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• Einstein famously spent the latter half of his physics working life on
his program of unified field theories. His conviction was that a unifica-
tion program not only could combine his GR gravitational field theory
with Maxwell’s equations but also shed light on the quantum mystery.
In this chapter, we discuss the Kaluza–Klein (KK) theory which, in
many ways, is a shining example of Einstein’s unification program. It
has stayed relevant even for physics research in the twenty-first century.
However, the Kaluza–Klein theory uses the more conventional quantum
idea and does not illuminate its origin as Einstein had envisioned for a
unified theory.

• The Kaluza–Klein theory is a GR field theory in a spacetime with an
extra spatial dimension. The nonobservation of the extra fifth dimen-
sion is assumed to result from its compact size. (The extra dimension
is curled up.) The theory not only achieves a unification of gravitation
with electrodynamics but also suggests a possible interpretation of the
charge space and gauge symmetry as reflecting the existence of this
compactified extra dimension.

• By way of a long calculation, Theodor Kaluza has shown that the 5D
general relativity field equation with a particular geometry is com-
posed of two parts, one being the Einstein field equation and the other
the Maxwell equation. This remarkable discovery has been called “the
Kaluza–Klein miracle”. The details of this calculation are provided in
the SuppMat Section 17.5. We also discuss the motivation and meaning
of the assumed geometry for this 5D spacetime.

• As gauge symmetry was being developed, Oskar Klein showed that a
gauge transformation could be identified with a displacement in the
extra dimension coordinate in the KK theory. This went a long way
in explaining the KK “miracle”. Also it was demonstrated that the
relativistic Klein–Gordon wave equation in KK spacetime is equival-
ent to a set of decoupled 4D Klein–Gordon equations for a tower of
particles with increasing masses. Thus the signature of an extra dimen-
sion is the existence of a tower of KK particles, having identical spin
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and gauge quantum numbers, with increasing masses controlled by the
compactification scale.

• In the last section brief comments are offered of the more recent efforts
in the construction of unified theories with extra dimensions.

17.1 Unification of electrodynamics and gravity

17.1.1 Einstein and unified field theory

Unifying different realms of physics has always led to fresh insight into our
physical world. Maxwell’s and Faraday’s fusion of electricity and magnetism
brought new understanding of light and radiation. Einstein’s motivation for
new physics was often prompted by the promise of wider comprehension that a
new synthesis would bring. Recall his motivation for the principle of relativity.
His special relativity brought about the deep cognizance that space and time
were interchangeable. The resultant insight that spacetime was the arena in
which physical events took place ultimately brought about his geometric theory
of gravitation—in the form of a dynamical spacetime. Concurrently extending
his atomic hypothesis of matter (doctoral thesis and Brownian motion) as well
to radiation, his light quantum idea, he found that the electromagnetic field
could have the puzzling feature of being both wave and particle at the same
time. As we have discussed in Chapter 8, while Einstein appreciated the spe-
cific successes of the new quantum mechanics, he could not believe it as an
acceptable description of reality. It was in this context that Einstein had hopes
of finding a unification of electrodynamics and general relativity that would
also shed light on the quantum mystery. This was the driving force behind his
20-year effort in the unified field theory program.

17.1.2 A geometric unification

Einstein’s accomplishment in formulating a geometric theory of gravitation
naturally led him, and others, in efforts to find a geometric formulation of
Maxwell’s theory. As mentioned in Section 16.5.1, this was the original
motivation of Hermann Weyl and it eventually led to fruition in the form of
interpreting electrodynamics as a gauge interaction. If a more direct geometric
formulation of electromagnetism is possible, it would perhaps make the uni-
fication with gravity more likely. As we shall see in this chapter, a geometric
theory of electrodynamics was actually obtained through a unification attempt,
but it is the geometry of a spacetime with an extra dimension.

While gauge symmetry bears a resemblance to general relativity of being
also a local symmetry, the result still does not seem like much help in find-
ing a unified theory. Gauge invariance being a local symmetry, not in ordinary
spacetime, but in the internal charge space, the question naturally arises: what
exactly is this charge space? A possible answer was found11Kaluza’s paper was sent to Einstein in 1919,

but did not come out in print until two years
later (Kaluza 1921).

in 1919 by the
Prussian mathematician Theodor Kaluza (1885–1954). He suggested extend-
ing the general principle of relativity to a hypothetical 5D spacetime—the usual
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4D spacetime augmented by an extra spatial dimension.2 2Just about all attempts of extending space-
time dimensions involve extra spatial dimen-
sions. The need to have the extra dimensions
compactified would have to, in the case of an
extra time dimension, overcome the serious
causality difficulties associated with looped
times.

It was discovered that
a particular restricted 5D space geometry would lead to a 5D general theory of
relativity with a field equation composed of two parts, one being the Einstein
equation and another being the Maxwell equation.

The possibility of such a ‘miraculous’ unification was explained by the
Swedish physicist Oskar Klein (1894–1977) in the late 1920s when quantum
mechanics and gauge theory were being developed. Klein showed that, in
Kaluza’s 5D theory, a gauge transformation had the geometric significance
of being a displacement in the extra dimension. Thus charge space has the
physical meaning of being the extra space dimension. If this extra dimen-
sion is compactified (so as to have avoided direct detection), quantum theory
predicts the existence of a tower of particles with ever increasing masses
with the mass difference controlled by the compactification length size. This
unified field theory has come to be called the Kaluza–Klein (KK) theory.
However, the KK theory made use of the more conventional quantum idea
and did not shed light on its origin as Einstein had envisioned for the unified
theory.

The Kaluza–Klein theory postulates the existence of an extra spatial dimen-
sion. Our spacetime is actually five-dimensional; it was demonstrated that
electromagnetism can be viewed as part of 5D general relativity. That is, one
can “derive” electrodynamics by postulating the principle of general relativity
in a 5D spacetime. To prepare for the study of this embedding of electromag-
netic gauge theory in a 5D general relativity, we first recall the relevant parts
of gauge symmetry as well as of the GR theory.

17.1.3 A rapid review of electromagnetic gauge theory

Under a U(1) gauge transformation, the 4-vector potential (regarded as the
fundamental electromagnetic field) transforms as

Aμ−→A′μ = Aμ + ∂μθ (17.1)

where θ (x) is the gauge function, cf. Eq. (16.45). The EM field intensity, being
the 4-curl of the gauge field

Fμν = ∂μAν − ∂νAμ, (17.2)

is clearly invariant under the gauge transformation of (17.1). Requiring the
Lagrangian density to be a relativistic and gauge invariant scalar leads to a free
Maxwell density of

LEM = −1

4
FμνFμν . (17.3)

As discussed in Sections 16.4.2 and 16.4.3, the Euler–Lagrange equation
based on this LEM is the Maxwell equation. In this sense we say Maxwell’s
theory is essentially determined by (special) relativity and U(1) gauge
symmetry.
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17.1.4 A rapid review of general relativistic
gravitational theory

GR equations are covariant under the general coordinate transformation that
leaves invariant the spacetime interval

ds2 = gμνdxμdxν ,

where gμν is the metric tensor of the 4D spacetime. Just as the metric can be
interpreted as a relativistic gravitational potential, the Christoffel symbols

�λ
μν =

1

2
gλρ
[
∂νgμρ + ∂μgνρ − ∂ρgμν

]
, (17.4)

being the first derivative of the potential [cf. Eq. (13.6)] can be thought as the
gravitational field intensities. The Riemann–Christoffel curvature tensor [cf.
Eq. (14.9)]

Rμ
λαβ = ∂α�

μ
λβ − ∂β�

μ
λα + �μ

να�
ν
λβ − �

μ
νβ�

ν
λα , (17.5)

being the nonlinear second derivatives of the metric, is the relativistic tidal
forces, its contracted version enters into the GR field equation (14.35)

Rμν − 1

2
Rgμν = κTμν (17.6)

where the Ricci tensor Rμν and scalar R are contractions of the Riemann
curvature

Rμν ≡ gαβRαμβν and R ≡ gαβRαβ (17.7)

and Tμν is the energy–momentum tensor for an external source. κ is propor-
tional to Newton’s constant.

The Einstein–Hilbert action
Just as Maxwell’s equation can be compactly presented as the Euler–
Lagrangian equation resulting from the variation of the Maxwell action, the
Einstein equation (17.6) is similarly related to the GR Lagrangian density, the
Ricci scalar:

Lg = R, (17.8)

for the source-free case (Hilbert 1915, Einstein 1916d). Since only the product√−gd4x (where g is the determinant of the metric tensor gμν) is invariant under
the general coordinate transformation,33For such more advanced GR topics, see, for

example, Carroll (2004).
the relevant action, called the Einstein–

Hilbert action, is the 4D integral

Ig =
∫ √−gd4xLg =

∫ √−gd4xgμνRμν . (17.9)

We can then derive Eq. (17.6) as the Euler–Lagrange equation from the minim-
ization of this action. The variation of the action δIg has three parts involving
δRμν , δgμν , and δ

√−g. The integral containing the δRμν factor after an integ-
ration by parts turns into a vanishing surface term; the metric matrix being
symmetric4

4A symmetric matrix M can always be
diagonalized by a similarity transformation
SMSᵀ = Md . hence obeys the general relation ln(det gμν) = Tr(ln gμν) leading
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to the variation of δ
√−g = − 1

2

√−ggμνδgμν . Consequently the variation
principle requires

δIg =
∫ √−gd4x

(
Rμν − 1

2
Rgμν

)
δgμν = 0,

which implies the Einstein equation of (17.6). In this sense we can interpret the
general coordinate-invariant Ricci scalar R as representing the (source-free) 4D
gravitational theory.

17.2 General relativity in 5D spacetime

In this section we show how a particular version of the 5D spacetime metric
leads to the Ricci scalar being the sum of Lagrangian densities of Einstein’s
gravity theory and Maxwell’s electromagnetism.

17.2.1 Extra spatial dimension and the Kaluza–Klein
metric

One can motivate the geometric unification by the observation that while we
have the 4-potential Aμ in electromagnetism, the spacetime metric gμν is the
relativistic gravitational potential. One would like to combine these two types
of potentials into one mathematical entity.5 5Further discussion can be found in Section

17.3.1.Kaluza starts out by postulating a spacetime with an extra spatial dimension6

65D quantities will be denoted with a caret
symbol ^. The capital Latin index M =
(μ, 5) = (0, 1, 2, 3, 5) is for a 5D spacetime,
with the Greek index μ for the usual 4D
spacetime and the index 5 for the extra spa-
tial dimension. Our system skips the index 4,
so as not to be confused with another com-
mon practice of labeling the 4D spacetime by
the indices (1, 2, 3, 4) with the fourth index
being the time coordinate. In our system the
time component continues to be denoted by
the zeroth index.

x̂M = (x0, x1, x2, x3, x5
)

. (17.10)

However, the metric ĝMN for this 5D spacetime is assumed to have a particular
structure ĝMN = ĝ(kk)

MN having its elements related to the 4D gμν and Aμ as,

ĝ(kk)
μν = gμν + AμAν , ĝ(kk)

μ5 = ĝ(kk)
5μ = Aμ, ĝ(kk)

55 = 1. (17.11)

When displayed in 5× 5 matrix form, we have

ĝ(kk)
MN ≡

(
ĝ(kk)
μν ĝ(kk)

μ5

ĝ(kk)
5ν ĝ(kk)

55

)
=
(

gμν + AμAν Aμ

Aν 1

)
. (17.12)

Equivalently, the corresponding invariant interval in this 5D spacetime can be
written as

ds2
(kk) = ĝ(kk)

MNdx̂Mdx̂N = gμνdxμdxν + (dx5 + Aλdxλ)2. (17.13)

We should note the particular feature that, with gμν and Aμ being functions of
the 4D coordinate xμ, all the elements of the 5D metric ĝ(kk)

MN have no depend-
ence on the extra dimensional coordinate x̂5 and we also set ĝ(kk)

55 = 1. From this
point on we shall drop the cumbersome superscript label (kk) and the relation
ĝMN = ĝ(kk)

MN is always understood.
One can also check that the 5D inverse metric ĝMN must have the

components of

ĝμν = gμν , ĝμ5 = ĝ5μ = −Aμ, ĝ55 = 1+ AνAν , (17.14)
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or,

ĝMN =
(

gμν −Aμ

−Aν 1+ AλAλ

)
(17.15)

so that a simple matrix multiplication can check out the correct metric relation
ĝMNĝMN = δM

K .

17.2.2 “The Kaluza–Klein miracle”

From the 5D metric, we can obtain the other curved spacetime quantities by
the usual relations. The 5D Christoffel symbols, cf. Eq. (17.4), are first-order
derivatives of the 5D metric

�̂M
NL =

1

2
ĝMK (∂NĝLK + ∂LĝNK − ∂KĝNL) . (17.16)

The 5D Riemann curvature tensor is a nonlinear derivative of the 5D Christoffel
symbols, cf. Eq. (17.5):

R̂L
MSN = ∂S�̂

L
MN − ∂N�̂

L
MS + �̂L

ST �̂
T
MN − �̂L

NT �̂
T
MS. (17.17)

Contracting the pair of indices (L, S), we obtain the 5D Ricci tensor, cf.
Eq. (14.23),

R̂MN = R̂L
MLN = ∂L�̂

L
MN − ∂N�̂

L
ML + �̂L

LT �̂
T
MN − �̂L

NT �̂
T
ML. (17.18)

Contracting one more time, we obtain the 5D Ricci scalar, cf. Eq. (14.25),

R̂ = ĝMNR̂MN . (17.19)

Given Kaluza’s stipulation of the 5D metric, it is a straightforward, but rather
tedious, task to calculate the 5D Christoffel symbols, in terms of the famil-
iar 4D metric tensor and 4D electromagnetic potential, and then all the other
5D geometric quantities as listed in Eqs. (17.16)–(17.19). After an enormous
calculation,77The details of calculating the 5D Ricci scalar

R̂ in term of gμν and Aμ are provided in
SuppMat Section 17.5.

Kaluza obtained the remarkable result that the 5D Ricci scalar R̂,
which should be the Lagrangian density of a 5D general theory of relativity,
is simply the sum of the Lagrangian densities of the 4D general relativity R
and Maxwell’s electromagnetism, − 1

4 FμνFμν where Fμν is the Maxwell field
tensor (17.2):

R̂ = R− 1

4
FμνFμν , (17.20)

namely,

L(5)
g = L(4)

g + L(4)
EM. (17.21)

The Einstein and Maxwell equations are all components of the 5D GR
field equation.8

8It can be similarly shown that the 4D Lore-
ntz force law follows from the 5D geodesic
equation (the GR equation of motion). In this rather “miraculous” way a geometric unification of

gravitation and electromagnetism is indicated.
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17.3 The physics of the Kaluza–Klein spacetime

As indicated above, once we have the KK metric (17.11), the unification of
gravitation and electromagnetism follows by a straightforward calculation.
Thus the whole unification program relies on the structure of the KK metric.
What is the physics behind the KK metric ansatz?

17.3.1 Motivating the Kaluza–Klein metric ansatz

The amazing unification results having their origin in the KK prescription
(17.11) for the metric ĝ(kk)

MN ; it may be worthwhile to motivate the algebra that
can lead one to this metric ansatz.

The metric gμν being the gravitational potential and comparable to the EM
potential Aμ, one would like to fit both of them into the 5D ĝMN . What should
be the precise identification of the metric elements? Similarly, can one fit
the Christoffel symbols �μ

νλ and EM field tensor Fμν (both being first deriv-
atives of the potentials) into �̂M

NL? Or, after lowering the upper index in (17.16),

�̂M NL ≡ ĝMJ�̂
J
NL =

1

2
(∂NĝLM + ∂LĝNM − ∂MĝNL) . (17.22)

Out of the 50 elements, we will concentrate on the set with the indices M = μ,
L = 5, and N = ν in (17.22) as a possible match for the EM field intensity Fμν :

�̂μ 5ν = 1

2

(
∂ν ĝ5μ + ∂5ĝμν − ∂μĝν5

)
. (17.23)

This suggests the identification with − 1
2 Fμν if the 5D metric elements actually

do not depend on the x5 coordinate so that the middle term vanishes, ∂5ĝμν = 0,
and if ĝμ5 = ĝ5μ = Aμ. With the further simplifying assumption of ĝ55 = 1 and
ds2, Kaluza ends up trying the ansatz of (17.11), hence (17.13).

17.3.2 Gauge transformation as a 5D coordinate change

The invariant interval ds2
(kk) = ĝ(kk)

MNdx̂Mdx̂N , with the metric ĝ(kk)
MN not being the

most general 5D metric tensor, will not be invariant under the most general
coordinate transformation in the 5D spacetime x̂M → x̂′M . However, ds2

(kk), as
we shall show, is unchanged under a subset of coordinate transformations hold-
ing the 4D coordinates fixed and a local displacement of the extra dimensional
coordinate:

xμ → x′μ = xμ and x5 → x′5 = x5 + θ (x). (17.24)

Since we have gμν(x) depending on the 4D coordinate only, this leads to

g′μν(x) = gμν(x), and, of course, ĝ′55 = ĝ55 = 1. (17.25)

Most interestingly, according to the general transformation rule, cf.
Eq. (13.29), with ∂ x̂M/∂x′5 = δM

5 , we have

ĝ′5μ =
∂ x̂M

∂x′5
∂ x̂N

∂x′μ
ĝMN =

∂ x̂N

∂x′μ
ĝ5N

= ∂xν

∂x′μ
ĝ5ν +

∂x5

∂x′μ
ĝ55 = δνμĝ5ν −

∂θ

∂xμ
. (17.26)
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With the identification of ĝ5μ = Aμ, this is just the gauge transformation
of Eq. (17.1). It is then an easy exercise to check that the KK interval
of (17.13) is unchanged under this restricted 5D coordinate transformation
(17.25) and (17.26).

Recall the discussion in Chapter 16 and reviewed in Section 17.1 that elec-
tromagnetism can to a large extent be determined by the U(1) gauge symmetry.
As the U(1) transformation eiθ(x) is equivalent to a rotation by an angle θ , we
can have the literal realization of the gauge transformation as a displacement
along a circle if the x5 coordinate is compactified into a circle. (See further
discussion below.) That we can interpret gauge transformations as coordin-
ate transformations in an extra dimension goes a long way in explaining why
Maxwell’s theory is embedded in this higher dimensional GR theory.

17.3.3 Compactified extra dimension

We have explained that the 5D coordinate transformation that leaves the KK
interval invariant is a gauge transformation. Still, why does one restrict the
metric to this ĝ(kk)

MN form?
The key feature of the KK metric is that its elements are independent of

the extra dimensional coordinate x5. This is rather strange: one postulates a
spacetime with extra dimension

(
x0, x1, x2, x3, x5

)
yet the fields are not allowed

to depend on the extra coordinate x5!
Kaluza, the mathematician, is silent on the physical reality of the extra

dimension; but Klein, the physicist, proposes that the fifth dimension is real.
It has not been observed because it is extremely small; the extra dimension
is curled up. Just like a garden hose is viewed at a distance as a 1D line, upon
closer inspection one finds a surface composed of a series of circles (Fig. 17.1).
Here one of the two dimensions of the surface is compactified into circles. In
the same manner, Klein proposes that one spatial dimension of our 5D space-
time is compactified: every point in the observed 3D spatial space is actually a
circle.

Fig. 17.1 Compactified dimension. A 1D
line is revealed to be a 2D surface with one
dimension compactified into a circle.

17.3.4 Quantum fields in a compactified space

The Kaluza–Klein “miracle” was discovered by Kaluza, and was explained by
Klein, who used the then new quantum mechanics to deduce the consequence
of a compactified dimension. This also justifies the restrictions imposed on the
5D metric (Klein 1926).

Consider, as the simplest case, a scalar field φ
(
x̂M
) = φ

(
xμ, x5

)
satisfying a

5D relativistic wave equation (the Klein–Gordon equation):(
�(5) − m2

0c2

h̄2

)
φ
(
x̂N
) = 0 (17.27)

where �(5) is the five-dimensional D’Alembertian operator99Cf. Eq. (11.25). �(5) = �(4) +
∂2/∂x 2

5 . Since the extra dimension is a circle (with compactification radius a),
we have the identification of x5 and x5 + 2πa. Thus the wavefunction φ

(
x̂M
)

must satisfying the boundary condition of
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φ
(
xμ, x5

) = φ
(
xμ, x5 + 2πa

)
. (17.28)

The field must have a sinusoidal dependence on the x5 coordinate, and has the
harmonic expansion

φ
(
xμ, x5

) =∑
n
φn
(
xμ
)
eipnx5/h̄. (17.29)

In order that the boundary condition (17.28) is satisfied, the momentum in the
extra dimension must be quantized10 10Recall the similar problem of “a particle in

a box” in quantum mechanics.

pn = n
h̄

a
with n = 0, 1, 2, . . . (17.30)

A tower of Kaluza–Klein particles in 4D spacetime
To see the implications in the familiar 4D spacetime, we can write out the 5D
Klein–Gordon equation in the 4D spacetime(

�(5) − m2
0c2

h̄2

)
φ
(
x̂N
) = (�(4) + ∂2

5 −
m2

0c2

h̄2

)
φ
(
x̂N
) = 0,

which, after substituting in the series expansion, becomes

∑
n

[(
�(4) − n2

a2
− m2

0c2

h̄2

)
φ
(
xμ
)]

eipnx5/h̄. = 0.

Namely, we have an infinite number of decoupled 4D Klein–Gordon equations(
�(4) − m2

nc2

h̄2

)
φ
(
xμ
) = 0, (17.31)

with a tower of “Kaluza–Klein states” having masses

m2
n = m2

0 + n2 h̄2

a2c2
. (17.32)

Thus the signature of the extra dimension in 4D spacetime is a tower of KK
particles, having identical spin and gauge quantum numbers, with increasing
masses controlled by the compactification scale of a.

Compactification by quantum gravity?
The natural expectation is that the compactification is brought about by the
dynamics of quantum gravity. In this way the compactification radius should
be the order of the Planck length, discussed in Section 3.3.2. That the first KK
state has a mass of at least 1019 GeV would mean that such particles would
not be detectable in the foreseeable future. Nevertheless, the “decoupling” of
the large KK state masses do explain the basic structure of the KK metric
ansatz—the x5 independence of the metric elements.

Since only the n = 0 state is physically relevant, we have from Eqs. (17.30)
and (17.29) the approximation

φ
(
xμ, x5

) = φ0
(
xμ
)

(17.33)

and the x5 dependence of the theory disappears.
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17.4 Further theoretical developments

We have presented the Kaluza–Klein theory as an illustration of Einstein’s uni-
fied field theory. While it is an example of unification of fundamental forces, it
certainly does not have a bearing on Einstein’s loftier goal of a unified theory
that would explain the mystery of quantum physics. In fact KK theory makes
use of conventional quantum mechanics in extracting physical consequences
of a compactified spatial dimension.

Extending the original Kaluza–Klein theory
Scalar–tensor gravity theory Even restricted to the original theory, there is
no strong theoretical argument for setting the metric element g55 = 1. A more
natural alternative is to replace it by a field. This would lead to a scalar–tensor
theory of gravity, for which there is no experimental support.

From a circle to Calabi–Yau space From a modern perspective, the KK the-
ory cannot be a complete unified theory because the list of fundamental forces
must be expanded beyond the gravitational and electromagnetic interactions: it
must at least include the strong and weak particle interactions.1111In this connection, we note that Oskar Klein

in the late 1930s constructed a 5D theory
that attempted to include not only gravity and
electromagnetism, but also Yukawa-meson-
mediated nuclear forces. Although he did
not explicitly consider any nonabelian gauge
symmetry, his theory had foreshadowed the
later development of Yang–Mills theory, in
particular, charged gauge bosons, etc. He
presented these results in a 1938 conference
held in Warsaw, but never published them
formally. For an appreciation of this 1938
contribution see Gross (1995).

Nevertheless,
the modern development of particle physics has led to the discovery of super-
string theory as a possible quantum gravity theory that has the potential to
unify all fundamental forces. What is most relevant for our discussion here is
the finding that the self-consistency requirement of superstring theory requires
a spacetime to have 10 dimensions. Thus what is needed is not just one extra
dimension curled into a very small circle but six extra dimensions into a more
complicated geometric entity. A much discussed compactification scheme is
the Calabi–Yau space.12

12For a comprehensive and nontechnical dis-
cussion, see Yau and Nadis (2010).

In short, the spirit of Einstein’s unification program,
especially in the form of Kaluza–Klein extra dimensions, is being carried on in
the foremost theoretical physics research of the twenty-first century.

Speculations of a large extra dimension As the current thinking of unific-
ation theory is directly related to the quest for quantum gravity, the natural
unification distance scale is thought to be the Planck length, which is some-
thing like nine orders of magnitude smaller than the highest accelerator can
probe. This makes an experimental test of such theories extremely difficult.
Yet researchers have found the whole idea of extra dimensions so attractive
that there have been serious speculations on the possibility that the compacti-
fication scale is much larger than the Planck size. Maybe the extra dimension
is on the electroweak scale that can possibly be revealed in experiments being
performed at the Large Hadron Collider. These are intriguing speculations that
are being actively pursued.

17.4.1 Lessons from Maxwell’s equations

In this book we have repeatedly discussed the importance of Maxwell’s equa-
tions. We will conclude our presentation by recalling the important lessons that
we have learnt from the structure of these equations:



17.5 SuppMat: Calculating the 5D tensors 293

• The idea of the photon and quantum theory, brought forth through a deep
statistical thermodynamic study of electromagnetic radiation.

• Einstein’s principle of relativity, that taught us that the arena of physics
is 4D spacetime; this paved the way for a geometric understanding of
gravitation.

• The idea of local symmetry in the charge space, leading eventually to the
viewpoint that all fundamental interactions have a connection with gauge
symmetry.

• Finally, the possibility that spacetime has extra dimensions. This may be
the origin of the charge space.

17.4.2 Einstein and mathematics

“Mathematics is the language of physics.” Such a statement implies a rather
passive role for mathematics. In fact this language has often led the way in
opening up new understanding in physics. This is one of the powerful les-
sons that one gathers from the history of theoretical physics; this account of
Einstein’s physics, we believe, confirms this opinion too. Clearly Einstein’s
discovery that Riemannian geometry offers a truer description of nature is a
brilliant example of such a role. One aspect of Einstein’s scientific biography
can be viewed as the story of his growing appreciation of the role of math-
ematics: starting from his skepticism of higher mathematics, doubting the
usefulness of Minkowski’s geometric formulation of special relativity to the
role that Riemannian geometry played in the implementation of the general
principle of relativity—first learning the new mathematics with the help of
Marcel Grossmann and the eventual discovery of the GR field equation after
much struggle on his own. In the process, Einstein became greatly appreciative
of the role of mathematics as fundamental in setting up new physical theory.
Finding the correct mathematical structure to describe the physical concepts,
and postulating the simplest equation compatible with that structure, are all key
elements in the invention of new theories.

That Einstein had not made more advances in his unified field theory
program may also imply that this great physicist was after all not a com-
parably great mathematician (like the case of Newton). One probably needs
to invent new mathematics in order to forge progress in such a pursuit.13 13In this connection see the comments made

by Roger Penrose in the new Forward he
wrote in the 2005 re-issue of Pais (1982).

It is also interesting to observe the important contributions that mathem-
aticians have made in furthering Einstein’s vision: Hermann Weyl’s gauge
symmetry program and Theodor Kaluza’s 5D GR leading to the ‘Kaluza–Klein
miracle’.

17.5 SuppMat: Calculating the 5D tensors

Here we provide the details of calculating the 5D tensors in terms of the grav-
itational potential gμν and electromagnetic potential Aμ—all based on the KK
metric prescription given by (17.11).
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17.5.1 The 5D Christoffel symbols

The 5D Christoffel symbols �̂M
NL are first-order derivatives of the 5D metric

(17.16). They have six distinctive types of terms:

�̂
μ
νλ, �̂5

νλ, �̂
μ

5λ, �̂5
5λ, �̂

μ

55, �̂5
55.

We shall calculate them in terms of the 4D metric gμν , the electromagnetic
potential Aμ, and the field tensor Fμν = ∂μAν − ∂νAμ.

The components 	̂
μ
νλ

According to (17.16), with M = μ, N = ν, L = λ, we have

�̂
μ
νλ =

1

2
ĝμK (∂ν ĝλK + ∂λĝνK − ∂Kĝνλ)

= 1

2
ĝμρ
(
∂ν ĝλρ + ∂λĝνρ − ∂ρ ĝνλ

)
+ 1

2
ĝμ5 (∂ν ĝλ5 + ∂λĝν5 − ∂5ĝνλ) . (17.34)

Plugging in the Kaluza metric components of (17.11) and (17.14), we find the
first term on the RHS is just the 4D Christoffel symbols �μ

νλ with an extra
term coming from that fact that ĝμν − gμν = AμAν , while in the second term
we have ∂5ĝνλ = 0 because the Kaluza metric elements are independent of the
extra coordinate x5.

�̂
μ
νλ = �

μ
νλ +

1

2
gμρ
[
∂ν
(
AλAρ

)+ ∂λ
(
AνAρ

)− ∂ρ
(
AνAλ

)]
− 1

2
Aμ
(
∂νAλ + ∂λAν

)
. (17.35)

The first two terms in the square bracket on the RHS can be written out as

1

2
gμρ
[
∂ν
(
AλAρ

)+ ∂λ
(
AνAρ

)]
= 1

2
gμρ
[(
∂νAλ

)
Aρ + Aλ

(
∂νAρ

)+ (∂λAν

)
Aρ + Aν

(
∂λAρ

)]
= 1

2

[(
∂νAλ

)
Aμ + gμρAλ

(
∂νAρ

)+ (∂λAν

)
Aμ + gμρAν

(
∂λAρ

)]
. (17.36)

The first and third terms in this last square bracket just cancel the last term on
the RHS of (17.35). On the other hand the last term in the square bracket on
the RHS of (17.35), when expanded,

−1

2
gμρ∂ρ

(
AνAλ

) = −1

2
gμρ
[(
∂ρAν

)
Aλ + Aν

(
∂ρAλ

)]
(17.37)

can be combined with the second and fourth terms on the RHS of (17.36) to
yield

1

2
gμρ
[(
∂νAρ − ∂ρAν

)
Aλ +

(
∂λAρ − ∂ρAλ

)
Aν

] = −1

2
gμρ
(
FρνAλ + FρλAν

)
.
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All this leads to

�̂
μ
νλ = �

μ
νλ −

1

2
gμρ
(
FρνAλ + FρλAν

)
. (17.38)

Later on we shall also need the Christoffel symbols �̂μ
νλ with a pair of indices

summed over:

�̂μ
νμ = �μ

νμ −
1

2
gμρ
(
FρνAμ + FμρAν

)
.

The very last factor vanishes because of the opposite symmetry properties of
the two tensors: gμρFμρ = 0. Expanding out �μ

νμ, we then have

�̂μ
νμ =

1

2
gμρ
(
∂νgμρ + ∂μgνρ − ∂ρgνμ − FρνAμ

)
.

The two middle terms cancel, gμρ
(
∂μgνρ − ∂ρgνμ

) = 0, and this leads to

�̂μ
νμ =

1

2
gμρ∂νgμρ − 1

2
AμFμ

ν . (17.39)

The components 	̂5
νλ

According to (17.16), with M = 5, N = ν, L = λ,

�̂5
νλ =

1

2
ĝ5K
(
∂ν ĝλK + ∂λĝνK − ∂Kĝνλ

)
= 1

2
ĝ5ρ
(
∂ν ĝλρ + ∂λĝνρ − ∂ρ ĝνλ

)
+ 1

2
ĝ55
(
∂ν ĝλ5 + ∂λĝν5 − ∂5ĝνλ

)
. (17.40)

Plugging in the Kaluza metric components of (17.11) and (17.14), and noting
∂5ĝνλ = 0, we have

�̂5
νλ = −Aρ�ρνλ − 1

2
Aρ
[
∂ν
(
AλAρ

)+ ∂λ
(
AνAρ

)− ∂ρ
(
AλAν

)]
+ 1

2

(
1+ AσAσ

)(
∂νAλ + ∂λAν

)
. (17.41)

The first two terms in the square bracket can be written out as

−1

2
Aρ
[
∂ν
(
AλAρ

)+ ∂λ
(
AνAρ

)]
= 1

2

[−AρAρ

(
∂νAλ

)− Aρ
(
∂νAρ

)
Aλ − AρAρ

(
∂λAν

)− Aρ
(
∂λAρ

)
Aν

]
.

We note that the first and third terms on the RHS just cancel the last two terms
on the RHS of (17.41). The remaining second and fourth terms combine with
the last term in the square bracket of (17.41)
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−1

2
Aρ
[(
∂νAρ

)
Aλ +

(
∂λAρ

)
Aν − ∂ρ

(
AλAν

)]
−1

2
Aρ
[(
∂νAρ

)
Aλ −

(
∂ρAν

)
Aλ +

(
∂λAρ

)
Aν −

(
∂ρAλ

)
Aν

]
= −1

2
Aρ
[
FνρAλ + FλρAν

]
. (17.42)

Equation (17.41) then becomes

�̂5
νλ = −Aρ�ρνλ − 1

2
Aρ
[
FνρAλ + FλρAν

]+ 1

2
Bνλ (17.43)

where

Bνλ = ∂νAλ + ∂λAν . (17.44)

The components 	̂
μ

5λ

According to (17.16), with M = μ, N = 5, L = λ,

�̂
μ

5λ =
1

2
ĝμK
(
∂5ĝλK + ∂λĝ5K − ∂Kĝ5λ

)
. (17.45)

With ∂5ĝλK = 0 and separating the K-index summation into a K = ρ sum and
a K = 5 sum:

�̂
μ

5λ =
1

2
ĝμρ
(
∂λĝ5ρ − ∂ρ ĝ5λ

)+ 1

2
ĝμ5
(
∂λĝ55 − ∂5ĝ5λ

)
. (17.46)

Again we have ∂5ĝ5λ = 0 and as ĝ55 = 1 so that ∂λĝ55 = 0;

�̂
μ

5λ =
1

2
gμρ
(
∂λAρ − ∂ρAλ

) = 1

2
gμρFλρ = −1

2
Fμ
λ . (17.47)

Recall from Section 17.3.1 that it is this simple relation that has motivated
the original ansatz for the KK metric. Furthermore we note that the sum over
the indices μ and λ in �̂

μ

5λ vanishes because gμρ is symmetric and Fμρ is
antisymmetric:

�̂
μ

5μ =
1

2
gμρFμρ = 0. (17.48)

The components 	̂5
5λ

Following the same steps leading to (17.47), we now calculate the M = 5,
L = λ, and μ = 5 element:

�̂5
5λ =

1

2
g5ρ
(
∂λAρ − ∂ρAλ

) = −1

2
FλρAρ . (17.49)

The components 	̂
μ

55 and 	̂5
55

According to (17.46), with λ = 5, we have

�̂
μ

55 =
1

2
ĝμρ
(
∂5ĝ5ρ − ∂ρ ĝ55

) = 0 (17.50)

for the same reason that the last factor in (17.46) vanishes.
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Similarly, with λ = 5, Eq. (17.49) becomes

�̂5
55 =

1

2
g5ρ
(
∂5Aρ − ∂ρ ĝ55

) = 0. (17.51)

Collecting all the �̂M
NL components in one place, we have from (17.38),

(17.43), (17.47), (17.49), (17.50), and (17.51):

�̂
μ
νλ = �

μ
νλ −

1

2

(
Fμ
ν Aλ + Fμ

λ Aν

)
�̂5
νλ = −Aρ�

ρ
νλ −

1

2
Aρ
(
FνρAλ + FλρAν

)+ 1

2
Bνλ

�̂
μ

5λ = −
1

2
Fμ
λ (17.52)

�̂5
5λ = −

1

2
FλρAρ

�̂
μ

55 = �̂5
55 = 0.

17.5.2 The 5D Ricci tensor components

Knowing the Christoffel symbols, we are ready to calculate the Ricci tensor
R̂MN according to Eq (17.18).

The 5D Ricci tensor components R̂μν

There are two pairs of repeated indices, L and T in (17.18). We will now con-
sider the separate cases when they take on 4D values of L = λ and T = τ , or
the extra dimensional value of 5.

1. L = λ and T = τ :(
R̂μν

)
1 = ∂λ�̂

λ
μν︸ ︷︷ ︸

(1)

−∂ν�̂λ
μλ︸ ︷︷ ︸

(2)

+ �̂λ
λτ �̂

τ
μν︸ ︷︷ ︸

(3)

−�̂λ
ντ �̂

τ
μλ︸ ︷︷ ︸

(4)

. (17.53)

2. L = 5 and T = τ :(
R̂μν

)
2 = ∂5�̂

5
μν−∂ν�̂5

μ5︸ ︷︷ ︸
(5)

+ �̂5
5τ �̂

τ
μν︸ ︷︷ ︸

(6)

−�̂5
ντ �̂

τ
μ5︸ ︷︷ ︸

(7)

. (17.54)

3. L = λ and T = 5: (
R̂μν

)
3 = �̂λ

λ5�̂
5
μν−�̂λ

ν5�̂
5
μλ︸ ︷︷ ︸

(7)

. (17.55)

4. L = T = 5: (
R̂μν

)
4 = �̂5

55�̂
5
μν−�̂5

ν5�̂
5
μ5︸ ︷︷ ︸

(8)

. (17.56)

Out of the 12 terms on the RHS, three terms vanish: besides the absence of
the x5 dependence ∂5�̂

5
μν = �̂5

55�̂
5
μν = 0, we also have �̂λ

λ5�̂
5
μν = 0 because,
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according to (17.52), �̂λ
λ5 = − 1

2 Fλ
λ = 0. Furthermore, the last term in (17.55)

may be written as

−�̂λ
ν5�̂

5
μλ = −�̂5

μλ�̂
λ
ν5 = −�̂5

μτ �̂
τ
ν5

where we reach the last expression by changing the labels of the dummy
indices from λ to τ . This makes it clear that this term is really the same as
the last term in (17.54); they are symmetrized with respect to the indices (μ, ν)
which is justified because the Ricci tensor R̂μν must be symmetric. As a res-
ult, altogether we have eight distinctive terms—four from (17.53), three from
(17.54), and one from (17.56).

In the following we shall substitute into these eight terms the expression
of �̂ as given in (17.52). Keep in mind that, in the first four terms, term 1 to
term 4, the 4D �s in the 5D �̂ just combine to form the 4D Ricci tensor Rμν .
For the remaining terms, we have

(1) The ∂λ	̂
λ
μν term:

∂λ�̂
λ
μν = −

1

2
∂λ
(
Fλ
μAν + Fλ

νAμ

)
= −1

2

(
Aν∂λFλ

μ + Aμ∂λFλ
ν + Fλ

μ∂λAν + Fλ
ν ∂λAμ

)
. (17.57)

(2) The −∂ν	̂
λ
μλ term:

−∂ν�̂λ
μλ =

1

2
∂ν
(
Fλ
μAλ + Fλ

λAμ

) = 1

2

(
Aλ∂νFλ

μ + Fλ
μ∂νAλ

)
. (17.58)

(3) The 	̂λ
λτ 	̂

τ
μν term:

�̂λ
λτ �̂

τ
μν = −

1

2

(
Fλ
λAτ + Fλ

τAλ

)
�τ
μν −

1

2
�λ
λτ

(
Fτ
μAν + Fτ

νAμ

)
+ 1

4

(
Fλ
λAτ + Fλ

τAλ

)(
Fτ
μAν + Fτ

νAμ

)
= −1

2
Aλ�

τ
μνFλ

τ −
1

2
Aν�

λ
λτFτ

μ −
1

2
Aμ�

λ
λτFτ

ν

+ 1

4
Fλ
τFτ

μAλAν + 1

4
Fλ
τFτ

νAλAμ. (17.59)

(4) The −	̂λ
ντ 	̂

τ
μλ term:

−�̂λ
ντ �̂

τ
μλ =

1

2

(
Fλ
νAτ + Fλ

τAν

)
�τ
μλ +

1

2
�λ
ντ

(
Fτ
μAλ + Fτ

λAμ

)
− 1

4

(
Fλ
νAτ + Fλ

τAν

)(
Fτ
μAλ + Fτ

λAμ

)
= 1

2

(
Aτ�

τ
μλFλ

ν + Aν�
τ
μλFλ

τ + Aλ�
λ
ντFτ

μ + Aμ�
λ
ντFτ

λ

)
−1

4

(
Fλ
νFτ

μAτAλ + Fλ
τFτ

μAνAλ + Fλ
τFτ

λAνAμ + Fλ
νFτ

λAτAμ

)
.

(17.60)
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(5) The −∂ν	̂
5
μ5 term:

−∂ν�̂5
μ5 =

1

2
∂ν
(
FμτAτ

) = 1

2
Aτ ∂νFμτ + 1

2
Fμτ ∂νAτ . (17.61)

(6) The 	̂5
5τ 	̂

τ
μν term:

�̂5
5τ �̂

τ
μν = −

1

2
FτρAρ�τ

μν +
1

4
FτρAρ

(
Fτ
μAν + Fτ

νAμ

)
= −1

2
Aλ�τ

μνFτλ − 1

4
FλτFτ

μAλAν − 1

4
FλτFτ

νAλAμ. (17.62)

(7) The −2	̂5
ντ 	̂

τ
μ5 term:

−2�̂5
ντ �̂

τ
μ5 = −Aρ�

ρ
ντFτ

μ −
1

2
Aρ
(
FνρAτ + FτρAν

)
Fτ
μ +

1

2
BντFτ

μ

= −Aρ�
ρ
ντFτ

μ −
1

2
FνρFτ

μAρAτ

−1

2
FτρFτ

μAρAν + 1

2
Fτ
μBντ . (17.63)

(8) The −	̂5
ν5	̂

5
μ5 term:

−�̂5
ν5�̂

5
μ5 = −

1

4
FνρFμλAρAλ. (17.64)

Collecting all terms of the type F∂A: the last two terms in (17.57), one from
(17.58), one from (17.61), and one from (17.63), we have

−1

2
Fλ
μ∂λAν − 1

2
Fλ
ν ∂λAμ + 1

2
Fλ
μ∂νAλ + 1

2
Fμτ ∂νAτ + 1

2
Fτ
μBντ . (17.65)

The fourth term may be rewritten as follows

1

2
Fμτ ∂νAτ = −1

2
Fτμ∂νAτ = −1

2
Fλ
μ∂νAλ

which just cancels the third term in (17.65). For the remaining terms, after
using (17.44), we have

−1

2
Fλ
μ∂λAν − 1

2
Fλ
ν ∂λAμ + 1

2
Fλ
μ∂νAλ + 1

2
Fλ
μ∂λAν

= −1

2
Fλ
ν ∂λAμ + 1

2
Fλ
μ∂νAλ

= −1

2
Fλ
ν ∂λAμ + 1

2
Fλ
ν ∂μAλ − 1

2
Fλ
ν ∂μAλ + 1

2
Fλ
μ∂νAλ

= −1

2
Fλ
νFλμ (17.66)

where the final result comes from the combination of the first two terms; we
drop the last two terms because they are antisymmetric with respect to (μ, ν)
as the Ricci tensor must be symmetric.
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Collecting all terms of the type FFAA: the last two terms in (17.59), the last
four from (17.60), the last two from (17.62), two from (17.63), and one from
(17.64), we have (not displaying the common 1/4 coefficients)

Fλ
τFτ

μAλAν + Fλ
τFτ

νAλAμ − Fλ
νFτ

μAτAλ − Fλ
τFτ

μAνAλ

−Fλ
τFτ

λAνAμ − Fλ
νFτ

λAτAμ − FλτFτ
μAλAν − FλτFτ

νAλAμ

−2FνρFτ
μAρAτ − 2FτρFτ

μAρAν − FνρFμλAρAλ. (17.67)

Grouping similar terms

Fλ
τFτ

μAλAν − Fλ
τFτ

μAνAλ − FλτFτ
μAλAν − 2FτρFτ

μAρAν

= −FλτFτ
μAλAν + 2FλτFτ

μAλAν = FλτFτ
μAλAν , (17.68)

and

Fλ
τFτ

νAλAμ − Fλ
νFτ

λAτAμ − FλτFτ
νAλAμ = −FλτFτ

νAλAμ, (17.69)

again we note that the results from (17.68) and (17.69) form an antisymmetric
combination in (μ, ν), hence can be dropped. After eliminating seven out of the
11 terms in (17.67) we have four left, with three of them mutually canceling:

−Fλ
νFτ

μAτAλ − 2FνρFτ
μAρAτ − FνρFμλAρAλ

= −Fλ
νFτ

μAτAλ + 2Fτ
νFλ

μAτAλ − Fτ
νFλ

μAτAλ = 0.

The only nonvanishing term from (17.67) is (and putting back the 1/4 factor)

−1

4
Fλ
τFτ

λAνAμ = 1

4
FλτFλτAνAμ. (17.70)

Collecting the remaining terms from (17.57)–(17.64), we have (not display-
ing the common −1/2 coefficients)

Aν∂λFλ
μ + Aμ∂λFλ

ν−Aλ∂νFλ
μ←−−−−→
+Aλ�

τ
μνFλ

τ︸ ︷︷ ︸+Aν�
λ
λτFτ

μ

+Aμ�
λ
λτFτ

ν−Aτ�
τ
μλFλ

ν − Aν�
τ
μλFλ

τ−Aλ�
λ
ντFτ

μ

−Aμ�
λ
ντFτ

λ−Aτ ∂νFμτ←−−−−−→+Aλ�τ
μνFτλ︸ ︷︷ ︸+ 2Aρ�

ρ
ντFτ

μ. (17.71)

The terms with the same underlines in (17.71) mutually cancel; we are left with
six terms that can be grouped into two combinations (putting back the −1/2
coefficients):

−1

2

(
Aν∂λFλ

μ − Aν�
τ
μλFλ

τ + Aν�
λ
λτFτ

μ

) = −1

2
AνDλFλ

μ (17.72)

and

−1

2

(
Aμ∂λFλ

ν − Aμ�
λ
ντFτ

λ + Aμ�
λ
λτFτ

ν

) = −1

2
AμDλFλ

ν (17.73)

where Dλ is the covariant derivative.14

14Recall from Eq. (13.43) that the covariant
derivative of a tensor with multiple indices
(i.e. tensor of higher rank) has a Christoffel
factor for each index.
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Collecting the results from (17.66), (17.70), (17.72), and (17.73) we have,
after putting back the Rμν discussed just before our calculation of the factors
(1)–(8),

R̂μν = Rμν − 1

2
Fλ
νFλμ + 1

4
FλτFλτAνAμ − 1

2

(
AνDλFλ

μ + AμDλFλ
ν

)
. (17.74)

The 5D Ricci tensor components R̂5ν and R̂55

Equation (17.18) with M = 5 and N = ν can now be written as

R̂5ν = ∂L�̂
L
5ν − ∂ν�̂

L
5L + �̂L

LT �̂
T
5ν − �̂L

νT �̂
T
5L. (17.75)

There are two pairs of repeated indices, L and T . We will now consider the
separate cases when they take on 4D values of L = λ and T = τ , or the extra
dimensional index value of 5.

1. L = λ and T = τ:(
R̂5ν
)

1 = ∂λ�̂
λ
5ν − ∂ν�̂

λ
5λ + �̂λ

λτ �̂
τ
5ν − �̂λ

ντ �̂
τ
5λ. (17.76)

2. L = 5 and T = τ:(
R̂5ν
)

2 = ∂5�̂
5
5ν − ∂ν�̂

5
55 + �̂5

5τ �̂
τ
5ν︸ ︷︷ ︸− �̂5

ντ �̂
τ
55. (17.77)

3. L = λ and T = 5: (
R̂5ν
)

3 = �̂λ
λ5�̂

5
5ν − �̂λ

ν5�̂
5
5λ︸ ︷︷ ︸ . (17.78)

4. L = T = 5: (
R̂5ν
)

4 = �̂5
55�̂

5
5ν − �̂5

ν5�̂
5
55. (17.79)

Those with straight underlines will individually vanish by themselves,
while the two with braces under them cancel each other. We are left with

R̂5ν = ∂λ�̂
λ
5ν + �̂λ

λτ �̂
τ
5ν − �̂λ

ντ �̂
τ
5λ. (17.80)

According to (17.52), �̂λ
5ν = − 1

2 Fλ
ν and �̂λ

ντ = �λ
ντ − 1

2

(
Fλ
νAτ + Fλ

τAν

)
so that �̂λ

νλ = �λ
νλ − 1

2

(
Fλ
νAλ + Fλ

λAν

) = �λ
νλ − 1

2 Fλ
νAλ, and we have,

when adding up all the nonvanishing terms from (17.76) to (17.79),

R̂5ν = −1

2

(
∂λFλ

ν + �λ
λτFτ

ν − �λ
ντFτ

λ

)
+ 1

4
AλFλ

τFτ
ν −

1

4

(
Fλ
νAτ + Fλ

τAν

)
Fτ
λ

= −1

2
DλFλ

ν −
1

4
AνFλ

τFτ
λ (17.81)

because two middle terms cancel each other.
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Finally, we need to calculate R̂55. Just setting ν = 5 in (17.80) we have

R̂55 = ∂λ�̂
λ
55 + �̂λ

λτ �̂
τ
55 − �̂λ

5τ �̂
τ
5λ. (17.82)

Since �̂λ
55 = 0, we obtain the simple expression

R̂55 = −1

4
Fλ
τFτ

λ = +
1

4
FμνFμν . (17.83)

17.5.3 From 5D Ricci tensor to 5D Ricci scalar

Separating out the 5D spacetime index M = (μ, 5) into the 4D plus the extra
dimensional indices, the Ricci scalar of (17.19) is seen to be composed of three
terms:

R̂ = ĝMNR̂MN = ĝμνR̂μν + 2ĝ5ν R̂5ν + ĝ55R̂55. (17.84)

Collecting all the R̂MN components in one place, we have from (17.74), (17.81),
and (17.83):

R̂μν = Rμν − 1

2
Fλ
νFλμ + 1

4
FλτFλτAνAμ − 1

2

(
AνDλFλ

μ + AμDλFλ
ν

)
R̂5ν = −1

2
DλFλ

ν −
1

4
AνFλ

τFτ
λ (17.85)

R̂55 = +1

4
FμνFμν .

From Eqs. (17.84) and (17.85) and the inverse metric elements of (17.14), we
have for the 5D Ricci scalar

R̂ = ĝμν R̂μν + 2ĝ5ν R̂5ν + ĝ55R̂55

= gμν
[

Rμν − 1

2
Fλ
νFλμ + 1

4
FλτFλτAνAμ − 1

2

(
AνDλFλ

μ + AμDλFλ
ν

)]

+AνDλFλ
ν +

1

2
AνAνFλ

τFτ
λ +

1

4

(
1+ AλAλ

)
FμνFμν . (17.86)

The F2A2 terms cancel
1

4
FλτFλτAνAν + 1

2
AνAνFλτFτλ + 1

4
AλAλFμνFμν = 0. (17.87)

The ADF terms cancel because

−1

2
gμν
(
AνDλFλ

μ + AμDλFλ
ν

)+ AνDλFλ
ν

= −1

2
AμDλFλ

μ −
1

2
AνDλFλ

ν + AνDλFλ
ν = 0. (17.88)

Remarkably, with the Kaluza postulate for the 5D metric ĝMN of (17.11), the
resultant 5D Ricci scalar (17.86) reduces to the simple expression of (17.20):

R̂ = R− 1

4
FμνFμν . (17.89)

Some people call this the Kaluza–Klein miracle.




