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• The idea of light quanta was developed further by Einstein in 1909.
Through a study of radiation energy fluctuation, he proposed that light
had the complementary property of wave and particle. This is the first
statement ever on wave–particle duality.

• In this discussion, Einstein suggested that the energy quanta were car-
ried by point-like particles—what he termed then as “the point of view
of Newtonian emission theory”—what we now call the photon.

• We describe the parallel development in spectroscopy that eventually
led to Bohr’s quantum model of atomic structure. He postulated that,
like radiation, atoms also have quantized energies with transitions char-
acterized by quantum jumps; this led him to the successful explanation
of the hydrogen spectrum.

• In three overlapping but nonidentical papers in 1916–17, Einstein
used Bohr’s quantum jump idea to construct a microscopic theory
of radiation–matter interaction. Through what came to be known as
Einstein’s A and B coefficients, he showed how Planck’s spectral
distribution followed. The central novelty and lasting feature is the
introduction of probability in quantum dynamics.

• In Section 6.4, we present a brief introduction to quantum field theory.
The treatment of the harmonic oscillator in the new quantum mechan-
ics is reviewed. A quantized field is a collection of quantum oscillators.
We show that the Planck/Einstein quantization result is automatic-
ally obtained in this new theoretical framework. This had at last put
Einstein’s idea of the photon on a firm mathematical foundation.

• The noncommutivity of physical observables in the new quantum
theory brings about features that can be identified as creation and
annihilation of quantum states. This gives a natural description of the
quantum jumps of radiation emission and absorption. In fact they can
be extended to the depiction of creation and destruction of mater-
ial particles as well—a key characteristic of interactions at relativistic
energies.

• Finally we explain how the wave–particle duality first discovered by
Einstein in the study of radiation energy fluctuation is resolved in
quantum field theory.
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As we have already mentioned in Chapter 4, it would still be some years
before Einstein openly committed himself to a point-like particle interpret-
ation of light quanta. In Section 6.1 we shall discuss Einstein’s 1909 study
of radiation fluctuation that led him to show, for the first time, that light had
not just wave or just particle properties, but a sort of fusion of the two—what
came to be known as “wave–particle duality”. The next big event in quantum
history was the 1913 model for the structure of the atom conceived by Niels
Bohr, who applied the Planck/Einstein quantum to the study of the hydrogen
spectrum (Bohr 1913). Its spectacular success in effect launched a new era in
exploration of the quantum world—what we now call the ‘old quantum theory’.
Bohr’s ‘quantum jumps’ Ei − Ef = hν inspired Einstein in 1916 to propose a
detailed study of the radiation mechanism that takes place in a blackbody radi-
ation cavity. He introduced his famous A and B coefficients for the theory of
stimulated and spontaneous emissions of radiation. This is the first time that a
probability description was invoked in the description of quantum dynamics,
and it presaged some of the surprising consequences that would be obtained
later in quantum mechanics and quantum field theory. In Section 6.4 we shall
present some of the basic elements of quantum field theory to see how it is
capable of resolving in one elegant framework the apparent contradictions of
waves, particles, and quantum jumps. But Einstein never accepted this new
paradigm.

6.1 Wave–particle duality

We have pointed out that Planck did not himself consider the quantum of
action as relating directly to any physical entity, and the light quantum pro-
posal of Einstein met considerable resistance from the physics community.
This resistance can best be illustrated by the attitude of Robert Millikan,
who spent a decade verifying Einstein’s prediction for the photoelectric effect.
Describing his viewpoint in later years, Millikan wrote this way: “I spent ten
years of my life testing that 1905 equation of Einstein’s, and contrary to all
my expectations, I was compelled in 1915 to assert its unambiguous experi-
mental verification in spite of its unreasonableness since it seemed to violate
everything that we knew about the interference of light” (Millikan 1949).

When the idea of the light quantum ε = hν was proposed in 1905, there
was still the question as what forms the quantum would take. There is the
possibility that the energy is distributed throughout space as is the case with
waves, or as discontinuous lumps of energy, like particles. By 1909 Einstein
was more explicit in proposing that light in certain circumstances was com-
posed of particles (Einstein 1909a,b)—in contradiction to the well-established
wave properties of light. Waves cannot have particle properties and particles
cannot behave like waves. However, even without the detailed knowledge of
quantum electrodynamics, Einstein was able to make some definite statements
on the nature of light (wave vs. particle). His argument was based on a study
of the energy fluctuations in radiation. Einstein showed that light was neither
simply waves nor simply particles, but had the property of being both waves
and particles at the same time. The notion of wave–particle duality was born.
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6.1.1 Fluctuation theory (Einstein 1904)

In Chapter 2 we discussed Einstein’s theory of Brownian motion, which
involved the investigation of the fluctuation phenomenon. This is a subject
that had long interested Einstein. According to Boltzmann’s distribution, the
average energy is given by

〈E〉 =
∫

Ee−γEω(E) dE∫
e−γEω(E) dE

(6.1)

with ω(E) being the density of states having energy E and γ = (kBT)−1.
Einstein in 1904 found the following fluctuation relation, after making the
differentiation −∂/∂γ of 〈E〉 in (6.1):

〈
�E2

〉 = kBT2 ∂〈E〉
∂T

, (6.2)

where 〈
�E2

〉 ≡ 〈(E − 〈E〉)2
〉 = 〈E2

〉− 〈E〉2 (6.3)

is the square deviation from the mean (the variance).
In 1904 Einstein was interested in finding systems with large fluctuations:〈

�E2
〉 � 〈E〉2, and he studied the volume dependence of such a system. It

is plausible to conclude that such an investigation led him to delve into
the volume dependence of radiation entropy, which (as we have shown in
Chapter 4) was the crucial step in his arriving in 1905 at the idea of light quanta.
A study of the fluctuation theory is also instrumental in his finally arriving at
the view that light quanta are point-like particles.

6.1.2 Energy fluctuation of radiation (Einstein 1909a)

Consider a small volume ṽ, immersed in thermal radiation (see Fig. 6.1) having
energy in the frequency interval (ν, ν + dν) as

〈E〉 = ṽρ(ν, T) dν (6.4)

(cf. the original definition of radiation energy density ρ given in Section 3.2.3).
In his 1909 papers, Einstein used (6.2) to calculate the variance from the
various radiation density distributions ρ(ν, T). For this small volume one
obtains 〈

�E2
〉 = ṽkBT2dν

∂ρ

∂T
. (6.5)

This general result holds whether the system is randomly distributed as waves
or particles, because it is based on Boltzmann’s principle and on the fact
that the spectral density at a given frequency depends on temperature only.
The fluctuation formulas for the different distribution laws are presented
below.

Fig. 6.1 A small volume ṽ immersed in
thermal radiation at temperature T .
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Radiation in the Rayleigh–Jeans limit fluctuates like waves
For the radiation described by the Rayleigh–Jeans distribution (4.3)

ρRJ = 8πν2

c3
kBT , (6.6)

the fluctuation formula (6.5) leads to

〈
�E2

〉
RJ = ṽ

8πν2

c3
k2

BT2dν = c3

8πν2

〈E〉2
ṽdν

. (6.7)

To reach the last expression we have used (6.6) and (6.4) to replace temperature
by the average energy. In the following we shall argue that such a variance
reflects the wave nature of the system.

Fluctuations of a wave system A system of randomly mixed waves should
display fluctuations. Although the light in an enclosure is distributed uniformly,
at a certain point in space and time a light wave of a certain frequency may
interfere, constructively or destructively, with another wave of slightly different
frequency. This beat phenomenon would cause the energy in this small volume
to be larger or smaller than the average value. The result given in (6.7) just
reflects a fluctuating wave system. The key feature of wave fluctuation is that,
for each radiation oscillator (i.e. degree of freedom, or mode), we have the
remarkable result (derived in SuppMat Section 6.5) that the fluctuation in the
energy density

√
�u2 has the same magnitude as the (average) energy density

u itself:
√
�u2 = u. (6.8)

This result can be translated into the variance and average energy of the wave
system by a consideration of the involved degrees of freedom. The average
energy of the system 〈E〉 requires the summation of all modes, thus a multiplic-
ation of the oscillator number in the (ν, ν + dν) interval Ndν and the average
energy density u for each oscillator:

〈E〉 = Ndνu. (6.9)

The calculation of the variance
〈
�E2

〉
involves a similar sum, i.e. the same

multiplication factor,
〈
�E2

〉 = Ndν�u2. The result in (6.8) then implies

〈
�E2

〉 = 〈E〉2
Ndν

. (6.10)

We have already calculated the wave mode number in Chapter 4 as displayed
in (4.5):

Ndν = 8πν2

c3
ṽdν. (6.11)

Substituting this expression into (6.10) we obtain a result in agreement with the
relation (6.7). This wave fluctuation result is to be expected as the Rayleigh–
Jeans law follows from the classical Maxwell wave theory.
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Radiation in the Wien limit fluctuates like particles
For radiation described by the Wien distribution, cf. Eq. (4.12),

ρW = 8πhν3

c3
e−hν/kBT (6.12)

we have 〈E〉 = ṽρWdν and, from formula (6.5), the fluctuation result

〈
�E2

〉
W = ṽhν

8πhν3

c3
e−hν/kBTdν = hν〈E〉, (6.13)

which is clearly different from result expected from fluctuation of system of
waves. In fact the fractional fluctuation has the form√〈

�E2
〉

〈E〉 =
√

hν

〈E〉 . (6.14)

This is exactly the fluctuation that one would expect of a system of particles.
We have already discussed such a situation in Chapter 2 on Brownian motion.
In particular we have shown that Brownian motion can be modeled as random
walks. Equation (2.14) demonstrates that any system of random discrete entit-
ies would have a fractional deviation of N−1/2 as is the case displayed in (6.14)
because, in our case, we have 〈E〉 = Nhν.

This result then strengthened Einstein’s original proposal that blackbody
radiation in the Wien limit behaves statistically like a gas of photons.

Planck distribution: Radiation fluctuates like particles and waves
Observationally, radiation is correctly described throughout its frequency
range by the Planck spectral law. We now calculate the energy fluctuation from
Planck’s distribution

ρ = 8πh

c3

ν3

exp(hν/kBT)− 1
. (6.15)

Remarkably we find the result is simply the sum of two terms, one being the
Rayleigh–Jeans terms of (6.7) and the other being the Wien term of (6.13):

〈
�E2

〉
P =

〈
�E2

〉
RJ +

〈
�E2

〉
W . (6.16)

This shows that radiation is neither simply waves nor simply particles. This led
Einstein to suggest in 1909 that radiation can be viewed as a “fusion” of waves
and particles.

Einstein proceeded to the calculation of the pressure fluctuation using
explicitly the particle property of a light quantum: a photon has momentum
p = hν/c. Thus, together with the suggestion of light’s dual nature, Einstein
now stated for the first time his view that quanta were carried by point-like
particles.
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6.2 Bohr’s atom—another great triumph
of the quantum postulate

While quantum theory has its origin in the study of blackbody radiation, there
was also a parallel development in spectroscopy of the radiation emitted and
absorbed by atoms. Bohr’s quantum model of the hydrogen atom brought great
success in this area. Thus, together with blackbody radiation, they formed the
twin foundations of the quantum theory.11For a clear exposition of the ‘old quantum

theory’, we recommend Tomonaga (1962).

6.2.1 Spectroscopy: Balmer and Rydberg

We mentioned in Chapter 3 that, besides blackbody radiation, Gustav
Kirchhoff also made major contributions in spectroscopy. But we will
start our story with the Swiss high-school mathematics teacher Johann
Balmer (1825 – 98). The hydrogen spectrum is particularly simple: it has
four lines in the visible range: Hα = 6563 Å, Hβ = 4861 Å, Hγ = 4341 Å,
Hδ = 4102 Å (Fig. 6.2). In 1885 Balmer made the remarkable discovery that
these wavelengths follow a pattern when written in units of H = 3645.6 Å:

Hα = 9

5
H, Hβ = 16

12
H, Hγ = 25

21
H, and Hδ = 36

32
H.

He then extended this to the relation (the Balmer formula) as

λ = n2

n2 − 4
H, (6.17)

which covers the original four lines with n = 3, 4, 5, 6, and, as it turned out,
could also account for the other lines in the ultraviolet region.

This pattern was later generalized to other hydrogen lines by Johannes
Rydberg (1854–1919) in the form of

1

λ
= R

(
1

m2
− 1

n2

)
(6.18)

with the Rydberg constant R = 4/H and both (m, n) being integers. The case
m = 2 reduces to the Balmer series (visible), m = 1 to the Lyman series
(infrared, found in 1906), and m = 3 to the Paschen series (ultraviolet, found
in 1908).

65
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Fig. 6.2 Hydrogen spectral lines Hα , Hβ ,
Hγ , Hδ , . . . Picture from Tomonago (1962).



6.2 Bohr’s atom 79

6.2.2 Atomic structure: Thomson and Rutherford

The discovery of the first subatomic particle, the electron, is traditionally attrib-
uted to J.J. Thomson (1856–1940), for his measurement of the charge-to-mass
ratio of cathode ray particles in 1897. He proposed a theory of atomic structure
that pictures electrons as being embedded in a sphere of uniformly distributed
positive charges—a sort of raisins-and-pudding model. The size of the atom
had to be put in by hand as there was no way to construct any length-scale
from the fundamental constants of charge and mass (e, m) from classical phys-
ics. The spectral lines are supposed to result from periodic oscillations of the
electrons. However if one identifies the emission lines with the fundamental
frequencies, there is no way to get rid of the unwanted higher harmonics.

During the period around 1910, Ernest Rutherford (1871–1937) and his col-
laborators performed a series of alpha particle scattering experiments. The
large scattering angle result led Rutherford to suggest that an atom is mostly
empty space, with all the positive charges concentrated in a compact center and
electrons circulating around this atomic nucleus. Such a model of the atom still
had the deficiencies of no natural path to an atomic size and the presence of
higher harmonics. Furthermore, the circulating electrons, according to classic
electromagnetism, must necessarily radiate away their energies and spiral into
the nucleus. It did not seem to have a way to explain the atom’s stability.

6.2.3 Bohr’s quantum model and the hydrogen spectrum

Niels Bohr was familiar with Rutherford’s atom. In 1913 he found a way to
construct an atomic model that overcame the difficulties that Rutherford (and
Thomson) had encountered. Moreover, he was able to predict in a simple way
the spectrum of the hydrogen atom, with the Rydberg constant expressed in
terms of fundamental constants (Bohr 1913). The new input that Bohr had was
the quantum of Planck and Einstein.

Planck’s constant naturally leads to an atomic scale
We have already mentioned that there is no way to construct an atomic
length-scale from the two relevant constants (m, e) of classical mechanics and
electromagnetism. With the introduction of Planck’s constant, this can be done:

l = h2

me2
. (6.19)

One can easily check that this has the dimension of a length.2 2Keeping in mind the Coulomb energy, we
see that e2 has the dimension of (energy·
length). The mass m has (momentum2/

energy). Thus the denominator me2 has
(momentum2·length). With the numerator
h2 being (momentum·length)2, the ratio
h2/(me2) has the dimension of a length.

Putting in the
values of the electron mass, the charge and Planck’s constant (m, e, h), one
finds an l of about 20 Å, roughly in the range of the atomic-scale. The Rydberg
constant of (6.18) must have the dimension of inverse length, and as we shall
see, it is indeed inversely proportional to the length-scale displayed here.

Stationary states and quantum jumps
Bohr reasoned that, since radiation energy is quantized, the atomic energies
should similarly form a discrete set. He hypothesized that atoms should be
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stable at these quantized values En, with n = 0, 1, 2, 3, . . . Namely, he postu-
lated the existence of a set of stationary states. The absorption and emission
of radiation then corresponds to ‘jumps’ among these quantized states. A state
with energy Em can absorb a photon of frequency ν and makes the transition to
a higher energy state En, provided energy conservation is respected (the Bohr
frequency rule):

ν = En − Em

h
. (6.20)

Such a transition is depicted in Fig. 6.3(a). Significantly, Bohr proposed the
revolutionary concept that one must reject any attempt to visualize or to explain
the behavior of the electron during the transition of the atom from one station-
ary state to another. In fact we can interpret Einstein’s photoelectric effect as
such a transition, if the kinetic energy of the final state electron is ignored. If we
accept this possibility, it is then entirely natural to stipulate the inverse process:
when an atom makes a downward transition n → m, it should be accompanied
by the emission of a photon, as pictured in Fig. 6.3(b). When the frequency
rule (6.20) is expressed in terms of wavelength, we have

1

λ
= ν

c
= En

hc
− Em

hc
. (6.21)

Comparing this with the Rydberg formula (6.18), Bohr had a way to connect
the atomic energy levels to the Rydberg constant:

En = −R
hc

n2
, (6.22)

consistent with the initial assumption that atomic energies are quantized. The
energy is negative because it is the binding energy. It is interesting to relate
that Bohr was unaware of the Balmer/Rydberg formulas when he started out in
his search for an atomic theory. When he was finally told of the Balmer series
in 1913, it was a great revelation to him. He later recalled:33As recounted by Heilbron (1977). “As soon as I saw
Balmer’s formula, the whole thing was clear to me.”

Fig. 6.3 Transitions between atomic states
n ↔ m. (a) Absorption of a photon with
energy hν. (b) Emission of a photon.

Quantization of angular momentum
Bohr then hypothesized that once in these stationary states, the electron’s
motion was correctly described by classical mechanics. The total energy is
the sum of the kinetic and potential energies:

En = mv2
n

2
− e2

rn
. (6.23)

If for simplicity we take the orbits to be circles, the velocity vn is related to the
centrifugal acceleration v2

n/rn, which is fixed by the balance of centrifugal and
Coulomb forces mv2

n/rn = e2/r2
n. In this way we find from (6.23) that the total

energy is just one-half of the potential energy,

En = − e2

2rn
. (6.24)
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This simple relation makes it clear that quantized energies imply a set of quant-
ized orbits. The higher the energy (i.e. less negative) the larger would be the
orbital radius rn.

What determines the choice of these quantized orbits? Bohr suggested two
ways to proceed and he demonstrated that both approaches led to the same
conclusion. One can either make the assumption that the classical description
will be valid for the description of states with large quantum number n, hence
large orbits. (This became known later on as the correspondence principle.) Or,
the same result was obtained by Bohr with the postulate of angular momentum
quantization

Ln = nh̄ ≡ n
h

2π
. (6.25)

Let us see how Bohr used angular momentum quantization4 4In Bohr’s 1913 paper, he acknowledged that
J.W. Nicholson was the first one to dis-
cover in 1912 the quantization of angular
momentum. We also note that, when the cir-
cular electron orbit assumption is relaxed to
allow for elliptical trajectories, as first done
by Arnold Sommerfeld, the quantum num-
bers must be extended, besides the principal
quantum number n, to include the orbital
quantum number l = 0, 1, . . . , n− 1.

to deduce
the quantized orbits and quantized atomic energies. The total energy can
be expressed in terms of the orbital angular momentum E = L2/2I. For the
presently assumed circular orbits, we have (6.24) with a moment of inertia
I = mr2

n:

e2

2rn
= |En| = L2

n

2mr2
n

= n2 h̄2

2mr2
n

; (6.26)

the last equality follows from (6.25). This fixes the radii of the quantized orbits:

rn = n2 h̄2

me2
= n2a (6.27)

where a = h̄2/(me2) is the Bohr radius—just the atomic-scale l of (6.19)
divided by (2π)2. We can use (6.24) to translate this into the atomic energy

En = − e2

2a

1

n2
. (6.28)

This in turn predicts, through (6.22), the Rydberg constant to be

R = −n2

hc
En = e2/h̄c

4π

1

a
= α

4π

1

a
, (6.29)

where we have introduced the shorthand, fine structure constant α = e2/h̄c �
1/137. Putting back all the fundamental constants of (m, e, h), we have

R = 2π2me4

ch3
, (6.30)

which was in good agreement with the experimental value of R.
One more bit of interesting history—a sort of icing-on-the-cake (cf. Section

15.6, Longair 2003). One of the first applications made by Bohr of his new the-
ory was to explain the lines in the observed spectrum of the star ς -Puppis. They
were thought to be hydrogen lines because of their similarity to the Balmer
series. Bohr showed they were really those of the singly ionized helium He+
which according to the new theory should have exactly the same spectrum as
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hydrogen with only the Rydberg constant being four times larger RHe/RH =
4—as the factor e4 in (6.30) has to be replaced by (Ze2)2 with the atomic num-
ber Z = 2 for helium. But it was pointed out to him that the experimental value
was not exactly 4 but 4.00163. Bohr then realized that the electron mass m in
(6.30) should more accurately be the ‘reduced mass’ μ = memN/(me + mN)
when the finite nuclear mass mN was taken into account. Since the helium nuc-
leus is four times larger than the hydrogen nucleus, one then has a ratio of
Rydberg constants that is in much closer agreement with observation:

RHe

RH
= 4

1+ me/mN

1+ me/4mN
= 4.00160. (6.31)

Here is another instance of the importance of high-precision measurements!

6.3 Einstein’s A and B coefficients

During the five-year period prior to 1916, Einstein was preoccupied with the
development of general relativity (see Chapters 12–14), which he finalized in
1915–16. In late 1916 he returned his attention to the study of quantum the-
ory (Einstein 1916b,c). Having been inspired by Bohr’s papers,55When Einstein heard about Bohr’s result on

astrophysical helium spectrum in a meeting in
Vienna in September 1913, he was astonished
and said: ‘Then the frequency of light does
not depend at all on the orbiting frequency
of the electron. And this is an enormous
achievement. The theory of Bohr must be
right.’ (see p. 137, Moore 1989).

he obtained
new insights into the microscopic physics concerning the emission and absorp-
tion of radiation. In constructing his theory of atomic structure Bohr had
used Einstein’s quantum idea, which was originally obtained from a thermal
statistical study of blackbody radiation. Now Einstein used Bohr’s idea of
quantum jumps (Fig. 6.3) to construct a microscopic theory of the emission
and absorption of radiation by molecular states to show that the resulting radi-
ation distribution is just the Planck spectral law. He found that he could obtain
Planck’s spectral distribution if, and only if, the quantum jump between two
molecular states m � n involved a monochromatic energy quantum obeying
Bohr’s frequency condition (6.20). Notably, Einstein’s 1916 theory involved
the introduction, for the first time, of a probabilistic description of quantum
dynamics.

Furthermore, Einstein showed that, if the radiation is pictured as a collection
of particles, the energy exchange �ε = hν between molecules and radiation
would also entail the exchange of momentum. For massless photons, relativity
dictates a momentum transfer of �p = hν/c. In this way he showed that the
Planck distribution of radiation energy is precisely compatible with a Maxwell
velocity distribution for the molecules. The results Einstein obtained in this
investigation, in particular those related to stimulated emission of radiation,
laid the foundation for the later invention of the laser and maser. Another
aspect of the work was the forerunner of the theory of quantum vacuum
fluctuation.

6.3.1 Probability introduced in quantum dynamics

Einstein considered a system in thermal equilibrium, consisting of a gas
of particles (called molecules) and electromagnetic radiation (with spectral
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density ρ). Let ε1, ε2, ε3, . . . be the energies of the molecular states. The
relative probability of molecules in the different states is given by Boltzmann’s
statistics as

Pn = gne−εn/kBT (6.32)

where gn is the number of states having the same energy εn (called the degen-
eracy of the state). The various interactions between radiation with these
molecules are considered. The two molecular states with energies εn > εm, as
depicted in Fig. 6.3, will be the focus of the following discussion.

Spontaneous emission
Consider first the emission of a photon with the molecule making the n → m
transition as depicted in Fig. 6.3(b). Here Einstein introduced a probabilistic
description. He argued that since it is possible for a classical oscillator to
radiate without the excitation (i.e. without any perturbation) by an external
radiation field, the rate of the probability change (the change of the molecular
number) for this spontaneous emission may be written as(

dPn

dt

)
sp−em

= Am
n Pn (6.33)

where Am
n is a constant with the lower index denoting the initial state, and

the upper index the final state. Einstein noted that this mechanism of spontan-
eous emission of radiation is generally identical to Rutherford’s 1900 statistical
description of spontaneous decay of radiative matter. While Einstein could not
explain the puzzle of a statistical theory he was the first one to note that it could
only be understood in the quantum-theoretical context. Furthermore, Einstein
immediately expressed his misgiving that such a probabilistic description
seemed to imply an abandonment of strict causality.

Stimulated absorption and emission
In a field of radiation, a molecular oscillator changes its energy because the
radiation transfers energy to the oscillator. Depending on the phases of the
molecular oscillator and the oscillating electromagnetic field, the transferred
work can be positive (absorption) or negative (emission). We call such a
processes ‘induced’ or ‘stimulated’ because of the presence of the radiation
perturbation. We expect the rate of change to be proportional to the radi-
ation density ρ. For the induced absorption, we denote the molecular number
change by (

dPm

dt

)
abs

= Bn
mρPm. (6.34)

Similarly for the stimulated emission, we have(
dPn

dt

)
st−em

= Bm
n ρPn. (6.35)
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The radiation density is fixed to be Planck’s distribution
What is the form of the radiation spectral density such that it is compatible
with this microscopic description of radiation–matter interaction? To reach
equilibrium, the absorption and emission rates must balance out:(

dP

dt

)
abs

=
(

dP

dt

)
st−em

+
(

dP

dt

)
sp−em

(6.36)

or

gmBn
me−εm/kBTρ = gne−εn/kBT

(
Bm

n ρ + Am
n

)
. (6.37)

We further assume that the energy density ρ goes to infinity as the temperature
increases to infinity (T →∞). The large ρ factor means that we can ignore the
Am

n term in the parentheses; in this way we obtain66In Einstein’s original paper this was justified
by the experimental condition that for large
temperature (ν/T → 0) the spectral density
ρ ∼ ν2T →∞. It can also be supported by
the so-called ‘principle of detailed balance’—
due to microscopic reversibility in thermal
equilibrium.

gmBn
m = gnBm

n . (6.38)

To simplify our writing we shall from now on absorb the degeneracy factor
g into the B coefficient. The spectral density that satisfies this dynamic
equilibrium condition (6.37) then becomes

ρ = Am
n

Bm
n

1

e(εn−εm)/kBT − 1
(6.39)

which is just Planck’s law when we apply the Bohr quantum condition (6.20)
together with fixing the coefficient ratio to be

Am
n

Bm
n

= αν3. (6.40)

The constant α can further be determined, for example, by the Rayleigh–Jeans
law. Thus

Am
n

Bm
n

= 8πν2

c3
hν. (6.41)

Recall that we have used the expression for the radiation density of states (4.1)
in the derivation of the Rayleigh–Jeans law.

6.3.2 Stimulated emission and the idea of the laser

Einstein’s prediction of stimulated emission became a key element in the inven-
tion of the LASER—light amplification by stimulated emission of radiation.
Such a device can produce high-intensity collimated coherent electromagnetic
waves. In essence a laser is a cavity filled with a “gain medium”. We can
illustrate the function of this medium by assuming it to be composed of some
two-state atoms (e.g. such as the one shown in Fig. 6.3). A positive feedback
process, based on stimulated emission, is instituted. The frequency of the input
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radiation is arranged to match the emission frequency of the medium. This
process is amplified by the stimulated emission. If the cavity is enclosed by
two mirrors so that light is repeatedly passing back and forth through the gain
medium, more and more atoms reside in the excited states (called population
inversion) and its intensity can be greatly increased. Because the light origin-
ates from a single transition between two fixed levels (unlike an ordinary light
source with many different transitions), it is monochromatic with a great deal
of coherence. Clearly the invention of the laser required many technical break-
throughs before its realization in the 1950s; nevertheless its basic idea came
from the prediction of stimulated emission made by Einstein in 1916.

While stimulated emission can still be understood as a perturbation by an
existing field, it would involve a new theoretical framework to understand
spontaneous emission. In this case a new photon would have to be created.
If it is due to some perturbation, how would the vacuum be the cause? This
brings us to the topic of quantum field theory.

6.4 Looking ahead to quantum field theory

At the beginning of this chapter, we discussed the riddle of radiation’s wave–
particle duality as shown by Einstein’s calculation of energy fluctuations
(6.16). The Planck’s formula for blackbody radiation leads to two terms,
one showing the radiation as a system of waves and another as particles.
This heightens the apparent contradiction of Einstein’s original discovery of
thermal radiation (in the Wien limit) behaving thermodynamically like a gas of
particles, even though radiation has the familiar wave property of interference,
etc. Here we first explain the resolution as provided by the advent of quantum
mechanics in 1925–26. The other key property of light quanta that they obey
Bose–Einstein statistics will be discussed in Chapter 7.

The new quantum theory is the work of Louis de Broglie, Werner Heisenberg
(1901–76), Max Born (1882–70), Pascual Jordan (1902–80), Wolfgang Pauli
(1900–58), Erwin Schrödinger, and Paul Dirac (1902–84). In particular elec-
tromagnetic radiation is described by a quantized field. This is the subject of
quantum electrodynamics. We shall provide, very briefly, some of the basic
elements of quantum field theory (QFT).7 7A lively and insightful introduction to QFT

can be found in Zee (2010).
Of course, Einstein never accepted

quantum mechanics as a complete theory. His objection to this new quantum
theory was mainly in the area of the interpretation of measurement. That will
be the topic of our Chapter 8.

6.4.1 Oscillators in matrix mechanics

Recall our discussion in Section 3.1 that a radiation field (as a solution to
Maxwell’s wave equation) can be thought of as a collection of oscillators.
Fourier components of waves obey simple harmonic oscillator equations. A
quantized radiation field is a collection of quantum oscillators—simple har-
monic oscillators as described by quantum mechanics. Quantum field theory
is usually presented as the union of quantum mechanics and special relativ-
ity. This is so as the Maxwell wave equation satisfies special relativity. When
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this radiation theory is generalized to other particles, one would work with
other relativistic wave equations such as the Dirac equation and Klein–Gordon
equation. But the basic features of a quantized field discussed below remain
the same.

The essence of quantum mechanics is that physical states are taken to be
members of a linear vector space, the Hilbert space, obeying the superpos-
ition principle (the basic property of waves), and physical observables are
operators represented, for example, by matrices. These observables obey
the same dynamical equations as in classical physics, but the kinematics
are changed because they, being operators, may no longer be mutually
commutative. Thus two operators Â and B̂ may have nonvanishing commutator
ÂB̂− B̂Â ≡ [Â, B̂

] �= 0. As we shall see, this noncommutivity brings about
the particle nature of the system. Planck’s constant enters the theory through
these commutation relations.

Simple harmonic oscillator Hamiltonian in terms of ladder
operators
Here is the quantum mechanical description of a simple harmonic oscillator.
The total energy (sum of kinetic and potential energies) is represented by the
Hamiltonian operator, which can be expressed in terms of the position and
momentum operators (x̂, p̂). With the angular frequency ω, the Hamiltonian is
given by

Ĥ = p̂2

2m
+ 1

2
mω2x̂2. (6.42)

The momentum and position operators are postulated to satisfy the ‘canonical’
commutation relation [

x̂, p̂
] = ih̄. (6.43)

We can factorized the oscillator Hamiltonian, in terms of the ladder
operators:88Since x̂ and p̂ are Hermitian operators, these

ladder operators are each other’s Hermitian
conjugates, â†

+ = â− and â†
− = â+.

â± = 1√
2m

(∓ip̂+ mωx̂). (6.44)

A simple calculation shows that they have the product relations

â+â− = Ĥ + iω

2

[
x̂, p̂
]

and â−â+ = Ĥ − iω

2

[
x̂, p̂
]

. (6.45)

From the sum and difference of these two expressions, we obtain the
Hamiltonian

Ĥ = 1

2
(â+â− + â−â+) (6.46)

and the commutator of the ladder operators, which is just a simple transcription
of (6.43), [

â∓, â±
] = ±h̄ω. (6.47)
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An application of this commutation relation to (6.46) leads to

Ĥ = â∓â± ∓ 1

2
h̄ω. (6.48)

Raising and lowering energy levels by â±
Consider the states â± |n〉, obtained by applying the ladder operators â± to an
energy eigenstate |n〉 with Ĥ |n〉 = En |n〉. To find the energy of such states, we
probe them by the Hamiltonian operator in the form of (6.48):

Ĥâ± |n〉 =
(

â∓â±â± ∓ 1

2
h̄ωâ±

)
|n〉 . (6.49)

Since (6.47) implies the commutation relation[
â∓â±, â±

] = [â∓, â±
]

â± + â∓
[
â±, â±

] = ±h̄ωâ± + 0, (6.50)

the RHS of (6.49), after interchanging the order of â∓â± and â± by the
commutator (6.50), becomes

Ĥâ± |n〉 =
(

â±â∓â± ± h̄ωâ± ∓ 1

2
h̄ωâ±

)
|n〉 .

We can factor out â± to the left and use the expression of Ĥ as given in (6.48)
to have

Ĥ (â± |n〉) = â±
(
Ĥ ± h̄ω

) |n〉
= â± (En ± h̄ω) |n〉 = (En ± h̄ω) (â± |n〉) . (6.51)

This calculation shows that the states â± |n〉 are also eigenstates of the
Hamiltonian with energy values En ± h̄ω. This explains why â+ is called the
raising operator and â− the lowering operator.

The quantized energy spectrum derived
Just like the classical oscillator case, the energy must be bounded below. We
denote this lowest energy state, the ground state, by |0〉. Since the ground state
cannot be lowered further, we must have the condition:

â− |0〉 = 0. (6.52)

From this we deduce that the ground state energy E0 does not vanish:

Ĥ |0〉 = E0 |0〉 =
(

â+â− + 1

2
h̄ω

)
|0〉 = 1

2
h̄ω |0〉 . (6.53)

Namely E0 = 1
2 h̄ω, which is often referred to as the zero-point energy. On the

other hand, all the excited states can be reached by the repeated application of
the raising operator9 9The proportionality constants will be

worked out below when we discuss the
normalization of quantum states.

to the ground state:

(â+)n |0〉 ∼ |n〉 . (6.54)
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According to (6.51), each application of â+ raises the energy by one h̄ω unit:
we thus derive the energy of a general state |n〉:

Ĥ |n〉 = En |n〉 =
(

n+ 1

2

)
h̄ω |n〉 (6.55)

with n = 0, 1, 2, . . . and

En =
(

n+ 1

2

)
h̄ω. (6.56)

This result agrees, up to a constant of h̄ω/2, with the Planck oscillator energy
quantization proposal. Before we move on to quantum field theory we note two
technicalities of the quantum theory of oscillators.

The zero-point energy A comparison of (6.46) and (6.48) with (6.56) shows
clearly that the zero-point energy, E0 = 1

2 h̄ω, originates from the noncom-
mutivity of the position with momentum, or equivalently the h̄ω factor in the
commutator (6.47). Physically one can understand the presence of this ground
state energy by the uncertainty principle. Even in the absence of any quanta, an
oscillator still has the natural length-scale of x0 = √h̄/mω; thus, the uncer-
tainly principle1010The uncertainty relation is a direct mathem-

atical consequance of the noncommutivity of
observables.

for the position and momentum observables, �x�p � h̄,
requires a minium momentum of p0 =

√
mh̄ω. This translates into a minium

energy of E0 = p2
0/2m = 1

2 h̄ω—just the zero-point energy.

The number operator and the normalization of oscillator states A simple
comparison of (6.55) with (6.48) suggest that we can define a ‘number oper-
ator’ n̂ ≡ â+â−/(h̄ω) so that Ĥ = (n̂+ 1

2 )h̄ω and n̂ |n〉 = n |n〉. This operator
is Hermitian n̂† = â†

−â†
+/(h̄ω) = n̂, with real eigenvalues n = 0, 1, 2, . . . . All

quantum mechanical states must be normalized (as they have the interpretation
of a probability): 〈n |n〉 = ||n〉|2 = 1, and 〈n− 1 |n− 1〉 = ||n− 1〉|2 = 1, etc.
From these we can find out how the ladder operators act on the number states
â− |n〉 = c |n− 1〉 with the coefficient c determined as follows. Starting with

〈n| â+â−
h̄ω

|n〉 = 〈n| n̂ |n〉 = n, (6.57)

we have, using the hermiticity properties â†
± = â∓,

nh̄ω = 〈n| â+â− |n〉 = |â− |n〉|2 = |c|2 ||n− 1〉|2 = |c|2 ,

hence c = √nh̄ω. Similarly we can work out the effects of â+. Thus the effects
of the ladder operators are

â− |n〉 =
√

nh̄ω |n− 1〉 and â+ |n〉 =
√
(n+ 1) h̄ω |n+ 1〉 . (6.58)

6.4.2 Quantum jumps: From emission and absorption
of radiation to creation and annihilation of particles

A quantum radiation field is a collection of quantum oscillators. The energy
spectrum of the field for each mode is given by the quantized energy as
shown in (6.56). Thus the Planck/Einstein quantization result is automatically
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obtained in the framework of quantum field theory. The first application of the
new quantum mechanics to the electromagnetic field was given in the famous
three-man paper (Dreimännerarbeit) of Born, Heisenberg, and Jordan (1926).
This had at last put Einstein’s idea of the photon on a firm mathematical found-
ation. The new quantum mechanics also yields the correct hydrogen spectrum,
as shown by Pauli (1926) in matrix mechanics and by Schrödinger (1926) in
wave mechanics.

Vacuum energy fluctuation
The new feature of (6.56) is the presence of the zero-point energy. Since the
ground state of a field system is identified with the vacuum, quantum field
theory predicts a nonvanishing energy for the vacuum state. While the presence
of this constant energy term would not affect quantum applications such as
the photoelectric effect and specific heat, as we shall see, there are observable
effects associated with this nonvanishing vacuum energy. In fact what we have
is the fluctuation of the energy in the vacuum state. We have already discussed
the zero-point oscillator energy from the viewpoint of the position–momentum
uncertainty relation. We also have the uncertainty relation11 11Time is not a dynamical observable repres-

ented by an operator in quantum mechanics.
The uncertainty relation follows from the
Heisenberg equation of motion with �t being
the characteristic time that a system takes to
change.

between energy
and time, �E�t � h̄. This suggest that, for a sufficiently short time interval,
energy can fluctuate, even violating energy conservation. The vacuum energy
is the (root-mean-square) average of the fluctuation energy.

Emission and absorption of radiation
That the formalism of the quantum oscillator allows one to raise and lower the
field energy by units of h̄ω can naturally be used to describe the quantum jumps
of emission and absorption of radiation. In particular, the amplitude for the
emission (i.e. creation) of an energy quantum is directly related to the matrix
element:

〈n+ 1| â+ |n〉 =
√
(n+ 1) h̄ω. (6.59)

The equality follows from (6.58), leading to an emission rate proportional to
the factor (n+ 1).

This is just the result first discovered by Einstein. From the RHS of (6.36)
we have the total (induced and spontaneous) emission rate,(

dPn

dt

)
em

=
(
ρ

Bm
n

Am
n

+ 1

)
Am

n Pn =
(

ρc3

8πhν3
+ 1

)
Am

n Pn, (6.60)

where we have used the relation for Einstein’s A and B coefficients (6.41). The
language of quantum field theory allows us to express this emission rate in
terms of the number of light quanta n :(

dP

dt

)
em

∝ (n+ 1) P, (6.61)

because, according to Eq. (4.1), we have the energy (per radiation oscillator)
U = ρc3/8πν2 and U/hν = n. While the factor of n on the RHS of (6.61)
corresponds to the stimulated emission, the factor of 1 in (n+ 1) reflects the
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spontaneous emission. Thus in quantum oscillator language, the spontaneous
emission term comes from the commutation relation (6.47). It has exactly the
same origin as the zero-point energy. This linkage between the vacuum energy
and spontaneous emission suggests to us that we can identify spontaneous
emission as brought about (i.e. due to the perturbation) by the vacuum energy
fluctuation.

Creation and annihilation of particles
In the above we have seen that the raising and lowering ladder operators of the
oscillator provide us with a natural description of emission and absorption of
radiation in units of the energy quanta. In modern language this is the emission
and absorption of photons.

Even with the success of the quantum field theory treatment of radiation,
we still have, at this stage, a dichotomy: on one hand we have radiation with
its quanta that can be freely created and destroyed; on the other hand, mater-
ial particles such as electrons and protons were thought to be eternal. Further
development of quantum field theory showed that material particles can also
be thought of as quanta of various fields, in just the same way that the photon
is the quantum of the electromagnetic field. These matter fields are also collec-
tions of their oscillators, with their corresponding ladder operators identified
as the creation and annihilation operators of these material particles.

This is a major advance in our understanding of particle interactions. Until
then the interactions among particles were described by forces that can change
the motion of particles. Photons are just like other particles except they have
zero rest-mass. While there is no energy threshold for radiation, given enough
energy all particles can appear and disappear through interactions. The first
successful application of this idea was in the area of nuclear beta decay. The
nucleus is composed of protons and neutrons. How is it then possible for one
parent nucleus to emit an electron (and a neutrino) while changing into a
different daughter nucleus? Enrico Fermi (1901–54) gave the quantum field
theoretical answer to this puzzle. He modeled his theory of beta decay on
quantum electrodynamics and described the process as the annihilation of a
neutron in the parent nucleus followed by the creation of a proton in the final
state nucleus along with the creation of the electron (and the neutrino).

Ranges of interactions
In a field theory the interaction between the source particle and test particle is
described as the source particle giving rise to a field propagating out from the
source and the field then acting locally on the test particle. Since a quantized
field can be thought of as a collection of particles, this interaction is depicted
as an exchange of particles between the source and test particles. Since the
exchanged particle can have a mass, the creation of such an exchange particle
(from the vacuum) would involve an energy nonconservation of �E � mc2.
But the uncertainty principle �E�t ≥ h̄ only allows this to happen for a
time interval of �t � h̄/mc2. This implies a propagation, hence an interac-
tion range, of R � c�t � h̄/mc (the Compton wavelength of the exchanged
particle). Electromagnetic interaction is long range because the photon is mass-
less. Based on such considerations, Hideki Yukawa (1907–81) predicted the
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existence of a meson, about a couple of hundred times more massive than the
electron, as the mediating quantum of nuclear forces which were known to
have a finite range of about a fermi (= 10−15 m).

We conclude by noting the central point of quantum field theory: The essen-
tial reality is a set of fields, subject to the rules of quantum mechanics and
special relativity; all else is derived as a consequence of the quantum dynamics
of these fields (Weinberg 1977).

6.4.3 Resolving the riddle of wave–particle duality
in radiation fluctuation

In this last section we return to the issue of wave–particle duality displayed
by the radiation energy fluctuation discussed at the beginning of this chapter.
How does quantum field theory resolve the riddle of the radiation fluctuation
having two factors (6.16): a wave term plus a particle term?

In quantum field theory a field is taken to be an operator. The above dis-
cussion of the radiation field being a collection of quantum oscillators means
the replacement of a classical field (a complex number) Aeiφj , with appropriate
normalization, by an operator âj−eiφj + âj+e−iφj with

[
âj−, âk+

] = h̄ωδjk. The
calculation of the energy fluctuation of such a wave system follows the same
lines as that for classical waves (cf. SuppMat Section 6.5). However the non-
commutivity of quantum oscillator operators â± gives rise to extra terms, as
shown in (6.47). The result is that, instead of the classical wave result of (6.8),
we now have the mean-square energy density

�u2 = u2 + uh̄ω. (6.62)

For the system average we follow the same procedure used in Section 6.1,
to obtain 〈E〉 = Ndνu and

〈
�E2

〉 = Ndν�u2, and, using the density of states
result N = 8πν3/c3 of (4.5), to arrive at the final result of

〈
�E2

〉 = 〈E〉2
Ndν

+ 〈E〉 h̄ω = c3

8πν2

〈E〉2
vdν

+ 〈E〉 hν. (6.63)

This is just the result (6.16) that Einstein obtained in 1909 from Planck’s dis-
tribution. Thus these two terms, one wave and one particle, can be explained
in a unified framework. Recall that it was based on this result that Einstein first
proposed the point-like particles as the quanta of radiation. Alas, as already
mentioned above, Einstein never accepted this beautiful resolution of the great
wave–particle riddle, as he never accepted the framework of the new quantum
mechanics.

The extra particle-like term comes from the commutator (6.47) which is
equivalent to

[
x̂, p̂
] = ih̄. Thus it has the same origin as the zero-point energy

and the energy quantization feature of the quantized wave system. This eleg-
ant resolution of the wave–particle duality was discovered by Pascual Jordan
(Born, Heisenberg, and Jordan 1926).12 12There is ample historical evidence show-

ing that Jordan was alone responsible for this
section of the Dreimännerarbeit.

Somehow this result is not well-known
generally; the full story of, and a careful re-derivation of, Jordan’s contribution
was given by Duncan and Janssen (2008).
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Quantum field theory can account for another fundamental feature of a sys-
tem of many particles: its quantum statistics property. As we shall discuss in
the next chapter, photons obey Bose–Einstein statistics and the new quantum
mechanics requires its state to be symmetric under the exchange of any two
photons. It turns out that the commutation relation that is being discussed in
this section [cf. Eq. (6.47)] is just the elegant mathematical device needed to
bring about this required symmetry.1313For a fermionic system, the particle

creation and annihilation operators are
postulated to obey anticommutation relations
âj−âk+ + âk+âj− ≡

{
âj−, âk+

} = h̄ωδjk so
that a multi-fermion system is antisymmetric
under the interchange of two identical
fermions.

This quantum statistical property leads
directly to the Planck distribution for a thermal photon system. Planck’s dis-
tribution yields a fluctuation showing the wave–particle duality. Thus quantum
field theory gives a completely self-consistent description of the electromag-
netic radiation. In this theory one can see the effects of waves and particles
simultaneously.

6.5 SuppMat: Fluctuations of a wave system

Here is a calculation of the fluctuations of randomly superposed waves. This
presentation follows that given by Longair (2003, p. 369). The energy density
is proportional to the field squared |F|2. For the case of electromagnetic waves,
F can be the electric or magnetic field. We assume that all polarization vectors
are pointing in the same direction, reducing the problem to a scalar field case,
and all waves have the same amplitude A. [Cf. Eq. (3.4) in Section 3.1] In this
way, we have the energy density as

|F|2 = A2

⎛
⎝ N∑

j=1

eiφj

⎞
⎠∗ ( N∑

k=1

eiφk

)
= A2

⎛
⎝N +

∑
j�=k

ei(φk−φj)

⎞
⎠ . (6.64)

When the phases of the waves are random, the second term in the parentheses
being just sines and cosines, averages out to zero:

u = 〈|F|2〉 = NA2. (6.65)

Namely, the total average energy density of a set of incoherent waves is simply
the sum of the energy density of each mode.

To calculate the mean-squared energy, we need to calculate the square of the
energy density (6.64). The result is

∣∣|F|2∣∣2 = A4

∣∣∣∣∣∣
⎛
⎝N +

∑
j�=k

ei(φk−φj)

⎞
⎠
∣∣∣∣∣∣
2

= A4

⎛
⎝N2 + 2N

∑
j�=k

ei(φk−φj) +
∑
j�=k

e−i(φk−φj)
∑
l �=m

ei(φm−φl)

⎞
⎠ .

Again the second term (with coefficient 2N), as well as most of the terms in
the double sum, average out to zero. The terms in the double sum that survive
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are those with matching indices j = l and k = m; there are thus N2 such terms.
The result then is 〈∣∣|F|2∣∣2〉 = A4(N2 + 0+ N2) = 2N2A4. (6.66)

We have the variance of the fluctuating wave energy:

�u2 =
〈∣∣|F|2∣∣2〉− 〈|F|2〉2 = N2A4 = u2. (6.67)

This is the claimed result for wave fluctuations as displayed in (6.8).




