
Preface

Einstein explained in equations
Albert Einstein’s achievement in physics is proverbial. Many regard him as the
greatest physicist since Newton. What did he do in physics that’s so import-
ant? While there have been many books about Einstein, most of these explain
his achievement only in qualitative terms. This is rather unsatisfactory as
the language of physics is mathematics. One needs to know the equations
in order to understand Einstein’s physics: the precise nature of his contribu-
tion, its context, and its influence. The most important scientific biography
of Einstein has been the one by Abraham Pais: Subtle is the Lord . . . The
Science and the Life of Albert Einstein: The physics is discussed in depth;
however, it is still a narrative account and the equations are not worked out
in detail. Thus this biography assumes in effect a high level of physics back-
ground that is perhaps beyond what many readers, even working physicists,
possess. Our purpose is to provide an introduction to Einstein’s physics at
a level accessible to an undergraduate physics student. All physics equa-
tions are worked out from the beginning. Although the book is written with
primarily a physics readership in mind, enough pedagogical support material
is provided that anyone with a solid background in an introductory physics
course (say, an engineer) can, with some effort, understand a good part of this
presentation.

In historical context This is a physics book with material presented in the
historical context. Although it is not a scholarly history and there is hardly
any original work in the Einstein biography, historical material from secondary
sources is used to make the physics material more comprehensible and interest-
ing. For example, a more careful discussion of the results obtained by Hendrik
Lorentz will precede Einstein’s special relativity. Planck’s and Einstein’s work
on blackbody radiation are presented only after reviewing first the thermody-
namics and scaling results of Wilhelm Wien. Our opinion is that the history
conveyed through standard physics textbooks sometimes misses the proper
context of the discovery. The original Einstein story is actually more interesting
and illuminating.

Post-Einstein development Also, we do not stop at Einstein’s discovery,
but carry the discussion onto some of the advances in physics that had been
made because of Einstein’s contribution. We discuss gauge symmetry leading
to the Standard Model of particle physics as a legacy of Einstein’s invariance-
principle approach. As an example of Einstein’s unified field theory we present
the Kaluza–Klein unification of electromagnetism and gravitation in a space
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with an extra dimension. Such knowledge is needed to fully appreciate the
profound influence that Einstein’s physics had on subsequent development.

Can you answer these “Einstein questions”?
Physics students have already learnt aspects of Einstein’s physics—from seg-
ments in their course work or from popular accounts. Here is a list of 21
Einstein questions. Can you answer them?11Brief answers are given in Appendix C,

where the reader can also find the chapter and
section numbers where the discussion of, and
answer to, such Einstein questions are carried
out in the text.

1. Einstein’s research played a significant part in people’s acceptance of
the reality of the molecular constituents of matter. In one year, 1905, he
showed three separate ways to deduce Avogadro’s number from macro-
scopic measurements. What were the three areas in physics where these
deductions were made? Surprisingly, one of these was the blackbody
radiation.

2. Einstein’s celebrated Brownian motion paper did not have the words
“Brownian motion” in its title. How come?

3. Einstein’s 1905 photoelectric paper, where the idea of light quanta was
first proposed, and which was the work cited when he was awarded the
Nobel Prize, was concerned mostly with a statistical study of black-
body radiation. If the papers on quantum theory by Planck and by
Einstein were both concerned with blackbody radiation, what was their
key difference?

4. In the classical theory we have an “ultraviolet catastrophe” for the black-
body radiation. How does the postulate of energy quantization cure this
problem?

5. Einstein’s quantum theory of specific heat is historically important
because it is the first instance when the quantum idea was shown to be
relevant to physical systems well beyond the esoteric case of blackbody
radiation. His theory also clarified the questions about matter’s molecular
composition. How is that so?

6. The statement of wave–particle duality was made first by Einstein in
his 1909 study of fluctuations of radiation energy. Einstein and Bohr
had influenced each other’s work, especially with respect to the idea of
quantum transitions (the quantum jumps). How did quantum mechanics
and quantum field theory accommodate, in one elegant framework, sim-
ultaneously waves, particles, and quantum jumps? Famously, this is not
the resolution that Einstein was able to accept.

7. Einstein never accepted the orthodox interpretation of quantum mechan-
ics. Was he just too set in his ways to appreciate the new advances in
physics? How had Einstein’s criticism influenced subsequent investiga-
tion on the meaning of quantum mechanics?

8. By the time Einstein proposed his special theory of relativity, the Lorentz
transformation had already been written down. Einstein was unaware of
this latest development, as he was working (in the Swiss Patent Office)
outside an academic environment. Einstein’s derivation of this transform-
ation rule differed fundamentally from the way it was gotten by Lorentz
and others. How?

9. While the Michelson–Morley measurement did not play a direct role
in Einstein’s motivation for special relativity, there were other results
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(stellar aberration, Fizeau’s experiment, and Fresnel’s formula) that
Einstein had acknowledged as having had an influence. In what ways
were they relevant to Einstein’s motivation? How were they explained in
the final relativity theory?

10. The key element of special relativity is the new conception of time.
Just about all the counter-intuitive relativistic effects spring from the
relativity of simultaneity. What about the well-known result of “length
contraction”? Does it have this connection with time also? If so, how?

11. What is the difference between the special and general theories of relativ-
ity? Special relativity is applicable to electromagnetism, mechanics,
thermodynamics, etc. but not to gravity (why not?); on the other hand,
general relativity is the field theory of gravitation. Why then is special
relativity special and general relativity general? Why does the principle
of general relativity automatically bring gravity into the consideration?

12. Einstein originally dismissed Minkowski’s geometrical formulation of
his relativity theory as “superfluous learnedness”. What caused Einstein
to change this appraisal later on? With respect to the role of mathemat-
ics in the discovery of physics theory, how did Einstein’s view evolve?
Was Einstein a great mathematician as well as a great physicist? What
difference would it make?

13. What was the idea that Einstein called “my happiest thought”? Which
moment of elation was characterized by his biographer Pais as “by far
the strongest emotional experience in Einstein’s scientific life, perhaps,
in all his life”?

14. Einstein’s general relativity is said to be a geometric theory of gravity.
What does one mean by a “geometry theory”? How did Einstein get the
idea that “a gravitational field is simply spacetime with curvature”? To
what physical realm exactly does Einstein’s theory extend Newtonian
gravity?

15. One way to state the equivalence of inertia and gravitation is to say that
gravity can always be transformed away locally (by going to a reference
frame in free fall). Thus the essence of gravity is represented by its differ-
entials (tidal forces). How does this feature appear in the field equation
of general relativity (the Einstein equation)?

16. According to Einstein’s gravity theory, shaking a mass gives rise to grav-
itational waves. Because gravity is such a weak force, it is extremely
difficult to detect the resultant waves. At this moment there is no con-
firmed evidence for their direct detection. Nevertheless, consequences of
gravitational wave emission have been measured and found in agreement
with Einstein’s prediction. What are these indirect effects?

17. It is well known that black holes are regions where gravity is so strong
even light cannot escape. Black holes demonstrate the full power and
glory of general relativity also because, inside black holes, “the roles of
space and time are interchanged”! What does this mean? How does this
come about?

18. Planck’s discovery of Planck’s constant allowed him to construct, from
h, c, and GN, a natural unit system of mass-length-time. Through the
essential contribution by Einstein, we now understand each of these
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fundamental constants as the “conversion factor” that connects dispar-
ate realms of physics. Can you name these areas? What are Einstein’s
works that made these syntheses possible?

19. The modern study of cosmology started with Einstein’s 1917 paper. The
story was often told that Einstein regarded his introduction of the cosmo-
logical constant as “the biggest blunder of my life”. What is the source of
this piece of anecdotal history? What role does Einstein’s cosmological
constant play in our present understanding of the universe?

20. Special relativity, photons, and Bose–Einstein statistics are crucial
ingredients of modern particle physics. On the other hand, Einstein did
not work directly on any particle theory. Yet, one can still claim that the
influence of his ideas had been of paramount importance in the success-
ful creation of the Standard Model of particle physics. What is the basis
of this claim?

21. In the later years of his life, Einstein devoted the major part of his
physics effort in the search for a unified field theory. Was this just a
misguided chasing of an impossible dream? Based on our current under-
standing, what was the legacy of this somewhat less appreciated part of
his research?

Clearly the story is a fascinating one. But to understand it properly one needs
to know the relevant physics, to know some of the technical details. This, an
undergraduate physics student, with some help, should be able to do.

Atoms, quanta, and relativity—Our presentation
The material is logically divided into five parts: atoms, quanta, special/general
relativity, and later developments. Each of the 17 chapters has a detailed sum-
mary, in the form of a bullet list, placed at the beginning of the chapter. The
reader can use these lists to get an overview of the contents and decide which
part the book he or she wants to study in detail. For example, a reader may well
wish to postpone Chapter 1 for a later reading; it discusses Einstein’s doctoral
thesis and concerns the subject of classical hydrodynamics, which may not be
all that familiar to a present-day student.

Physics focus Although many of Einstein’s papers are discussed in this book,
his physics is not presented in the exact form as given in his papers. For
example, the derivation of the Lorentz transformation is different from that
given in Einstein’s 1905 paper, even though the assumption and result are the
same. In finding the general relativity field equation, Einstein’s original steps
are not followed because, after Einstein’s discovery, it had been shown by oth-
ers that the same conservation law condition could be obtained much more
simply by using the Bianchi identities. In other words, the focus of this book
is Einstein’s physics, rather than the strict historical details of his physics. It
is hoped that our presentation (without the obsolete notation of the original
papers) is more accessible to a modern-day reader.

As a textbook? Since Einstein’s legacy has permeated so many areas in
physics, a wide range of topics will be covered in our presentation. It is
hoped that after studying these lessons, a student will not only have learnt
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some history of physics and a better appreciation of Einstein’s achieve-
ment, but, perhaps more importantly, will have enhanced their understanding
of some of the basic areas in their physics curriculum (and a glimpse of
more advanced topics): thermodynamics, hydrodynamics, statistical mechan-
ics, Maxwell’s equations, special and general relativity, cosmology, quantum
mechanics, quantum field theory, and particle physics. Although this book is
written for a general-interest physics readership, it can be used as a textbook as
well—for a “Special Topics” course, or an “Independent Reading” course. One
possibility is to have the book function as the basis of a “senior year project”.
Working through the book may well be an enjoyable experience for both the
student and the instructor.
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