5.1 Einstein’s inspiration, Weyl’s program, and Fock’s
discovery

The rich and interesting history of gauge invariance and electromagnetic poten-
tials in classical electromagnetism is beyond the scope of our presentation; we
refer the curious reader to the authoritative and accessible account given by
Jackson and Okun (2001). Here we shall present a narrative of the develop-
ment of the gauge symmetry idea1414For a more detailed gauge theory survey

with extensive references, see Cheng and Li
(1988).

as rooted in Einstein’s general theory of
relativity.

What is the origin of the name “gauge symmetry”? The term eichinvarianz
(gauge invariance) was coined in 1919 by Hermann Weyl (1885–1955) in the
context of his attempt to “geometrize” the electromagnetic interaction and to
construct in this way a unified geometrical theory of gravity and electromag-
netism (Weyl 1918, 1919). He invoked the invariance under a local change of
the scale, the “gauge”, of the metric field gμν(x):

gμν(x) −→ g′μν(x) = λ(x)gμν(x), (16.56)

where λ(x) is an arbitrary function of space and time. Weyl was inspired by
Einstein’s geometric theory of gravity, general relativity, which was published
in 1916 (cf. Chapters 13 and 14). This was, of course, before the emergence of
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modern quantum mechanics in 1925–26. A key QM concept was to identify the
dynamical variables of energy and momentum with the operators−ih̄∂μ and, in
the presence of an electromagnetic field, with−ih̄∂μ + e

c Aμ as in the “minimal
substitutional rule”. In this context, Vladimir Fock (1898–1974) discovered
in 1926 that the quantum mechanical wave equation was invariant under the
combined transformation A′μ = Aμ + ∂μχ and

� ′(x) = exp

[
ie

h̄c
χ (x)

]
�(x); (16.57)

he called it the gradient transformation.15 15This designation originates from the trans-
formation A′μ = Aμ + ∂μχ . From the title of
the Fock (1926) paper, it is clear what Fock
wanted to emphasize is that this new sym-
metry, involving the transformation of �(x)
and Aμ(x), is a symmetry of charge space.
Thus in the first 40 years or so after the inven-
tion of the gauge principle, people often fol-
lowed the practice of designating global sym-
metry in charge space as ‘gauge symmetry of
the first kind’ and local symmetry in charge
space as ‘gauge symmetry of the second
kind’. But nowadays by gauge symmetry we
mean gauge symmetry of the second kind and
distinguish it from the first kind simply by
calling the latter global symmetry.

Given the central role played by
(16.57) in showing that here one is discussing transformations in charge space,
one would say that it was Fock who first discovered the modern notion of gauge
invariance in physics.

Fritz London observed in 1927 that, if the i was dropped from Fock’s expo-
nent in (16.57), this phase transformation becomes a scale change (16.56) and
the transformation of (16.45) and (16.57) was equivalent to Weyl’s old eich-
transformation (London 1927). However, when Weyl finally worked out this
approach later on he retained his original terminology of “gauge invariance”
because he believed that a deep understanding of the local transformation
of gauge invariance could come about only through the benefit of general
relativity.16

16The connection between gauge symmetry
and general relativity would be deepened fur-
ther with the advent of the nonabelian theory
of Yang and Mills in the 1950s.

Most importantly it was Weyl who first declared [especially in
his famous book: Theory of Groups and Quantum Mechanics (Weyl 1928,
1931)] gauge invariance as a fundamental principle—the requirement of the
matter wave equation being symmetric under the gauge transformation leading
to the introduction of the electromagnetic field. Subsequently this principle has
become the key pathway in the discovery of modern theories of fundamental
particle interactions; this calling a local symmetry (in charge space) a “gauge
symmetry” has become the standard practice in physics.

16.5.2 Quantum electrodynamics

We have so far discussed gauge symmetry in the quantum description of a
nonrelativistic charged particle interacting with an electromagnetic field. The
proper framework for particle interaction should be quantum field theory,17 17Some elementary aspects of quantum field

theory were presented in Section 6.4. For an
introduction to the Standard Model in the
proper quantum field theoretical framework,
see, for example, Cheng and Li (1984).

which is a union of quantum mechanics with special relativity. We first com-
ment on the prototype quantum field theory of quantum electrodynamics
(QED), which is the quantum description of relativistic electrons and photons.
However in this introductory presentation of gauge symmetry, we shall by and
large stay with a classical field description.

Dirac equation
QED is the theory of electrons interacting through the electromagnetic field.
While the EM field equation is already relativistic, we must replace the
Schrödinger equation by the relativistic wave equation for the electron, first
discovered by Paul Dirac. Namely, instead of the Schrödinger equation (16.29),
we should use the Dirac equation for a free electron,(

ih̄γ μ∂μ − mc
)
ψ = 0 (16.58)
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with ψ being the four-component electron spinor field and γ μ is a set
of four 4× 4 “Dirac gamma matrices” obeying the anticommutation rela-
tion {γ μ, γ ν} = −2gμν . In momentum space with pμ = (E/c, p) being the
4-momentum vector this equation becomes(

γ μpμ − mc
)
ψ = 0. (16.59)

When operated on from the LHS by (γ νpν + mc), this equation, after using the
anticommutation relation, implies18

(
pμpμ + m2c2

)
ψ = 0, which we recog-

nize as the relativistic energy momentum relation of (16.41). To couple it to
an EM field, we replace the derivative ∂μ in (16.58) by the covariant derivative
Dμ of (16.46):

(
ih̄γ μDμ − mc

)
ψ = 0—in just the same way as we obtained

Eq. (16.21) from the free Schrödinger equation (16.22). We can display the
role of the gauge field

(
Aμ

)
/electron field (ψ) cross-term as the source factor

by separating out and moving it to the RHS:(
ih̄γ μ∂μ − mc

)
ψ = e

c
γ μAμψ . (16.60)

Lagrangian density for QED
Instead of field equations, we can equivalently work with the Lagrangian
density. Thus instead of Eq. (16.58) we can concentrate on the equivalent
quantity

Lψ = ψ̄
(
ih̄γ μ∂μ − mc

)
ψ , (16.61)

which is manifestly Lorentz invariant, with ψ̄ being the conjugate ψ†γ0. As
discussed above, EM coupling can be introduced through the covariant deriv-
ative and, after adding the density LA of the EM field (16.55), we have the full
QED Lagrangian density

LQED = Lψ + LA + Lint. (16.62)

The interaction density,19

19Lψ and LA are the Lagrangians for free
electrons and photons as they are quadratic
(harmonic) in their respective fields, while
Lint represents the interaction as it has more
than two field powers (hence anharmonic).

which comes from part of the covariant derivative, is
just the source density in (16.50)

Lint = 1

c
jμAμ = e

c
ψ̄γ μψAμ (16.63)

where jμ is shown now as the 4-current density of electron. A graphical
representation of a gauge boson coupled to a current is shown in Fig. 16.1(a).

Fig. 16.1 (a) Trilinear coupling of a photon
to an electron; (b) weak vector boson W
coupled respectively to weak currents of
leptons and quarks.

18We first find (
γ νpν + mc

) (
γ μpμ − mc

) = γ νpνγ
μpμ − m2c2.

Since pνpμ = pμpν , we should symmetrize the gamma matrices as well:

1

2

{
γ ν , γ μ

}
pμpν − m2c2 = −pμpμ − m2c2 = 0.

To reach the last expression, we have used the anticommutation relation of gamma matrices.
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QED as a U(1) gauge theory
The discussion carried out in the previous sections of this chapter demonstrates
that one can “derive” LQED from the requirement of Lorentz and gauge sym-
metry. Namely, the theory can be understood as following from “gauging the
U(1) symmetry” of the free Dirac equation. The original global U(1) symmetry
is directly linked to the familiar electric charge conservation. The quantiza-
tion (and renormalization) procedure based on LQED is rather complicated and
is beyond the scope of this presentation. Still, what we need to know is that
the full QED theory can be worked out on the basis of this Lagrangian dens-
ity (16.62). We also note that quanta of the electromagnetic field are photons.
They can now be viewed as the gauge particles (spin-1 bosons) of QED the-
ory. Parenthetically, the common practice in quantum field theory of describing
electrons interacting through the electromagnetic field is “interaction through
the exchange of photons”. This language is particularly convenient when, as
we shall see, describing the strong and weak interactions. An important feature
of the QED Lagrangian is the absence of a term of the form of AμAμ because
it is forbidden by gauge invariance. Such a term would correspond to a gauge
boson (photon) mass. Thus gauge invariance automatically predicts a massless
photon, which accounts for the long-range nature of the (electromagnetism)
interaction that it transmits.20 20The relation between the range of interac-

tion and the mass of the mediating particle is
discussed in Section 6.4.2.

Because of its many redundant degrees of freedom, quantization of gauge
theory is rather intricate. The necessary renormalization program for QED
was successfully formulated through the work of Julian Schwinger (1918–94),
Richard Feynman (1918–88), Sin-Itiro Tomonaga (1906–79), and Freeman
Dyson (1923– ). The close interplay of high-precision experimental meas-
urement and theoretical prediction brought about this notable milestone in the
history of physics.

16.5.3 QCD as a prototype Yang–Mills theory

Here we shall discuss a highly nontrivial extension of the gauge symmetry of
electromagnetism. This extension makes it even clearer that the transformation
in the charge space involves the change of particle/field labels of the theory.

Abelian versus nonabelian gauge symmetries
The gauge symmetry for electromagnetism is based on the U(1) symmetry
group; its transformation involves the multiplications of phase factors to the
wavefunction � → � ′ = U� with U(x) = eiθ(x) and the wavefunction �(x)
is itself a simple function. A U(1) phase transformation is equivalent to a
rotation around a fixed axis in a 2D plane (in charge space). Hence U(1) is iso-
morphic to the 2D rotation group (also called the 2D special orthogonal group):
U(1) = SO(2). Clearly such transformations are commutative U1U2 = U2U1,
and the symmetry is said to be an abelian symmetry. On the other hand, gen-
eral rotations in 3D space are represented by noncommutative matrices. The
symmetry based on such rotations, called SO(3) = SU(2), is nonabelian sym-
metry. The corresponding wavefunction (i.e. field) � is a multiplet in some
multidimensional charge space; its components would correspond to different
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particle states. As it turns out, we can understand other elementary particle
interactions due to strong and weak forces as gauge interactions also, but their
gauge symmetries are nonabelian—their respective symmetry transformations
are noncommutative. Gauge symmetry with such noncommuntative transform-
ations was first studied in 1954 in particle physics by C.N. Yang (1922– ) and
Robert L. Mills (1927–99), hence nonabelian gauge theory is often referred to
as Yang–Mills theory.

Quarks and gluons From the heroic experimental and deep phenomenolo-
gical studies of the strong and weak interactions, it was discovered that strongly
interacting particles (called hadrons2121Examples of hadrons are the proton, neut-

ron, pion and omega, etc.
) are composed of even more element-

ary constituents. These spin-1/2 particles were invented and named quarks by
Murray Gell-Mann (1929– ). There are six ‘quark flavors’ (up, down, strange,
charm, bottom and top); each has three hidden degrees of freedom called
‘color’.2222‘Color’ is the whimsical name given to

the strong interaction charge and has noth-
ing to do with the common understanding
of different frequencies of visible EM waves.
Here we give an example of the type of phe-
nomenology from which the color degrees of
freedom were deduced. The omega baryon is
composed of three strange quarks. Being a
system of identical fermions, its wavefunc-
tion should be antisymmetric with respect to
the interchange of any two quarks. Yet both
its spin (3/2) and orbital angular momentum
(S-wave) wavefunctions are symmetric. Spin-
statistics is restored only when its antisym-
metric color (singlet) wavefunction is taken
into account.

Namely, each quark flavor can be in three different color states—they
form an SU(3) triplet representation in the color charge space:

q(x) =
⎛
⎝ q1(x)

q2(x)
q3(x)

⎞
⎠ . (16.64)

If it is an ‘up-quark’, we can call them, for example, ‘red’, ‘blue’, and ‘white’
up-quarks. This triplet undergoes the transformation, q′ = Uq, with U being a
3× 3 unitary matrix having unit determinant (hence called special unitary).
Namely, the particle fields can not only change their phases but the particle
labels as well. When this symmetry is “gauged” ( i.e. turned into a local
symmetry) we have the SU(3) gauge theory, called quantum chromodynamics
(QCD). Just as QED is the theory of electrons interacting through the exchange
of abelian gauge fields of photons, QCD is the fundamental strong interaction
of quarks through the exchange of a set (8) of nonabelian gauge particles
called gluons.

Yang–Mills gauge particles To implement such a local symmetry, we need
to introduce a covariant derivative involving gauge fields:

Dμ = ∂μ − igsGμ. (16.65)

This is the same as (16.46) of the abelian case (for simplicity of notation we
have suppressed, or absorbed, the factor h̄c). In the strong interacting QCD
case, in place of the electromagnetic coupling strength e we have the strong
coupling gs. Instead of the U(1) gauge field Aμ, we have Yang–Mills fields
Gμ. But now the Dμ and Gμ are matrices in the color charge space; the gluon
field matrix Gμ has eight independent components (being a traceless 3× 3
Hermitian matrix) corresponding to the eight gluons of the strong interaction.

The basic property for covariant derivatives in Yang–Mills theory is still the
same as that for the abelian case: the covariant derivative of a wavefunction(
Dμq

)
transforms in the same way as the wavefunction q(x) itself:

q′ = Uq and
(
D′μq′

) = U
(
Dμq

)
. (16.66)
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We then have D′μ = UDμU−1 and more explicitly

∂μ − igsG
′
μ = U∂μU−1 − igsUGμU−1.

This means that the gauge fields must transform as

G′μ = UGμU−1 − 1

igs
U
(
∂μU−1

)
. (16.67)

One can easily check that in the abelian case with U = exp(igsχ ) this reduces
to Eq. (16.45). The factor UGμU−1 indicates that the gauge field itself
transform nontrivially under the gauge group. Namely, the gauge fields (or
gauge particles) themselves carry gauge charges.

The QCD Lagrangian Another place where one can see that nonabelian
gauge fields themselves carry gauge charges is in a property of the nonabelian
field tensor Fμν , which is similarly related to the covariant derivatives as
(16.47),

[
Dμ, Dν

] = −igsFμν . Working it out as in (16.48), we find

Fμν = ∂μGν − ∂νGμ − 1

igs

[
Gμ, Gν

]
(16.68)

showing a nonvanishing commutator because now Gμ is also a matrix in the
charge space. This nonabelian Fμν is now quadratic in Gμ. Thus when we
construct23 23The symbol “tr” in (16.69) stands for the

operation “trace”, taken in charge space, (i.e.
all charge space indices of the two Fμνs are
to be summed over in order to get a gauge
symmetric quantity).

the QCD Lagrangian density for the gauge field, like we did for the
abelian case of (16.55),

LA = −1

4
trFμνFμν , (16.69)

we get, besides quadratic
(
G2
)

terms, also cubic
(
G3
)

and quartic
(
G4
)

gauge field terms. While quadratic terms in L correspond to the free-particle
Lagrangian, higher powers represent interactions. Again, these cubic and
quartic couplings reflect the fact that nonabelian gauge fields, the gluons, must
now be charged fields. See Fig. 16.2. Very much like Eq. (16.62) for QED, the
Lagrangian density for QCD can be written down:

LQCD = Lq + LA + LqA. (16.70)

Lq = q̄(ih̄γ μ∂μ − mc)q is the Lagrangian density for free quarks, much like
Lψ in Eq. (16.61) for free electrons. Since the quark field is a triplet, a sum
of three terms (one for each color) is understood in Lq. The Euler Lagrange
equation for the gluon field based on LA is nonlinear,24 24This is entirely similar to the nonlinearity of

the Einstein field equation in GR. A gravita-
tional field carries energy (”gravity charge”),
thus is itself a source of a gravitational field.

reflecting the fact that
gluons carry color charges themselves. The quark (q)/gauge field (Gμ) coupling

Fig. 16.2 Cubic and quartic self-couplings of
charged gauge bosons. The similarity to the
trilinear couplings shown in Fig.16.1 should
be noted.
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LqA comes from the covariant derivative and is of a form entirely similar to the
QED interaction term (16.63)

LqA = 1

c
jμGμ = gs

c
q̄γ μGμq. (16.71)

However now the quark field q is a triplet and Gμ is a 3× 3 Hermitian matrix
in the color charge space. With nonvanishing off-diagonal terms in the color
matrix Gμ, a quark’s color charges can be changed by such a quark/gluon
coupling.

Asymptotic freedom and quark confinement The Yang–Mills gauge
particles as transmitters of interactions being charged, this feature leads to the
important physical consequence that the effective interaction strength24a

24aIn quantum field theory the interaction
strength is always modified by the quantum
fluctuations represented by the production
and reabsorption of virtual particles. The
effect of such a quantum cloud depends how
closely in distance is the coupling being
probed.

(the
so-called “running coupling”) grows, logarithmically, as the distance between
quarks increases. Namely, we have an antiscreen effect on the color charge—
as the color charge is probed further away from the source, the effective
charge is seen to increase! The increase in coupling strength means that it
would take more and more energy to separate colored charges. Thus a colored
particle must be confined to short subnuclear distances. This explains why no
free quarks have ever been seen. All the observed strong-interaction particles
(hadrons) are colorless compounds of quarks and gluons. This short-range con-
finement effect explains why even though gluons, like photons, are massless,
the strong interaction they transmit, unlike the EM interaction, is neverthe-
less short-ranged. The other side of the same property (called asymptotic
freedom25

25This fundamental property of Yang–Mills
theory was discovered in 1973 by David
Gross (1941– ), Frank Wilczek (1951– ), and
David Politzer (1949– ).

) is that the effective coupling becomes small at short distances
and a perturbation approach can be used to solve the QCD equations in the
high-energy and large-momentum-transfer regime, leading to precise QCD
predictions that have been verified to high accuracy by experiments.

16.5.4 Hidden gauge symmetry and the electroweak
interaction

The Standard Model of particle interactions describes the strong, weak, and
electroweak interactions. We have already discussed the gauge theories of the
electromagnetic and strong interactions. We now discuss the gauge theory of
the weak interaction.

Fig. 16.3 (a) QED description of e+ e →
e+ e through the exchange of a vector
photon; (b) weak scattering ν + d → e+ u
as due to the exchange of a heavy vector
boson W. In this sense Fermi’s weak interac-
tion theory was based on the analog of QED.

The electroweak SU(2) × U(1) gauge symmetry
In the early 1930s Enrico Fermi proposed a quantum field description of weak
interactions. It was modeled on QED. His proposal26

26Fermi’s theory was invented to describe the
then only known weak interaction—the neut-
ron’s beta decay: n → p+ e+ ν̄. The neut-
ron/proton transition can be interpreted at the
quark level as a down/up transition because
a neutron has valence quarks of (ddu) and a
proton has (udu). The quark decay of d →
u+ e+ ν̄ is directly related to the scattering
ν + d → e+ u when the final antineutrino is
turned into a neutrino in the initial state as
depicted in Fig. 16.3(b).

can be translated and
updated in the language of quarks and weak vector bosons as follows. Just as
electron–electron scattering e+ e → e+ e is described in quantum field the-
ory as due to the exchange of a photon, the weak process of neutrino scattering
off a down-quark producing an electron and an up-quark ν + d → e+ u is due
to the exchange of a heavy vector boson W (see Fig. 16.3). Thus instead of
the trilinear coupling of eēAμ we need ν̄eW+

μ and ūdW+
μ , etc. (Here, except for

the photon, we use particle names for their respective fields.) Namely, unlike
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electrodynamics, weak interaction couplings change particle labels, or we can
say, “changes the weak interaction charge of a particle” (i.e. we can regard, for
example, a neutrino and an electron as different weak interaction states of a
leptonic particle).

This feature can be easily accommodated by a nonabelian gauge symmetry.
For example, in the weak charge space the electron and electron–neutrino can
be placed in an SU(2) doublet of leptons, and in the same way, the up- and
down-quarks form a weak doublet:27 27An SU(3) quark color triplet has compon-

ents of quarks with different ‘colors’, while a
quark weak doublet has different ‘flavors’.

l =
(
νe

e

)
and q =

(
u

d

)
. (16.72)

The lepton/gauge-boson coupling, much like the electron/photon coupling
shown in (16.71), can have the weak charge structure:28 28The discovery of parity violation in weak

interactions, through the work of T.D. Lee
(1926– ), C.N. Yang, and many others in
the mid-1950s, stimulated a great deal of
progress in particle physics. This symmetry
violation can be accommodated elegantly by
the stipulation that the above displayed weak
doublets involve only the left-handed heli-
city state of each particle. Parity violation
comes about because the left-handed states
and right-handed states have different weak
charges (i.e. they belong to different types
of weak multiplets). See footnote 36 in this
chapter for further comments.

g2 l̄γ μWμl = g2(ν̄e, ē)γ μ

(
W0

μ W+
μ

W−
μ −W0

μ

)(
νe

e

)
(16.73)

which (when only particle labels are displayed) contains a trilinear vertex
ν̄eW+

μ of an (electrically) charged gauge boson W+ coupled to an electron and
an antineutrino. Similarly, if we replace the lepton by the quark doublet we
can have a flavor-changing quark and gauge boson coupling like ūdW+

μ . See
Fig. 16.1(b).

One would naturally try to identify the neutral gauge boson W0
μ with the

photon. However, this would not be feasible because, as can be seen in (16.73),
W0

μ must couple oppositely to the neutrino and to the electron:
(
ν̄νW0

μ and
−ēeW0

μ

)
; similarly, oppositely to up- and to down-quarks

(
ūuW0

μ and−d̄dW0
μ

)
,

but all these fermions do not have electric charges opposite to their doublet
partners. While such a unification of the weak and electromagnetic interac-
tions, involving only a symmetry group of SU(2) with gauge bosons W0

μ and
W±

μ , does not work out, we can nevertheless achieve a partial unification by
the simple addition of another U(1) gauge factor, having an abelian gauge
boson Bμ. Namely, we have a unified theory of electromagnetic and weak inter-
actions (electroweak theory) based on the gauge symmetry of SU(2)× U(1).
While neither W0

μ nor Bμ can be the photon field, we can assign leptons and
quarks with new U(1) charges (called “weak hypercharges”) so that one of
their linear combination has just the correct coupling property for a photon
field Aμ:

Aμ = cos θwBμ + sin θwW0
μ (16.74)

Z0
μ = − sin θwBμ + cos θwW0

μ

where the mixing angle θw is called the Weinberg angle. The combination
Z0
μ, orthogonal to Aμ, is another physical neutral vector boson mediating yet

another set of weak interaction processes.29

29Historically the weak interactions that were
first studied are those mediated by the
charged vector bosons W±

μ ; they are called
charged current reactions. Thus one of the
firm predictions of this electroweak unifica-
tion is the existence of Z0

μ-mediated “neutral
current proccesses”.

We have only a “partial unific-
ation” because, to describe two interactions, we still have two independent
coupling strengths as each gauge factor comes with an independent gauge
coupling:30

30These gauge coupling constants are directly
related to the experimentally more access-
ible constants of electric charge and Weinberg
angle

e= g1g2(
g2

1 + g2
2

)1/2
and cos θw= g2(

g2
1 + g2

2

)1/2
.

g1 for U(1) and g2 for SU(2).
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Spontaneous symmetry breaking
Mass problems in electroweak gauge theory Gauge boson mass terms
are forbidden by gauge invariance. While gluons are massless, the QCD
gauge interaction is still effectively short-ranged because color particles
are confined within short distances. Now if the weak interaction is to be
formulated as a gauge interaction with the weak vector bosons W± and Z0

identified as gauge bosons, they would also be required to be massless. But
observationally the weak interaction is very short ranged (even shorter than the
strong interaction range) hence the interaction transmitters must be massive.3131The relation between the interaction range

and the mass of the mediating particle is
discussed in Section 6.4.2.

This had been a major obstacle in the formulation of weak interaction as a
gauge force. If we simply insert vector-boson mass terms (hence breaking
the weak gauge symmetry), one would end up with uncontrollable ultraviolet
divergences (technically speaking, making the theory unrenormalizable). This
is the gauge boson mass problem. There is also a fermion mass problem.
Symmetry (whether global or local) implies mass degeneracy of particles
belonging to the same symmetry multiplet. Thus all three color states of
the quark triplet (16.64) have identical masses. But to have a gauge theory
of the weak interaction with the weak doublets as shown in (16.72), such
fermion mass degeneracy would contradict observation, as the electron and
the neutrino have different masses me �= mν , so have the up- and down-quarks
mu �= md.

Symmetry is hidden The mass problems discussed above were solved even-
tually by spontaneous symmetry breaking (SSB).32

32Important contribtutions were made by
P.W. Anderson (1923– ), Y. Nambu (1921– ),
J. Goldstone (1933– ), S. Weinberg (1933– ),
J. Schwinger, P.W. Higgs (1929– ), and many
others.

This is the possibility that
physics equations with symmetry may have asymmetric solutions. A ferromag-
net is a familiar example: above the critical temperature (T > Tc) it is a system
of randomly oriented magnetic dipoles, reflecting the rotational symmetry of
the physics equation describing such a system. But, below the critical tem-
perature, all the dipoles are aligned in one particular direction—breaking the
rotational symmetry even though the underlying physics equation is rotational
invariant. This comes about because in a certain parameter space the theory
would yield a ground state, instead being symmetric (i.e. a symmetry singlet
state as shown in Fig. 16.4a), being a set of degenerate states related to each
other through the symmetry transformation (as shown in Fig. 16.4b). Since the
physical ground state (the vacuum state in a quantum field system) has to be
unique, its selection, out of the degenerate set, must necessarily break the sym-
metry. Thus, the ground state, a solution to the symmetrical equation, is itself
asymmetric. The rest of the physics (built on this vacuum state) will also have
asymmetric features such as nondegenerate masses in a multiplet, etc. Since
the underlying equations are symmetric while the outward appearance is not,
SSB can best be described as the case of a “symmetry being hidden”.Fig. 16.4 The potential energy function V(φ)

illustrates the occurrence of spontaneous
symmetry breaking. (a) Normal symmetry
realization: the ground state is a symmetry
singlet. (b) A case of hidden symmetry: the
ground state is a set of degenerate states—
the circle at the bottom of the wine-bottle
shaped energy surface; the selection of the
true vacuum as one point in this circle breaks
the symmetry. The small ball indicates the
location of the physical ground state.

The Higgs sector A hidden symmetry scenario can take place in both
global and local symmetries. For global symmetry, one has the interesting
consequence that such a hidden symmetry scheme leads to the existence of
massless scalar bosons (called Nambu–Goldstone bosons). One would then
be concerned with the following unpalatable prospect of a theory with local
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symmetry: not only do we have the unwanted massless vector gauge bosons,
we also have these unwanted massless scalar bosons. As it turns out, in the real-
ization of SSB in gauge theories (the Higgs mechanism) each of these two ills
is the cure of the other. The massless Goldstone scalar combines with the (two
states of) a massless vector boson to form (the three states of) a massive vector
boson. In the end we have a hidden gauge symmetry without any unwanted
massless states. The SU(2)× U(1) electroweak gauge theory starts out in the
symmetric limit with all particles (gauge bosons, leptons, and quarks) being
massless. The explicit realization of the Higgs mechanism involves the intro-
duction of a doublet of elementary (complex) scalar boson fields

(
φ+,φ0

)
,

and their dynamics is such that the ground state value of φ0 is a nonvanish-
ing constant. The vacuum is permeated with this constant scalar field. All the
particles, originally massless, gain their respective masses while propagating
in this vacuum. The electroweak theory has a structure such that the photon
gauge particle (as well as the neutrino states) remains massless. However this
scalar sector, often referred to as the Higgs sector, is less constrained by the
symmetry of the theory. In particular we are free to adjust the couplings of
the scalars to leptons and quarks in order to obtain their respective observed
masses. (Namely the Standard Model does not predict the lepton and quark
masses.) Of the complex doublet

(
φ+,φ0

)
we have four independent scalar

bosons; while φ± and one of φ0′s are “eaten” by the gauge bosons to make
three massive vector bosons of W±and Z0, the remaining scalar boson is a real
massive spin-0 particle. This ‘Higgs boson’ with characteristic couplings (to
leptons, quarks, photons, and other intermediate vector bosons) should be an
observable signature of the SSB feature of the electroweak theory.

The development of electroweak gauge theory
The Glashow–Weinberg–Salam model Many have contributed to the
development of the gauge theory of electroweak interactions. We mention
some milestones. Sheldon Glashow (1932– ) was the first one in 1957 to write
down an SU(2)× U(1) gauge theory and also made major contributions later
on in building a consistent quark sector of the theory. However in the original
Glashow model, the vector boson masses were introduced by hand, hence
it was not a self-consistent quantum field theory. In 1967 Steven Weinberg
formulated an electroweak gauge theory of leptons with gauge bosons and
electron masses generated by the Higgs mechanism. At about the same
time Abdus Salam (1926–96) presented an electroweak gauge theory with
spontaneous symmetry breaking as well, although not in a formal journal
publication. Their results did not generate great enthusiasm right away in
the physics community because the quantization33

33The quantization of Yang–Mills theory,
because of its many redundant degrees of
freedom, is highly nontrivial. Its consistent
program was finally achieved through the
work of many, by Bryce DeWitt (1923–
2004), R.P. Feynman, Ludvig Faddeev
(1934– ) and Victor Popov (1937–94), et al.

and renormalization34

34One of the important steps in the renor-
malization is the implementation of the
regularization procedure that renders the
divergent integrals finite so that the calcula-
tion is well defined for further mathematical
manipulations. The renormalizability of a
theory with symmetry depends critically on
the cancellation of divergences as enforced by
symmetry relations. The dimensional regular-
ization scheme, by going to a lower spacetime
dimension, makes theory finite without viol-
ating its symmetry properties. This elegant
procedure was invented independently by
several groups, among them G. ’t Hooft
(1946– ) and M.J.G. Veltman (1931– ).

of
nonabelian gauge theories were still being worked out in those years.

Yang–Mill theories are renormalizable with or without SSB For almost
two decades (1950s and 1960s), there was in fact a great deal of pessimism in
the physics community that quantum field theory could be the proper frame-
work for the study of strong and weak interactions. The strong interaction did
not appear to have a small coupling and its field equation could not be solved
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by the only known method: perturbation theory. Without knowing their solu-
tions, one did not know how to test such theories. While the weak interaction
had features of a gauge interaction and the perturbation should be applicable, it
was generally thought that quantum theory with massive vector bosons was not
renormalizable. It is in this light that one must appreciate the result obtained
in 1971 by Gerard ’t Hooft, a student of Martinus Veltman, proving that
Yang–Mills theory was renormalizable, with or without spontaneous symmetry
breaking. The significance of this achievement was appreciated very quickly by
their worldwide physics colleagues. This transformed the whole field of the-
oretical particle physics and brought about the renaissance of quantum field
theory in the 1970s.

We discussed QCD before electroweak theory, because QCD, without
the need of a hidden symmetry, is a simpler gauge theory to present.
Historically the nonabelian gauge theory for the weak interaction was success-
fully developed first. Politzer, Gross, and Wilczek then proved that Yang–Mills
theory, and only Yang–Mills theory, has the property of asymptotic freedom.
That allowed the QCD quantum field theory of strong interactions at the
short-distance regime to be solved perturbatively and tested experimentally.

16.5.5 The Standard Model and beyond

The Standard Model of particle interactions (Table 16.1) is a gauge theory
based on the symmetry group of SU(3)× SU(2)× U(1). QCD is the SU(3)
gauge theory for the strong interaction. The SU(2)× U(1) gauge theory with
spontaneous symmetry breaking describes the electroweak interaction. Even
though their coupling strengths are the same, the weak interaction appears to
be much weaker than the electromagnetic force because its effects are usually
suppressed by the large masses of the W± and Z bosons.

Grand unified gauge theories
The Standard Model has been remarkably successful in its confrontation with
experiment tests. Nevertheless it does not explain why the three generations
of leptons and quarks have the same charge and representation assignments.3535The theoretical structures for each of the

three generations (e, νe, u, d), (μ, νμ, c, s),
and (τ , ντ , t, b) in the Standard Model are
identical.

Furthermore, the theory must be specified by 18 parameters: three gauge coup-
lings, the SSB energy scale (which fixes the vector boson masses), three lepton
masses, as well as six masses and four angles of a complex mixing matrix of the
quarks, and, finally, the Higgs boson mass. The consensus is that the Standard

Table 16.1 Gauge symmetry, gauge bosons, and gauge couplings of the Standard Model.

interactions sym group vector gauge fields partial unification

Electromagnetic

Weak

U(1)

SU(2)

photon Aμ

weak vector bosons W±
μ , Zμ

⎫⎪⎪⎬
⎪⎪⎭

SU(2)× U(1)

electroweak

e and θw

Strong SU(3) gluons Ga
μ, a = 1, 2, . . 8 gs
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Model is only a low-energy effective theory of some more fundamental theory
with an intrinsic energy scale much higher than the electroweak scale.

As a first step going beyond the Standard Model, people have explored the
possibility of ‘grand unification’ of strong, weak, and electromagnetic interac-
tions in the framework of larger groups that are ‘simple’ (with only one gauge
coupling) that contain SU(3)× SU(2)× U(1) as their subgroup. Namely, in
the Standard Model the three interactions are still described by three separ-
ate gauge groups with distinctive coupling strengths. In a more unified simple
gauge group there is only one coupling strength—truly one gauge interac-
tion. This unified strength at some very high ‘grand unified’ energy scale �GU

can evolve into the distinctive couplings of strong, weak, and electromagnetic
couplings at a lower energy scale if there is another spontaneous symmetry
breaking taking place at �GU with all gauge bosons other than those belonging
to the SU(3)× SU(2)× U(1) group gaining masses O(�GU). The decoupling
of these heavy particles implies that the subgroup couplings g1, g2, and g3 will
evolve differently below the �GU scale, giving rise to the observed different
interaction strengths for the strong, weak, and electromagnetic forces observed
in our more familiar low-energy scales (see Fig. 16.5).

Fig. 16.5 Running coupling strengths as
a function of energy. Coupling constant
unification occurs at some super-high
energy (�GU = 1016 GeV?). Spontaneous
symmetry breaking of the unification gauge
group with a single gauge coupling gGU
will cause the gauge couplings of subgroup
SU(3)× SU(2)× U(1) to evolve differently
towards lower-energy regimes, giving rise to
the different interaction strengths as observed
of the strong, weak, and electromagnetic
forces.

Successful GUTs such as the gauge theory based on SU(5) have been
constructed; they can explain (as the coupling unification discussed above)
why the strong interaction is strong and why the weak interaction is weak.
Moreover all the quark lepton gauge charges can be understood based on a
simple assignment of GUT charges for these fermions.36 36That two-component fermions form the

fundamental representations of the Lorentz
group provides us with a natural explana-
tion of parity violation by fundamental inter-
actions. That QCD turns out to be parity
conserving is explained by the GUT charge
assignment which just leads to the same
SU(3) color charges for the left-handed and
right-handed quarks.

Their description
can in fact be improved upon with the introduction of supersymmetry; in
particular the precise coupling unification discussed above can come about
only by the inclusion of supersymmetric particles. This program is still a work
in progress; it very much needs guidance from experimental discoveries. In
this connection, we comment below on the distinction that Einstein made
between constructive theories versus theories of principle.

The Standard Model as a constructive theory and as a theory
of principle
Abraham Pais in his Einstein biography wrote37 37See Pais (1982, p. 27), based on

Einstein’s letter to his gymnasium teacher
H. Friedmann, March 18, 1929.. . . a distinction that Einstein liked to make between two kinds of physical theories. Most

theories, according to Einstein, are constructive, they interpret complex phenomena
in terms of relatively simple propositions. An example is the kinetic theory of gases,
in which the mechanical, thermal, and diffusional properties of gases are reduced to
molecular interactions and motions . . . then there are the theories of principle, which
use the analytic rather than the synthetic method . . . An example is the impossibility of
a perpetuum mobile in thermodynamics. Then Einstein went on to say, ‘The theory of
relativity is a theory of principle’.

We would like to suggest that the Standard Model of elementary particle
interactions is a good example of a theory that is both a constructive theory
and a theory of principle.

The discovery of the quark and lepton as the basic constituents of matter,
and that of the symmetry groups of SU(3) and SU(2)× U(1), followed the
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practice of a constructive theory with its trial-and-error theoretical propositions
followed by the experimental checks.

Einstein and the Standard Model Einstein did not participate directly in
the construction of the Standard Model as described above. Also, the Standard
Model is an example of a quantum field theory, which Einstein never accep-
ted as an acceptable theoretical framework. However the influence of his idea
has been of paramount importance in the successful creation of the Standard
Model. Besides the fundamental importance of special relativity, photons, and
Bose–Einstein statistics to particle physics, the use of local symmetry to gen-
erate dynamics (the gauge principle) is very much in the spirit of Einstein’s
theory of principle as represented in particular by his masterful deployment of
the invariance principle, and the equivalence principle. This approach of util-
izing an overarching principle in the search of the new patterns in Nature will
become even more relevant as we explore physical realms that are ever more
inaccessible to direct experimentation.




