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• Einstein advanced the first satisfactory theory of Brownian motion—
the jiggling motion of suspended particles in a liquid as seen under a
microscope. It provides us with direct visual evidence for the existence
of the point-like structure of matter. The theory suggests that we can see
with our own eyes the molecular thermal motion.

• The Brownian motion paper may be viewed as part of Einstein’s doc-
toral dissertation work on the atomic structure of matter; it continues
his pursuit of the idea that particles suspended in a fluid behave like
molecules in solution. The motion of a Brownian particle is governed
by the diffusion equation.

• Einstein was the first to provide a statistical derivation of the diffusion
equation. From its solution one can calculate its variance, showing dif-
fusion as fluctuations of a discrete system, like the prototype case of
random walks. The mean-square displacement of a Brownian particle
is related to the diffusion coefficient as 〈x2〉 = 2Dt.

• The Einstein–Smoluchowski relation (already discussed in the previ-
ous chapter) between diffusion and viscosity, D = kBT/(6πηP) with η
being the viscosity coefficient, is the first fluctuation–dissipation rela-
tion ever noted. This theory not only illuminates diffusion but also
explains friction by showing that they both spring from the same
underlying thermal process.

• Verification of Einstein’s theory came about through the painstaking
experimental work of Jean Perrin. This work provided another means
to measure the molecular size P and Avogadro’s number NA. It finally
convinced everyone, even the skeptics, of the reality of molecules.

Eleven days after Einstein completed his thesis on April 20, 1905, he sub-
mitted this “Brownian motion paper” to Annalen der Physik (Einstein 1905c).
This paper can be regarded as part of Einstein’s dissertation research and it
represents the culmination of his study of atomic structure of matter (extend-
ing back at least to 1901) by explaining the Brownian motion. To many of us,
before the advent of (field-ion) “atomic” microscopes in the 1960s, the most
direct visual evidence for atoms’ existence was viewing the jiggling motion of
suspended particles (e.g. pollen) in a liquid, as seen under a microscope. This
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Fig. 2.1 The zigzag motion of Brownian
particles as sketched by Perrin, at 30-second
intervals. The grid size is 3.2µ and the radius
of the particle is 0.53µ. Reproduction of
Fig. 6 in Perrin (1909).

“Brownian motion” was originally discussed in 1827 by botanist Robert Brown
(1773–1858). Although it was suggested soon afterwards that such Brownian
motion is an outward manifestation of the molecular motion postulated by the
kinetic theory of matter, it was not until 1905 that Einstein was finally able to
advance a satisfactory theory.

Einstein pioneered several research directions in his Brownian motion paper.
In particular he argued that, while thermal forces change the direction and mag-
nitude of the velocity of a suspended particle on such a small time-scale that it
cannot be measured, the mean-square displacement (the overall drift) of such a
particle is an observable quantity, and can be calculated in terms of molecular
dimensions. One cannot but be amazed by the fact that Einstein found a phys-
ics result so that a careful measurement of this zigzag motion (see Fig. 2.1)
through a simple microscope would allow us to deduce Avogadro’s number!

It is also interesting to note that the words “Brownian motion” did not appear
in the title of Einstein’s paper (Einstein 1905c), even though he conjectured that
the motion he predicted was the same as Brownian motion. He was prevented
from being more definitive because he had no access then to any literature
on Brownian motion. One should remember that in 1905 Albert Einstein was a
patent office clerk in Bern and did not have ready access to an academic library
and other research tools typically associated with a university.

2.1 Diffusion and Brownian motion

Einstein argued that the suspended particles in a liquid, differing in their stat-
istical and thermal behavior from molecules only in their sizes, should obey
the same diffusion equation that describes the chaotic thermal motion of the
liquid’s constituent molecules. Here we follow Einstein in his derivation of the
Brownian motion equation and show that it is just the diffusion equation.
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2.1.1 Einstein’s statistical derivation of the diffusion
equation

Einstein assumed that each individual particle executes a motion that is inde-
pendent of the motions of all the other particles; the motions of the same
particle in different time intervals are also mutually independent processes,
so long as these time intervals are chosen not to be too small. For simplicity of
presentation, we will work in a one-dimensional (1D) model. One is interested
in the displacement x(t) after the particle makes a large number (N) of discrete
displacement steps of size � in a time interval τ . The probability density fτ (�)
is introduced as

fτ (�)d� = dN

N
, or dN = Nfτ (�)d�. (2.1)

The probability should clearly be the same whether the step is taken in the
forward or backward direction: fτ (�) = fτ (−�).

Let ρ(x, t) be the number of particles per unit volume. One can then calculate
the distribution at time t + τ from the distribution at time t. The change of
particle density at the spatial interval (x, x+ dx) is due to particles flowing in
from both directions (hence the ±∞ limits),

ρ(x, t + τ ) =
∫ +∞

−∞
ρ(x+�, t)fτ (�)d�. (2.2)

One then makes Taylor series expansions on both sides of this equation, the
LHS being

ρ(x, t + τ ) = ρ(x, t)+ τ
∂ρ(x, t)

∂t
+ · · · (2.3)

and the RHS being∫ +∞

−∞

[
ρ(x, t)+�

∂ρ(x, t)

∂x
+ �2

2!
∂2ρ(x, t)

∂x2
+ · · ·

]
fτ (�)d�

= ρ(x, t)+
[∫ +∞

−∞
�2

2
fτ (�)d�

]
∂2ρ(x, t)

∂x2
+ · · · (2.4)

where we have used the conditions that the probability must add to unity and
fτ (�) is an even function of �:∫ +∞

−∞
fτ (�)d� = 1, and

∫ +∞

−∞
�fτ (�)d� = 0. (2.5)

Equating the leading terms of both the LHS and RHS, we obtain the diffusion
equation

∂ρ

∂t
= D

∂2ρ

∂x2
, (2.6)

with the diffusion coefficient being related to the probability density as

D = 1

2τ

∫ +∞

−∞
�2fτ (�)d�. (2.7)
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In practice D can be obtained from experiment. We should remark that the
fundamental assumption in this derivation is that fτ (�) depends only on �, not
on previous history. Such a process we now call “Markovian” in the study of
random processes. Einstein’s Brownian investigation is one of the pioneering
papers laying the foundation for a formal theory of stochastic processes.

In Chapter 1 we defined the diffusion coefficient D through (1.23) as
opposed to its introduction in Eq. (2.6). Their equivalence can be demonstrated
by taking the gradient of both terms in Fick’s first law (1.23) and turning the
equation into (2.6), sometimes called Fick’s second law, by using the equation
of continuity (written in 1D form again for simplicity1 1Just as the continuity equation in 3D is writ-

ten as ∂tρ + ∇ · ρv = 0, Fick’s second law
has the 3D form of ∂tρ = D∇2ρ.

)

∂ρ

∂t
+ ∂ρv

∂x
= 0. (2.8)

Fig. 2.2 Density distribution plotted for vari-
ous values of t. At t = 0 it is a delta func-
tion at x = 0; as t increases, the distribution
becomes broader and spreads out.

2.1.2 The solution of the diffusion equation
and the mean-square displacement

The solution to the diffusion equation (2.6) is a Gaussian distribution (Exercise:
check that this is the case)

ρ(x, t) = 1√
4πDt

e−x2/4Dt (2.9)

which is a bell-shaped curve, peaked at x = 0. Initially (t = 0) the density func-
tion is a Dirac delta function ρ(x) = δ(x = 0); as t increases, the height of this
peak, still centered around x = 0, shrinks but the area under the curve remains
unchanged. In other words, the probability of finding the particle away from
the origin (as given by the density ρ) increases with time. There is, on the aver-
age, a drift motion away from the origin (cf. Fig. 2.2). One can easily check
that it is properly normalized using the familiar result of Gaussian integrals (cf.
Appendix A.2).

Clearly the curve in Fig. 2.2 is symmetric with respect to ±x. This implies
a vanishing average displacement 〈x〉 = 0. But we have a nonzero mean-
square displacement (the variance) that monotonically increases with time
[cf. Eq. (A.44)]:

〈
x2
〉 = ∫ ∞

−∞
x2ρdx = 2Dt. (2.10)

We note that
〈
x2
〉

is just the width of the Gaussian distribution. Thus the broad-
ening of the bell-shaped curve with time (as shown in Fig. 2.2) just reflects the
increase of the mean-square displacement.

The basic point is that while the fluid density represents the overall coarse
(i.e. averaged) description of the underlying molecular motion, still, once the
density function is known, the fluid fluctuation of such motion, like the root-
mean-square (i.e. the variance) displacement, can then be calculated. Such a
fluctuation property shows up as an observable drift motion of the immersed
Brownian particles.
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2.2 Fluctuations of a particle system

To substantiate the claim that Brownian motion is evidence of the point-
like structure of matter, we now directly connect this Gaussian distribution
(2.9) and the mean-square displacement (2.10) to the fluctuations of a particle
system.22This is to be contrasted with the fluctu-

ation of a system of waves to be discussed in
Section 6.5.

Random walks being the prototype of a discrete system, we first
discuss the fluctuation phenomenon associated with this system.

2.2.1 Random walk

Consider a particle moving in one dimension at regular time intervals in steps
of equal size. At each instance it moves forward and backward at random. Let a
walk of N steps end at k steps from the initial point. F is the number of forward
steps and B the backward steps. Thus F + B = N and F − B = k. After a large
number of such walks (each ends at a different position), one is interested in
the distribution of the end-point positions. Namely, we seek the probability
p(k, N) of finding the particle at k steps from the origin after making N steps.
Since at each step one makes a two-valued choice, there are a total 2N possible
outcomes; the probability is evidently

p(k, N) = N!/F!B!
2N

= 2−NN!(
N+k

2

)! (N−k
2

)! . (2.11)

Since we expect the result to have the form of an exponential, we proceed by
first taking the logarithm of this expression,

ln p = −N ln 2+ ln N! − ln

(
N + k

2

)
! − ln

(
N − k

2

)
!.

Using Stirling’s formula33See Section A.3 for a proof of Stirling’s
formula.

of ln X! � X ln X − X for large X, we have

ln p = −N ln 2+ N ln N − N −
(

N + k

2

)
ln

(
N + k

2

)
+
(

N + k

2

)

−
(

N − k

2

)
ln

(
N − k

2

)
+
(

N − k

2

)

= −N

2

[(
1+ k

N

)
ln

(
1+ k

N

)
+
(

1− k

N

)
ln

(
1− k

N

)]
.

In the limit of small k/N, the logarithm can be approximated by ln(1+ ε) �
ε − ε2/2. The probability logarithm becomes ln p � −k2/2N, which can be
inverted and normalized (by a standard Gaussian integration) to yield

p(k, N) = 1√
2πN

e−k2/2N . (2.12)

Similarly using the Gaussian integral we also have〈
k2
〉 = ∫ k2p(k, N)dk = N, (2.13)
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which is the variance
〈
�k2

〉 = 〈k2
〉− 〈k〉2 because for our case 〈k〉 = 0. In par-

ticular one often uses the fractional variance to characterize the fluctuation
from the mean, leading to the well-known result√〈

�k2
〉

N
= 1√

N
. (2.14)

This is the characteristic of fluctuations in a discrete system.

2.2.2 Brownian motion as a random walk

So far in this calculation no scales have been introduced. For the problem of
calculating the displacement of a random walker, we will denote a displace-
ment step by λ and the time interval by τ so that x = kλ and t = Nτ . This
allows us to translate the above probability density into the number density
p(k, N) → ρ(x, t) with

ρ(x, t) = 1√
4πDt

e−x2/4Dt with D = λ2

2τ
. (2.15)

Thus we can interpret the solution (2.9) of the diffusion equation as represent-
ing, at some small scale, a Brownian particle executing a random walk. This
exercise in random walks emphasizes the discrete nature of the molecular pro-
cess underlying the diffusion phenomenon. We shall have occasion (in Section
6.1) to use this connection in the discussion of Einstein’s proposal for a discrete
basis of radiation—the quanta of light.

2.3 The Einstein–Smoluchowski relation

In the previous chapter on Einstein’s doctoral thesis (Einstein 1905b) we
derived this relation between the diffusion coefficient D and the viscosity η:

D = kBT

6πηP
(2.16)

with P being the radius of the suspended particle, T the absolute temperat-
ure, and kB Boltzmann’s constant, related to the gas constant and Avogadro’s
number as kB = R/NA. This relation was also obtained by the Polish physi-
cist Marian Smoluchowski (1872–1917) in his independent work on Brownian
motion (Smoluchowski 1906). Hence, it is often referred to as the Einstein–
Smoluchowski relation. Einstein in his Brownian motion paper (Einstein
1905c) rederived it and improved its theoretical reasoning in two aspects:

1. In his thesis paper, for the osmotic pressure Fos = −n−1∂p/∂x as shown
in Eq. (1.24), Einstein assumed the validity of the van’t Hoff analogy—
the behavior of solute molecules in a dilute solution are similar to those
of an ideal gas, and used the ideal gas law (1.25) to relate the pressure to
mass density, obtaining the result:

Fos = − RT

ρNA

∂ρ

∂x
. (2.17)
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In the Brownian motion paper, he justified the applicability of this
result on more general thermodynamical grounds. Consider a cyl-
indrical volume with unit cross-sectional area and length x = l. Under
an arbitrary virtual displacement δx, the change of internal energy is
given by

δU = −
∫ l

0
Fosρδxdx (2.18)

and the change of entropy by44One may be more familiar with the entropy
change under an isothermal expansion when
written δS = NkBδV/V = ρkBδV . In the case
here we have δV = δx because of unit cross-
sectional area.

δS =
∫ l

0

R

NA
ρ
∂δx

∂x
dx = − R

NA

∫ l

0

∂ρ

∂x
δxdx. (2.19)

We have performed an integration by parts in reaching the last expres-
sion. The relation (2.17) then follows from the observation that the
free energy of a system of suspended particles vanishes for such a
displacement, δF = δU − TδS = 0.

2. In his thesis paper, Einstein arrived at the result (2.16) by the balance
of the osmotic force and the frictional drag force (described by Stokes’
law) Fos = Fdg on a single molecule. In the Brownian motion paper
this would be obtained by a more general thermodynamical argument.
Consider the flow of particles that encounters the viscous drag force Fdg

reaching the terminal velocity ω. The mobility parameter μ is defined by
ω = μFdg = −μ∂U/∂x. The drift current density j = ρω produces a
density gradient which in turn produces a counteracting diffusion cur-
rent. This current is related to the diffusion coefficient by the diffusion
equation in the form of Fick’s first law (1.23)

D
∂ρ

∂x
= ρω = −ρμ∂U

∂x
. (2.20)

On the other hand, at equilibrium we must have the Boltzmann
distribution

ρ(x) = ρ(0)e−U(x)/kBT (2.21)

so that

∂ρ

∂x
= − ρ

kBT

∂U

∂x
. (2.22)

Substituting this into (2.20),

D
ρ

kBT

∂U

∂x
= ρμ

∂U

∂x
, (2.23)

we have

D = μkBT , (2.24)

which is the Einstein–Smoluchowski relation (2.16), upon using the
Stokes’ law of μ = (6πηP)−1 as derived in (1.29).
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2.3.1 Fluctuation and dissipation

The Einstein–Smoluchowski relation (2.16) is historically the first example of a
fluctuation–dissipation theorem, which would turn into a powerful tool in stat-
istical physics for predicting the behavior of nonequilibrium thermodynamical
systems. These systems involve the irreversible dissipation of energy into heat
from their reversible thermal fluctuations at thermodynamic equilibrium.

As illustrated in our discussion of the Einstein–Smoluchowski relation the
fluctuation–dissipation theorem relies on the assumption that the response of
a system in thermodynamic equilibrium to a small applied force is the same
as its response to a spontaneous fluctuation. Thus Browning motion theory not
only illuminates diffusion but also explains friction by showing that they spring
from the same underlying thermal process.

2.3.2 Mean-square displacement and molecular dimensions

Having demonstrated that the observable root-mean-square displacement of the
Brownian particle was related to the diffusion coefficient D, as shown in (2.10),
which in turn can be expressed in terms of molecular dimensions (molecular
size P and Avogadro number NA) through the Einstein–Smoluchowski relation
(2.16), Einstein derived the final result of

xrms =
√〈

x2
〉 = √2Dt =

√
2RT

NA

t

6πηP
. (2.25)

This is what we meant earlier when we said “a careful measurement of this
zigzag motion through a simple microscope would allow us to deduce the
Avogadro number!”

2.4 Perrin’s experimental verification

Precise observations of Brownian motion were difficult at that time. The results
obtained during the first few years after 1905 were inconclusive. Einstein was
skeptical about the possibility of obtaining sufficiently accurate data for such a
comparison with theory.

But in 1908 Jean Perrin (1870–1942) entered the field and came up with an
ingenious combination of techniques for preparing emulsions with precisely
controllable particle sizes,5 5Recall that Einstein’s calculation assumed

equal size P for all suspended particles.
and for measuring particle numbers and displace-

ments. For this series of meticulously carried out brilliant experiments (and
other related work) Perrin received the Nobel Prize in physics in 1926. The
Brownian motion work was summed up masterfully in his 1909 paper (Perrin
1909) from which we extracted Figs. 2.1 and 2.3.

In particular we have Fig. 2.3 in which Perrin translated 365 projected
Brownian paths to a common origin. The end-position of each path is then
projected onto a common plane, call it the x-y plane. The radial distance on
this plane (labelled by σ ) is marked by a series of rings with various σ values.
The 3D version of the solution (2.9) of the diffusion equation reads as
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Fig. 2.3 In order to check the diffusion
law, Jean Perrin parallel-transported 365
Brownian paths to a common origin. The end-
position of each path is then projected onto
a common plane. Reproduction of Fig. 7 in
Perrin (1909).

ρ(x, t) = 1

(4πDt)3/2
e−r2/4Dt (2.26)

where r is the 3D radial distance from the origin r2 = σ 2 + z2. As an infin-
itesimal ring-shaped volume is 2πσdσdz, one can calculate the number of
particles within each of the rings in Fig. 2.3 by a simple integration over the
vertical distance

�N = 2πσ�σ

(4πDt)3/2

∫ +∞

−∞
e−(σ

2+z2)/4Dtdz. (2.27)

A simple Gaussian integration yields

�N = σ�σ

2Dt
e−σ

2/4Dt, (2.28)

which is the theoretical curve plotted in Fig. 2.4.
Thus experiments were able to confirm in detail the theoretical predictions

by Einstein and Smoluchowski. This work finally convinced everyone, even
the skeptics, of the reality of molecules.

Fig. 2.4 Verification of the diffusion law in
Brownian motion. The solid line is the the-
oretical curve. Each bar in the histogram
represents the total number of paths with end-
points at given plane-radial distance (σ ) from
the origin according to the data as shown in
Fig. 2.3.




