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• According to the orthodox interpretation of quantum mechanics (Niels
Bohr being its leading voice), the attributes of a physical object (pos-
ition, momentum, spin, etc.) can be assigned only when they have
been measured. Einstein advocated, as more reasonable, the local real-
ist viewpoint that a physical object has definite attributes whether they
have been measured or not.

• The orthodox view that measurement actually produces an object’s
property implies that the measurement of one part of an entangled
quantum state would instantaneously produce the value of another part,
no matter how far the two parts have been separated. Einstein, Podolsky,
and Rosen devised a thought experiment in order to shine a light on this
“spooky action-at-a-distance” feature of the orthodoxy; its discussion
and debate have illuminated some of the fundamental issues related to
the meaning of quantum mechanics.

• Such discussions led later to Bell’s theorem showing that these seem-
ingly philosophical questions could lead to observable results. The
experimental vindication of the orthodox interpretation has sharpened
our appreciation of the nonlocal features of quantum mechanics.
Nevertheless, the counter-intuitive picture of objective reality as offered
by quantum mechanics still troubles many, leaving one to wonder
whether quantum mechanics is ultimately a complete theory.

8.1 Quantum mechanical basics—superposition
and probability

Recall our discussion of wave–particle duality in Section 6.1. Physical objects
are found to be neither simply waves nor simply particles, but to have wave and
particle attributes simultaneously—two seemingly contradictory properties at
the same time. In the new quantum mechanics (QM) they are represented by
quantum states, which are taken to be vectors in a linear algebra space, called
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the Hilbert space. These vectors can be added and obey equations that are
linear—hence display the property of waves. These waves are interpreted as
probability waves.

In less abstract language, a central quantity in quantum mechanics is the
wavefunction, for example, the position wavefunction ψ(x). It satisfies the
Schrödinger wave equation, which is a linear differential equation; any lin-
ear combination of its solutions is still a solution. The wavefunction ψ(x) has
the interpretation that when we make a measurement of a particle’s position,
|ψ(x)|2 dx is the probability of finding the particle in the interval (x, x+ dx).
Namely, there is the possibility of a quantum mechanical position state in
which the particle is in more than two, in fact an infinite number of, positions
simultaneously.

Before a measurement is made, the particle can be in all these positions sim-
ultaneously. A measurement of the position would yield one particular value,
say xA. To make a measurement of a particle’s position finding any particu-
lar value, according to the orthodox interpretation, is a random process, only
subject to the likelihood as predicted by the probability distribution given by
the wavefunction. Many physicists were ill at ease with the probability feature
being built right into the foundation of the theory. Einstein famously objected:
“God does not play dice!”

8.2 The Copenhagen interpretation

If a measurement of the position finds the particle to be at xA, then immedi-
ately afterwards one should find the particle at xA as well. Namely, due to the
measurement, the particle “jumps” from the state being simultaneously in all
positions to a state with definite position at xA. According to the interpretation
of the wavefunction as given above, the measurement causes the “collapse” of
the wavefunction. Thus there are two fundamentally distinctive categories of
physical processes in quantum mechanics:

1. Smooth evolution of the wavefunction: The Schrödinger equation com-
pletely determines the behavior of the wavefunction. There is nothing
random about this description.

2. Quantum mechanical measurement: A measurement to obtain a par-
ticular result, according to quantum mechanics, is a random process. The
theory only predicts the probability of getting any particular outcome.
A measurement, which involves the interaction between the micro and
macro realms of physics, collapses the wavefunction. This collapse of the
wavefunction is not described by the Schrödinger equation; it is necessar-
ily a non-local process as the wavefunction changes its value everywhere
instantaneously.

8.2.1 The Copenhagen vs. the local realist interpretations

The first category of processes is noncontroversial, while questions related to
measurement (the second category) bring out the strangeness of the QM theory.
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One asks the question: “If the measurement finds the particle at xA, where was
the particle just before the measurement?”

• Local realists: “A particle has an objective reality; it has a set of attrib-
utes whether they have been measured or not. Therefore, it was at xA

just before the measurement finding it at xA.” According to Einstein,
Schrödinger, et al., this is the answer a reasonable theory would have
given.

• Orthodox quantum mechanical interpretation: Bohr, Heisenberg,
Born, and Jordan, et al. (the Copenhagen School) would have replied:
“The particle was not really anywhere.” Not only it is impossible to know,
but it’s not even meaningful to ask such a question (like asking the marital
status of a table). The framework of every theory determines the relev-
ant issue; in quantum mechanics, such a question should not have even
been asked! Thus, a Copenhagen theorist would say: “The measurement
compels the particle to assume a position. Observations not only disturb
what’s measured, they produce it.”

To local realists, like Einstein, a particle must have objective reality (mass,
spin, position, etc.) independent of whether these properties are being meas-
ured or not. (The moon is there whether you look at it or not.) Thus quantum
mechanics must be an incomplete theory—the particle is at xA, yet the theory
cannot tell us it is so.

8.3 EPR paradox: Entanglement and nonlocality

From 1928 onward, Einstein had engaged Niels Bohr (the leading proponent
of the Copenhagen school) in a series of debates (some public, but mostly
private) as to the meaning of measurements in quantum mechanics. To sharpen
his argument, to bring out the strangeness of the theory more clearly, Einstein,
with his collaborators Boris Podolsky and Nathan Rosen, published in 1935 a
paper in which a thought experiment was discussed in order to bring out clearly
the underlying nonlocal nature of quantum mechanics.11Bohr’s rejoinder can be found in Bohr

(1935).
The influence of this

paper has grown over the years as subsequent developments showed that the
question it raised was of fundamental importance to the meaning of quantum
mechanics.

Local reality in physics Let us recall briefly the history of the locality
concept in physics. One aspect of Newton’s theory of gravitation that he him-
self found unsatisfactory is the invocation of the “action-at-a-distance” force.
Somehow the source particle can act instantaneously on the test particle some
distance away. The same situation holds for Coulomb’s law. This was later
remedied with the introduction of the Faraday–Maxwell field. In a field the-
ory such an interaction is pictured as a two-step process: the source particle
brings about a field everywhere (with the field emanating from the source
and propagating outward at a finite speed). The field then acts on the test
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particle locally. Thus, through field theory, locality was restored back to phys-
ics. Einstein now points out that quantum mechanics brought about a new form
of nonlocality.

The EPR thought experiment We shall present the Einstein–Podolsky–
Rosen (EPR) “paradox” as simplified and sharpened by David Bohm (1917–
92). Consider the decay of a spin-zero particle, for definiteness take it be a
neutral pion (a spin-zero elementary particle), into an electron and positron
pair (both have spin one-half):

e+ ←− π0 −→ e−.

The decay products will speed away from each other in opposite directions. To
have angular momentum conservation, the spins of the daughter pair must be
opposite each other in order for their sum to be a spin-zero state. In quantum
mechanics such a final state is a superposition of two states: in one the electron
spin is up, in another it’s down:2 2The minus sign, which is irrelevant for

our discussion, reflects the relative phases of
Clebsch–Gordan coefficients in the addition
of two spin-1/2 states to form a spin-zero
angular momentum state.

ψ0 = 1√
2

(
ψ

(−)
↑ ψ

(+)
↓ − ψ

(−)
↓ ψ

(+)
↑
)

(8.1)

whereψ (−) is the wavefunction of the electron e−, andψ (+) is the wavefunction
of the positron e+. The subscripts indicate their respective spin orientation (in
some definite direction, say the z direction). Since these two terms have coef-
ficients with equal magnitude, there is equal probability for either outcome to
take place. These two terms, the two (product) wavefunctions ψ (−)

↑ ψ
(+)
↓ and

ψ
(−)
↓ ψ

(+)
↑ , superpose to make up one quantum state as the final state of this

decay process.

The entangled states

We now measure the spin orientations of the e+e− pair. Let us concentrate on
the electron spin. There is a 50% chance of finding the electron’s spin being
up and 50% chance down. But once the electron spin is measured, say finding
it to be spin up, we are 100% sure that the positron spin must be down—this
is so no matter how far away the positron has traveled: to the other side of the
lab bench, or to the other side of the galaxy. One can perform such a measure-
ment repeatedly and the spin orientations of these widely separated particle
pairs are always 100% correlated. Such a correlation3 3Mathematically, it has the feature that the

probability of finding any particular combina-
tions of electron and positron spin states is not
a simple product of probabilities of finding
electron and positron spin states separately.

of the spin states is
described as being “entangled”. In quantum mechanics, these two particles are
in one entangled quantum state; any change will affect both particles together
instantaneously.

Entanglement as viewed by local realists To a local realist this entangle-
ment by itself does necessarily represent a deep puzzle. We encounter this sort
of total correlation often in our daily experience. Let’s say Chris and Alex have
two coins, one gold and the other silver. They also have two boxes, each hold-
ing one coin so that Chris carries one and Alex the other. After they departed
from each other, Chris opens his box finding a silver coin. It does not matter
how far he had travelled, he knows immediately that Alex has the gold one.
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Thus to a local realist, the perfect correlation of the e+e− spins simply means
they were correlated before they were measured. Namely, since the beginning,
the silver coin had been in the box Chris took and the gold coin in the box
Alex had.

Copenhagen interpretation of entanglement However the interpretation
given by the Copenhagen school is very different. This orthodox view would
say that, before the measurement, the electron and positron were not in definite
spin states. Their quantum state is not just one or the other, but a superposition
of these two possibilities: the electron is in both spin up and down states, while
the positron also does not have definite spin, but always has its spin pointing in
the opposite direction to the electron spin. Because the electron and positron
are entangled, according to the orthodox interpretation, a measurement of the
electron spin compels the positron, no matter how far away it had traveled,
to jump into some definite spin state (opposite to that of the measured elec-
tron). Einstein found such an instantaneous effect so strange that he called it
“spooky action-at-a-distance”. This comes about because of the claim that the
states do not have any definite attributes until they have been measured. It is
the measurement here that compels the positron to jump into its spin state over
there!

Local realist hidden-variable theories To the local realists, the two
particles always had some definite spin orientation, yet quantum mechanics
can only predict it with some probability. This just means that quantum mech-
anics is an incomplete theory. The suggestion is made that there is a set of yet
unknown variables; their specification in a more complete theory would then
lead to definitive predictions. Such local realist theories are often referred to as
“hidden-variable theories”.

Hidden-variable theories can account for the quantum mechanical res-
ult in simple situations In simple situations, for example, measuring the
spin components in the same orientation or in two perpendicular orienta-
tions, hidden-variable theories can account for the quantum mechanical result
Putting this in more quantitative terms, both hidden-variable theories and QM
will find the average (as denoted by 〈. . .〉) product value of electron and
positron spins (in units of h̄/2) in any particular direction, whether in the
z direction or x direction, to be〈

S(−)
z S(+)

z

〉 = 〈S(−)
x S(+)

x

〉 = −1. (8.2)

The precise quantum mechanical calculation is presented in SuppMat
Section 8.4, see Eq. (8.23). The same result can be understood in the frame-
work of the local realist interpretation: as any pair of electrons and positrons
is produced, its members have opposite spin immediately after their birth. This
clearly holds as well when we average over all the measured values.

In the above we discussed only one spin orientation at a time. Now consider
measuring spins in two independent directions, say the z and x directions. A
quantum mechanical calculation [Eq. (8.24) below] shows that
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〈
S(−)

z S(+)
x

〉 = 0. (8.3)

It is not difficult for hidden-variable theories to reproduce this result. For
example, one can have a theory that allows independent spin orientations in
the two perpendicular directions to have electron spin up and positron spin
down, randomly (namely, equally likely). They all average out to zero.

8.3.1 The post-EPR era and Bell’s inequality

Many (most?) working physicists took an agonistic viewpoint. Since these
issues concern the interpretation of the situation before measurements, one can
adopt a “shut-up-and-calculate” attitude. One just uses the Schrödinger equa-
tion to compute quantities of practical interest and ignores the “philosophical
puzzles”. Then came the surprise when John S. Bell (1928–90) published a
paper (Bell 1964) showing that what were assumed for the situations “before
the measurement” (e.g. whether e+e− spins were already correlated) actually
have experimentally observable consequences (Bell’s inequality). Since the
1980s a whole series of experimental results have demonstrated that the local
realist viewpoint4 4Here we ignore the “many-worlds interpret-

ation” of quantum mechanics, advocated by
Hugh Everrett. Some would argue this inter-
pretation as the ultimate “realist” theory.

is not supported by observation. The orthodox way of inter-
preting entanglement has gained ground. It is interesting to note that currently
the researchers whose work has more bearing on these “philosophical issues”
are actually the ones pursuing the very practical ends of constructing “quantum
computers”, for which QM entanglement is of paramount importance. One way
or another, Einstein’s thoughts on the deep meanings of quantum mechanics
still exerts an influence on current investigations.

Bell’s inequality derived
Basically, what Bell did was to extend the above discussion of spin values Sz

and Sx to more than two directions. In such richer systems, one can deduce
relations that can distinguish the local realist interpretation from that of QM,
independent of the assumed forms of any hidden-variable theory.

Let us again consider the spin measurement of an electron and positron pro-
duced by a parent system having zero angular momentum. We can measure the
spin in any direction perpendicular to the e+e− pair’s motion (call it the ŷ dir-
ection); we broaden our consideration from just the ẑ and x̂ directions to three
directions

(
â, b̂, ĉ

)
in the x-z plane. According to the local realists, the particles

must have definite spin values at all times: the electron’s spin in the â direc-
tion can take on value of S(−)

a = ±1 (in units of h̄/2), similarly S(−)
b = ±1 and

S(−)
c = ±1. For notational simplicity we will write the electron spin values as

S(−)
a ≡ E(a, λ) = ±1, S(−)

b ≡ E(b, λ) = ±1, and S(−)
c ≡ E(c, λ) = ±1, respect-

ively. We have explicitly displayed their dependence on the hidden variable λ.
For positron spins, S(+)

a , S(+)
b , and S(+)

c , we write P(a, λ) = ±1, P(b, λ) = ±1,
and P(c, λ) = ±1, respectively. Since they must form a spin-zero system, we
must have E(a, λ) = −P(a, λ), E(b, λ) = −P(b, λ), and E(c, λ) = −P(c, λ).

Instead of presenting Bell’s original derivation, we shall present one only
involving simple arithmetic (d’ Espagnat 1979). The electron spin in three
directions

(
â, b̂, ĉ

)
has 23 = 8 possible configurations. Thus in the local
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realist’s approach we can think55From the Copenhagen viewpoint, it is not
allowed even in principle to think of any
definite spin states before their measurement.

of the following possible electron and positron
spin configurations as soon as the particles are produced:

Ea Eb Ec ←→ Pa Pb Pc

N1 + + + − − −
N2 + + − − − +
N3 + − + − + −
N4 + − − − + +
N5 − + + + − −
N6 − + − + − +
N7 − − + + + −
N8 − − − + + +

(8.4)

Ni is the number of events having the spin configuration in the ith row. Thus
there are N1 events with S(−)

a = E(a, λ) = +1, E(b, λ) = +1, and E(c, λ) =
+1, etc. (The exact values of Ni are to be determined, hopefully, in some
hidden-variable theory.) Because the electron and positron spins must be anti-
aligned (in order to have zero total angular momentum), the positron spin
configuration in the second group of columns must be exactly opposite to those
in the electron column (first group): thus Pa = −Ea and Pb = −Eb, etc.

The probability of having the ith row configuration is pi = Ni/�N with
�N being the total number of events. Thus, according to the local realists (lr)

approach, the average value of a spin product
〈
S(−)

a S(+)
b

〉
lr
≡ 〈a, b〉 is

〈a, b〉 =
∑

i

(pi) [E(a) P(b)]i =
∑

i

Ni [E(a) P(b)]i /�N. (8.5)

From the table in (8.4) we see that the values of the spin products are
[E(a) P(b)]1,2,7,8 = −1 and [E(a) P(b)]3,4,5,6 = +1 (with the row number being
indicated by the subscript). This allows us to write out weighted sums such as
(8.5) explicitly,

〈a, b〉 = (−N1 − N2 + N3 + N4 + N5 + N6 − N7 − N8) /�N.

Similarly, we can calculate the average product value for spins in the a and c
direction:

〈a, c〉 = (−N1 + N2 − N3 + N4 + N5 − N6 + N7 − N8) /�N;

thus

〈a, b〉 − 〈a, c〉 = 2 (−N2 + N3 + N6 − N7) /�N. (8.6)

We also have

〈b, c〉 = (−N1 + N2 + N3 − N4 − N5 + N6 + N7 − N8) /�N,

1 = (+N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8) /�N,

or

1+ 〈b, c〉 = 2 (N2 + N3 + N6 + N7) /�N. (8.7)
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A comparison of (8.6) and (8.7) leads to Bell’s inequality,

|〈a, b〉 − 〈a, c〉| ≤ [1+ 〈b, c〉] , (8.8)

or, in the explicit notation of spin products, the average values according to the
local realists (lr) must obey∣∣∣〈S(−)

a S(+)
b

〉
lr
− 〈S(−)

a S(+)
c

〉
lr

∣∣∣ ≤ [1+ 〈S(−)
b S(+)

c

〉
lr

]
. (8.9)

This result is independent of any assumption of the Ni values. The significance
of Bell’s inequality is that any realist hidden-variable theory must satisfy such
a relation.

The quantum mechanical result
How does Bell’s inequality compare to quantum mechanics result? The
quantum mechanical (QM) result for the correlation of spin components in
two general directions (with angle θab between them) is calculated in (8.27)
below: 〈

S(−)
a S(+)

b

〉
QM
= − cos θab. (8.10)

The two sides of Bell’s inequality (8.9) have the quantum mechanical values

LHS = |− cos θab + cos θac| (8.11)

and

RHS = 1− cos θbc. (8.12)

To see that Bell’s inequality is incompatible with this QM result, consider, for
example, the case of

(
â, b̂, ĉ

)
with â and b̂ being perpendicular, θab = π/2, and

ĉ being 45◦ from â and b̂: θac = π/4 and θbc = π/4. Thus, the LHS (8.11)
would be

∣∣− cos π
2 + cos π

4

∣∣ = 1/
√

2 � 0.7; and the RHS (8.12) would be
1− cos π

4 � 0.3, which is clearly not greater than the LHS, as required by
Bell’s inequality. That is, in this situation, no matter what choice one makes
of the Ni values, the hidden-variable theory will not be able to mimic the QM
prediction.

8.3.2 Local reality vs. quantum
mechanics—the experimental outcome

John Clauser (1942– ) and his collaborators were the first ones to carry out, in
1972, an experimental test of Bell’s inequality and found that the spooky pre-
diction of QM do occur (Clauser and Shimony 1978). Alain Aspect (1947– )
and his collaborator performed experiments (Aspect et al. 1981) and were able
to show more convincingly that such entanglement connections also take effect
instantaneously (at a speed faster than light speed), with results in agreement
with QM. Thus the nonlocal feature, what Einstein termed the “spooky action-
at-a-distance” effect, does seem to be a fundamental part of nature. Quantum
entanglement seems to say that if you have a system composed of more than
one particle, the individual particles are actually not individual. It leaves us
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with a rather strange picture of reality as it seems one is not allowed in principle
to assign objective attributes, independent of actual measurements.

John Bell, when referring to the implications of Aspect’s experiment, speaks
for many when he said,

For me it’s a dilemma. I think it’s a deep dilemma, and the resolution of it will not be
trivial; it will require a substantial change in the way we look at things.

An aside: Quantum computer
Nowadays, physicists do not regard the peculiarities of quantum systems as
a problem, but rather an opportunity. A proper appreciation of the profound
counter-intuitive properties of quantum multiparticle systems and the nature of
entanglement allows the possibility of using this peculiar behavior for potential
applications such as quantum computing. A quantum computer is a device that
makes direct use of QM phenomena, such as superposition and entanglement,
to perform operations on data. Quantum computing will be a revolutionary new
form of computation.

Conventional computers manipulate bits, each of which can take on values
of 0 or 1. Thus two bits can be in four states: 00, 01, 10, 11, and n bits encom-
pass 2n states. But a classical computer can only be in any one of these states
sequentially.

Quantum computers manipulate quantum bits, called qubits, which are
quantum states, i.e. a superposition of the classical states. Namely, a quantum
computer can be in many of the classical states simultaneously. For example,
using an electron spin (with spin up or down), a qubit can be in |↓〉 ≡ |0〉 and
|↑〉 ≡ |1〉 states, as well as in the state of a |0〉 + b |1〉; and a two-qubit system
in a |00〉 + b |10〉 + c |01〉 + d |11〉, etc. The complex numbers a, b, c, d are the
relative phases and amplitudes within the superposition. Thus, while a classical
computer acts on binary numbers stored in the input register to output another
number, a quantum computer acts on the whole superposition in qubits of its
input register, thus achieving enormous parallelism.

* * *

The 2005 reprint of Pais’ Einstein biography (Pais 1982) includes a new
Foreword by Roger Penrose (1931– ). This short essay is, in this author’s
opinion, a particularly insightful appraisal of Einstein’s scientific achievement.
Relevant to our discussion of Einstein’s view of quantum mechanics, Penrose
has this to say:

It must be said that some of Einstein’s objections to quantum theory have not really
stood the test of time—most notably it was “unreasonable” that the theory should pos-
sess strange non-local aspects (puzzling features Einstein correctly pointed out). Yet,
his most fundamental criticism does, I believe, remain valid. This objection is that the
theory seems not to present us with any fully objective picture of physical reality. Here,
I would myself side with Einstein (and with certain other key figures in the development
of the theory, notably Schrödinger and Dirac) in the belief that quantum theory is not
yet complete.
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8.4 SuppMat: Quantum mechanical calculation
of spin correlations

In quantum mechanics, a state |ψ〉 is a vector6 6A reader who is not familiar with Dirac nota-
tion may simply think of the “ket” vector |ψ〉
as a column vector, and the “bra” vector 〈φ|
as a row vector. The inner product is repres-
ented by a bracket 〈φ| ψ〉 which is the scalar
resulting from the multiplication of a row
and a column vector. Similarly, an operator
is represented by a matrix, and the expecta-
tion value 〈ψ |A|ψ〉 as the multiplication of
a row vector and a matrix, then with another
column vector.

in the Hilbert space. It can be
expanded in term of a complete set of basis vectors {|i〉}:

|ψ〉 =∑
i
ψi |i〉 . (8.13)

The basis vectors are usually taken to be the eigenvectors of some operator A
(representing some observable): A |i〉 = ai |i〉, where ai is a number (the eigen-
value). This means that if the system is in the state |i〉, a measurement of the
observable A is certain to obtain the result of ai. The coefficient of expan-
sion ψi = 〈ψ |i〉 is interpreted as the probability amplitude. A measurement
of A of the system in the general state of |ψ〉 will result in obtaining one, say
aj, of the possible eigenvalues {ai}, with probability pj =

∣∣ψj

∣∣2. The familiar
wavefunction ψ(x) is simply the coefficient of expansion in the representation
space having position eigenstates {|x〉} as basis vectors. In this case Eq. (8.13)
becomes

|ψ〉 =
∫

dxψ(x) |x〉 . (8.14)

The orthonormality condition of the basis vectors 〈i| j〉 = δij means we have
〈j |A| i〉 = δijai. Thus the average value of an observable A:

〈A〉 =∑
i

piai =∑
i
|ψi|2 ai, (8.15)

can be obtained efficiently by taking the expectation value of an operator (i.e.
sandwich the operator between the bra and ket vectors of the state):

〈A〉 =∑
i,j
ψ∗j ψiδijai =∑

i,j
ψ∗j ψi 〈j |A| i〉 = 〈ψ |A|ψ〉 . (8.16)

To reach the last expression we have used the expansion of Eq. (8.13).

8.4.1 Quantum mechanical calculation of spin average
values

Spin states
Here we shall mostly deal with spin eigenstates |s, m〉, which are labeled by
eigenvalues of the total spin S2 = S2

x + S2
y + S2

z and one spin component, say
Sz, respectively:

S2 |s, m〉 = s(s+ 1) h̄2 |s, m〉 , Sz |s, m〉 = mh̄ |s, m〉 . (8.17)

In our notation of setting 1
2 h̄ ≡ 1, we shall simply label the spin state by

suppressing the s value and concentrate on Sz with m = ± 1
2 :

Sz |Sz±〉 = ± |Sz±〉 . (8.18)

In the representation space spanned by the basis vectors |Sz±〉
|Sz+〉 ≡ |↑〉 =̇

(1
0

)
, |Sz−〉 ≡ |↓〉 =̇

(0
1

)
, (8.19)
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the spin operators Sx,y,z are represented by the Pauli matrices σx,y,z

Sz =̇ σz =
(

1 0
0 −1

)
, Sx =̇ σx =

(
0 1
1 0

)
, (8.20)

as can be checked by

Sz |↑〉 = |↑〉 and Sz |↓〉 = − |↓〉 . (8.21)

Spinless state resulting from adding two spin 1
2 states

Adding the electron and positron spin operators S(−) + S(+) = S we can have
total spin S = 1 or S = 0. Concentrating on the S = 0 state with its z compon-
ent Sz = S(−)

z + S(+)
z and spin value m(−) + m(+) = Ms = 0, the total spin state

is labeled as |S = 0, Ms = 0〉 ≡ |0, 0〉. This total spin-zero state is related to the
individual electron/positron Sz eigenstates

∣∣S(−)
z +〉 ∣∣S(+)

z −〉 ≡ ∣∣↑(−)↓(+)
〉
, etc. as

|0, 0〉 = 1√
2

(∣∣↑(−)↓(+)
〉− ∣∣↑(−)↓(+)

〉)
. (8.22)

This is an example of the expansion discussed in (8.13). Namely, the final
state is a superposition of the electron/positron states with the z component
of electron spin up and positron spin down and vice versa, with respective
expansion coefficients ±1/

√
2. This is the same relation as (8.1) but expressed

in terms of Dirac notation. Thus the probability of finding the state with the
electron spin up and positron spin down is 1/2 and the probability of finding
the state with the electron spin down and positron spin up is also 1/2.

8.4.2 Spin correlation in one direction

From this we can check that the quantum mechanical formalism yields the
average value

〈
S(−)

z S(+)
z

〉
QM =

〈
0, 0
∣∣S(−)

z S(+)
z

∣∣ 0, 0
〉 = −1, (8.23)

showing that the electron–positron spins must point in the opposite directions.
Because of (8.22), this involves calculating the type of terms such as

S(−)
z S(+)

z

∣∣↑(−)↓(+)
〉 = (S(−)

z

∣∣↑(−)
〉) (

S(+)
z

∣∣↓(+)
〉) = − ∣∣↑(−)↓(+)

〉
,

leading to S(−)
z S(+)

z |0, 0〉 = − |0, 0〉 and the claimed result of (8.23) because of
the normalization condition 〈0, 0| 0, 0〉 = 1. This calculation expresses the fact
that S(−)

z and S(+)
z are in different spin spaces so we can have S(−)

z act directly
on
∣∣↑(−)

〉
and S(+)

x act directly on
∣∣↓(+)

〉
as in (8.21).
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8.4.3 Spin correlation in two directions

Two directions that are perpendicular
We also expect 〈

S(−)
z S(+)

x

〉
QM = 〈0, 0| S(−)

z S(+)
x |0, 0〉 = 0. (8.24)

Namely, spin values in perpendicular directions are uncorrelated. In contrast to
(8.21), the spin operator Sx flips the spin in the z direction:

Sx |↑〉 = |↓〉 and Sx |↓〉 = |↑〉, (8.25)

because, as the representations in (8.19) and (8.20) show,(
0 1
1 0

)(
1
0

)
=
(

0
1

)
,

(
0 1
1 0

)(
0
1

)
=
(

1
0

)
.

A simple exercise shows that
〈
0, 0
∣∣S(−)

x S(+)
x

∣∣ 0, 0
〉 = −1. We next calculate the

action of S(−)
z S(+)

x on the state |0, 0〉 of (8.22):

S(−)
z S(+)

x |0, 0〉 = S(−)
z S(+)

x

(∣∣↑(−)↓(+)〉− ∣∣↓(−)↑(+)〉) /√2

= (∣∣↑(−)↑(+)
〉+ ∣∣↓(−)↓(+)

〉)
/
√

2. (8.26)

When multiplied with the bra vector 〈0, 0| of (8.22), the ortho-
gonality conditions7 7An even simpler way is to note that∣∣↑(−)↑(+)

〉=|S = 1, Ms = +1〉≡|1,+1〉 and∣∣↓(−)↓(+)
〉 = |1,−1〉; then the orthogonality

condition is 〈0, 0| 1,+1〉=〈0, 0| 1,−1〉 = 0.

such as
〈↑(−)

∣∣ ↓(−)
〉 = 〈↓(+)

∣∣ ↑(+)
〉 = 0 lead to

〈0, 0| S(−)
z S(+)

x |0, 0〉 = 0.

Two general directions
Here we calculate the quantum mechanical expectation value of a product of
spins in two general directions, calling them â and b̂. We are free to choose
â = ẑ and b̂ in the x-z plane: b̂ = cos θ ẑ+ sin θ x̂. Thus S(−)

a = S(−)
z and S(+)

b =
cos θS(+)

z + sin θS(+)
x :〈

0, 0
∣∣∣S(−)

a S(+)
b

∣∣∣ 0, 0
〉
= cos θ

〈
0, 0
∣∣S(−)

z S(+)
z

∣∣ 0, 0
〉+ sin θ 〈0, 0| S(−)

z S(+)
x |0, 0〉.

Knowing the results of (8.23) and (8.24), we immediately have〈
0, 0
∣∣∣S(−)

a S(+)
b

∣∣∣ 0, 0
〉
= cos θ (−1)+ sin θ (0) = − cos θ . (8.27)




