Preface

Einstein explained in equations

Albert Einstein's achievement in physics is proverbial. Many regard him as the greatest physicist since Newton. What did he do in physics that's so important? While there have been many books about Einstein, most of these explain his achievement only in qualitative terms. This is rather unsatisfactory as the language of physics is mathematics. One needs to know the equations in order to understand Einstein's physics: the precise nature of his contribution, its context, and its influence. The most important scientific biography of Einstein has been the one by Abraham Pais: Subtle is the Lord... The Science and the Life of Albert Einstein: The physics is discussed in depth; however, it is still a narrative account and the equations are not worked out in detail. Thus this biography assumes in effect a high level of physics background that is perhaps beyond what many readers, even working physicists, possess. Our purpose is to provide an introduction to Einstein's physics at a level accessible to an undergraduate physics student. All physics equations are worked out from the beginning. Although the book is written with primarily a physics readership in mind, enough pedagogical support material is provided that anyone with a solid background in an introductory physics course (say, an engineer) can, with some effort, understand a good part of this presentation.

In historical context This is a physics book with material presented in the historical context. Although it is not a scholarly history and there is hardly any original work in the Einstein biography, historical material from secondary sources is used to make the physics material more comprehensible and interesting. For example, a more careful discussion of the results obtained by Hendrik Lorentz will precede Einstein's special relativity. Planck's and Einstein's work on blackbody radiation are presented only after reviewing first the thermodynamics and scaling results of Wilhelm Wien. Our opinion is that the history conveyed through standard physics textbooks sometimes misses the proper context of the discovery. The original Einstein story is actually more interesting and illuminating.

Post-Einstein development Also, we do not stop at Einstein's discovery, but carry the discussion onto some of the advances in physics that had been made because of Einstein's contribution. We discuss gauge symmetry leading to the Standard Model of particle physics as a legacy of Einstein's invariance-principle approach. As an example of Einstein's unified field theory we present the Kaluza–Klein unification of electromagnetism and gravitation in a space

¹Brief answers are given in Appendix C, where the reader can also find the chapter and section numbers where the discussion of, and answer to, such Einstein questions are carried out in the text.

with an extra dimension. Such knowledge is needed to fully appreciate the profound influence that Einstein's physics had on subsequent development.

Can you answer these "Einstein questions"?

Physics students have already learnt aspects of Einstein's physics—from segments in their course work or from popular accounts. Here is a list of 21 Einstein questions. Can you answer them?¹

- 1. Einstein's research played a significant part in people's acceptance of the reality of the molecular constituents of matter. In one year, 1905, he showed three separate ways to deduce Avogadro's number from macroscopic measurements. What were the three areas in physics where these deductions were made? Surprisingly, one of these was the blackbody radiation.
- 2. Einstein's celebrated Brownian motion paper did not have the words "Brownian motion" in its title. How come?
- 3. Einstein's 1905 photoelectric paper, where the idea of light quanta was first proposed, and which was the work cited when he was awarded the Nobel Prize, was concerned mostly with a statistical study of blackbody radiation. If the papers on quantum theory by Planck and by Einstein were both concerned with blackbody radiation, what was their key difference?
- 4. In the classical theory we have an "ultraviolet catastrophe" for the blackbody radiation. How does the postulate of energy quantization cure this problem?
- 5. Einstein's quantum theory of specific heat is historically important because it is the first instance when the quantum idea was shown to be relevant to physical systems well beyond the esoteric case of blackbody radiation. His theory also clarified the questions about matter's molecular composition. How is that so?
- 6. The statement of wave-particle duality was made first by Einstein in his 1909 study of fluctuations of radiation energy. Einstein and Bohr had influenced each other's work, especially with respect to the idea of quantum transitions (the quantum jumps). How did quantum mechanics and quantum field theory accommodate, in one elegant framework, simultaneously waves, particles, and quantum jumps? Famously, this is not the resolution that Einstein was able to accept.
- 7. Einstein never accepted the orthodox interpretation of quantum mechanics. Was he just too set in his ways to appreciate the new advances in physics? How had Einstein's criticism influenced subsequent investigation on the meaning of quantum mechanics?
- 8. By the time Einstein proposed his special theory of relativity, the Lorentz transformation had already been written down. Einstein was unaware of this latest development, as he was working (in the Swiss Patent Office) outside an academic environment. Einstein's derivation of this transformation rule differed fundamentally from the way it was gotten by Lorentz and others. How?
- 9. While the Michelson–Morley measurement did not play a direct role in Einstein's motivation for special relativity, there were other results

(stellar aberration, Fizeau's experiment, and Fresnel's formula) that Einstein had acknowledged as having had an influence. In what ways were they relevant to Einstein's motivation? How were they explained in the final relativity theory?

- 10. The key element of special relativity is the new conception of time. Just about all the counter-intuitive relativistic effects spring from the relativity of simultaneity. What about the well-known result of "length contraction"? Does it have this connection with time also? If so, how?
- 11. What is the difference between the special and general theories of relativity? Special relativity is applicable to electromagnetism, mechanics, thermodynamics, etc. but not to gravity (why not?); on the other hand, general relativity is the field theory of gravitation. Why then is special relativity special and general relativity general? Why does the principle of general relativity automatically bring gravity into the consideration?
- 12. Einstein originally dismissed Minkowski's geometrical formulation of his relativity theory as "superfluous learnedness". What caused Einstein to change this appraisal later on? With respect to the role of mathematics in the discovery of physics theory, how did Einstein's view evolve? Was Einstein a great mathematician as well as a great physicist? What difference would it make?
- 13. What was the idea that Einstein called "my happiest thought"? Which moment of elation was characterized by his biographer Pais as "by far the strongest emotional experience in Einstein's scientific life, perhaps, in all his life"?
- 14. Einstein's general relativity is said to be a geometric theory of gravity. What does one mean by a "geometry theory"? How did Einstein get the idea that "a gravitational field is simply spacetime with curvature"? To what physical realm exactly does Einstein's theory extend Newtonian gravity?
- 15. One way to state the equivalence of inertia and gravitation is to say that gravity can always be transformed away locally (by going to a reference frame in free fall). Thus the essence of gravity is represented by its differentials (tidal forces). How does this feature appear in the field equation of general relativity (the Einstein equation)?
- 16. According to Einstein's gravity theory, shaking a mass gives rise to gravitational waves. Because gravity is such a weak force, it is extremely difficult to detect the resultant waves. At this moment there is no confirmed evidence for their direct detection. Nevertheless, consequences of gravitational wave emission have been measured and found in agreement with Einstein's prediction. What are these indirect effects?
- 17. It is well known that black holes are regions where gravity is so strong even light cannot escape. Black holes demonstrate the full power and glory of general relativity also because, inside black holes, "the roles of space and time are interchanged"! What does this mean? How does this come about?
- 18. Planck's discovery of Planck's constant allowed him to construct, from h, c, and G_N , a natural unit system of mass-length-time. Through the essential contribution by Einstein, we now understand each of these

fundamental constants as the "conversion factor" that connects disparate realms of physics. Can you name these areas? What are Einstein's works that made these syntheses possible?

- 19. The modern study of cosmology started with Einstein's 1917 paper. The story was often told that Einstein regarded his introduction of the cosmological constant as "the biggest blunder of my life". What is the source of this piece of anecdotal history? What role does Einstein's cosmological constant play in our present understanding of the universe?
- 20. Special relativity, photons, and Bose–Einstein statistics are crucial ingredients of modern particle physics. On the other hand, Einstein did not work directly on any particle theory. Yet, one can still claim that the influence of his ideas had been of paramount importance in the successful creation of the Standard Model of particle physics. What is the basis of this claim?
- 21. In the later years of his life, Einstein devoted the major part of his physics effort in the search for a unified field theory. Was this just a misguided chasing of an impossible dream? Based on our current understanding, what was the legacy of this somewhat less appreciated part of his research?

Clearly the story is a fascinating one. But to understand it properly one needs to know the relevant physics, to know some of the technical details. This, an undergraduate physics student, with some help, should be able to do.

Atoms, quanta, and relativity—Our presentation

The material is logically divided into five parts: atoms, quanta, special/general relativity, and later developments. Each of the 17 chapters has a detailed summary, in the form of a bullet list, placed at the beginning of the chapter. The reader can use these lists to get an overview of the contents and decide which part the book he or she wants to study in detail. For example, a reader may well wish to postpone Chapter 1 for a later reading; it discusses Einstein's doctoral thesis and concerns the subject of classical hydrodynamics, which may not be all that familiar to a present-day student.

Physics focus Although many of Einstein's papers are discussed in this book, his physics is not presented in the exact form as given in his papers. For example, the derivation of the Lorentz transformation is different from that given in Einstein's 1905 paper, even though the assumption and result are the same. In finding the general relativity field equation, Einstein's original steps are not followed because, after Einstein's discovery, it had been shown by others that the same conservation law condition could be obtained much more simply by using the Bianchi identities. In other words, the focus of this book is Einstein's physics, rather than the strict historical details of his physics. It is hoped that our presentation (without the obsolete notation of the original papers) is more accessible to a modern-day reader.

As a textbook? Since Einstein's legacy has permeated so many areas in physics, a wide range of topics will be covered in our presentation. It is hoped that after studying these lessons, a student will not only have learnt

some history of physics and a better appreciation of Einstein's achievement, but, perhaps more importantly, will have enhanced their understanding of some of the basic areas in their physics curriculum (and a glimpse of more advanced topics): thermodynamics, hydrodynamics, statistical mechanics, Maxwell's equations, special and general relativity, cosmology, quantum mechanics, quantum field theory, and particle physics. Although this book is written for a general-interest physics readership, it can be used as a textbook as well—for a "Special Topics" course, or an "Independent Reading" course. One possibility is to have the book function as the basis of a "senior year project". Working through the book may well be an enjoyable experience for both the student and the instructor.

Acknowledgement

My editor Sonke Adlung has given me much encouragement and useful advice. Jessica White helped me with the whole process of submitting this book manuscript to OUP. This book grew from the lecture notes of a summer course I taught at the Portland State University. I thank Erik Bodegom, John Freeouf, Drake Mitchell, and Kim Doty-Harris for their support. Sam Paul, my student at UMSL, read through the entire manuscript and made useful comments. I am grateful to Cindy Bertram for doing all the line-drawing figures in this book.

Book website As always, I shall be glad to receive, at tpcheng@umsl.edu, readers' comments and notification of errors. An updated list of corrections will be displayed at <htp://www.umsl.edu/~tpcheng/einstein.html>.

St. Louis MO and Portland OR July, 2012 *T.P.C.*

Contents

PART I ATOMIC NATURE OF MATTER

1	Molecular size from classical fluids	3
	1.1 Two relations of molecular size and the Avogadro number	4
	1.2 The relation for the effective viscosity	5
	1.2.1 The equation of motion for a viscous fluid	5
	1.2.2 Viscosity and heat loss in a fluid	6
	1.2.3 Volume fraction in terms of molecular dimensions	8
	1.3 The relation for the diffusion coefficient	8
	1.3.1 Osmotic force	9
	1.3.2 Frictional drag force—the Stokes law	10
	1.4 SuppMat: Basics of fluid mechanics	11
	1.4.1 The equation of continuity	12
	1.4.2 The Euler equation for an ideal fluid	12
	1.5 SuppMat: Calculating the effective viscosity	13
	1.5.1 The induced velocity field v'	14
	1.5.2 The induced pressure field p'	15
	1.5.3 Heat dissipation in a fluid with suspended particles	15
	1.6 SuppMat: The Stokes formula for the viscous force	18
2	The Brownian motion	20
	2.1 Diffusion and Brownian motion	21
	2.1.1 Einstein's statistical derivation of the diffusion equation	22
	2.1.2 The solution of the diffusion equation	
	and the mean-square displacement	23
	2.2 Fluctuations of a particle system	24
	2.2.1 Random walk	24
	2.2.2 Brownian motion as a random walk	25
	2.3 The Einstein–Smoluchowski relation	25
	2.3.1 Fluctuation and dissipation	27
	2.3.2 Mean-square displacement and molecular dimensions	27
	2.4 Perrin's experimental verification	27

PART II QUANTUM THEORY

3	Blackbody radiation: From Kirchhoff to Planck	31
	3.1 Radiation as a collection of oscillators	32
	3.1.1 Fourier components of radiation obey harmonic	
	oscillator equations	33

	3.2	Thermodynamics of blackbody radiation	34
		3.2.1 Radiation energy density is a universal function	34
		3.2.2 The Stefan–Boltzmann law	35
		3.2.3 Wien's displacement law	36
		3.2.4 Planck's distribution proposed	38
	3.3	Planck's investigation of cavity oscillator entropy	39
		3.3.1 Relating the oscillator energy to the radiation density	39
		3.3.2 The mean entropy of an oscillator	40
	3.4	Planck's statistical analysis leading to energy quantization	41
		3.4.1 Calculating the complexion of Planck's distribution	41
		3.4.2 Planck's constant and Boltzmann's constant	44
		3.4.3 Planck's energy quantization proposal—a summary	45
	3.5	SuppMat: Radiation oscillator energy and frequency	45
		3.5.1 The ratio of the oscillator energy and frequency	
		is an adiabatic invariant	46
		3.5.2 The thermodynamic derivation of the relation	
		between radiation pressure and energy density	48
4	Ein	stein's proposal of light quanta	50
	4.1	The equipartition theorem and the Rayleigh–Jeans law	51
		4.1.1 Einstein's derivation of the Rayleigh–Jeans law	52
		4.1.2 The history of the Rayleigh–Jeans law and	
		"Planck's fortunate failure"	53
		4.1.3 An excursion to Rayleigh's calculation of the	
		density of wave states	54
	4.2	Radiation entropy and complexion á la Einstein	55
		4.2.1 The entropy and complexion of radiation in the Wien limit	55
		4.2.2 The entropy and complexion of an ideal gas	57
		4.2.3 Radiation as a gas of light quanta	58
		4.2.4 Photons as quanta of radiation	59
		The photoelectric effect	59
	4.4	SuppMat: The equipartition theorem	60
5	Ou	antum theory of specific heat	62
-		The quantum postulate: Einstein vs. Planck	62
		5.1.1 Einstein's derivation of Planck's distribution	63
	5.2	Specific heat and the equipartition theorem	64
		5.2.1 The study of heat capacity in the pre-quantum era	65
		5.2.2 Einstein's quantum insight	66
	5.3	The Einstein solid—a quantum prediction	67
		The Debye solid and phonons	69
		5.4.1 Specific heat of a Debye solid	71
		5.4.2 Thermal quanta vs. radiation quanta	72
6	Wa	ves, particles, and quantum jumps	73
v		Wave–particle duality	74
		6.1.1 Fluctuation theory (Einstein 1904)	75
		6.1.2 Energy fluctuation of radiation (Einstein 1909a)	75
	6.2	Bohr's atom—another great triumph of the quantum postulate	78

	6.2.1 Spectroscopy: Balmer and Rydberg	78
	6.2.2 Atomic structure: Thomson and Rutherford	79
	6.2.3 Bohr's quantum model and the hydrogen spectrum	79
	5.3 Einstein's A and B coefficients	82
	6.3.1 Probability introduced in quantum dynamics	82
	6.3.2 Stimulated emission and the idea of the laser	84
	5.4 Looking ahead to quantum field theory	85
	6.4.1 Oscillators in matrix mechanics	85
	6.4.2 Quantum jumps: From emission and absorption	
	of radiation to creation and annihilation of particles	88
	6.4.3 Resolving the riddle of wave-particle duality	
	in radiation fluctuation	91
	5.5 SuppMat: Fluctuations of a wave system	92
7	Bose–Einstein statistics and condensation	94
	7.1 The photon and the Compton effect	95
	7.2 Towards Bose–Einstein statistics	96
	7.2.1 Boltzmann statistics	97
	7.2.2 Bose's counting of photon states	98
	7.2.3 Einstein's elaboration of Bose's counting statistics	100
	7.3 Quantum mechanics and identical particles	102
	7.3.1 Wave mechanics: de Broglie–Einstein–Schrödinger	102
	7.3.2 Identical particles are truly identical in quantum	
	mechanics	103
	7.3.3 Spin and statistics	103
	7.3.4 The physical implications of symmetrization	104
	7.4 Bose–Einstein condensation	105
	7.4.1 Condensate occupancy calculated	105
	7.4.2 The condensation temperature	106
	7.4.3 Laboratory observation of Bose–Einstein condensation	107
	7.5 SuppMat: Radiation pressure due to a gas of photons	108
	7.6 SuppMat: Planck's original analysis in view of	
	Bose–Einstein statistics	109
	7.7 SuppMat: The role of particle indistinguishability in	
	Bose–Einstein condensation	110
8	Local reality and the Einstein–Bohr debate	112
	8.1 Quantum mechanical basics—superposition and probability	112
	8.2 The Copenhagen interpretation	113
	8.2.1 The Copenhagen vs. the local realist interpretations	113
	8.3 EPR paradox: Entanglement and nonlocality	114
	8.3.1 The post-EPR era and Bell's inequality	117
	8.3.2 Local reality vs. quantum mechanics—	110
	the experimental outcome	119
	8.4 SuppMat: Quantum mechanical calculation of spin correlations	121
	8.4.1 Quantum mechanical calculation of spin average values	121
	8.4.2 Spin correlation in one direction	122
	8.4.3 Spin correlation in two directions	123

PART III SPECIAL RELATIVITY

9	Pre	lude to special relativity	127
		Relativity as a coordinate symmetry	128
		9.1.1 Inertial frames of reference and Newtonian relativity	128
	9.2	Maxwell's equations	129
		9.2.1 The electromagnetic wave equation	130
		9.2.2 Aether as the medium for electromagnetic wave	
		propagation	131
	9.3	Experiments and theories prior to special relativity	131
		9.3.1 Stellar aberration and Fizeau's experiment	131
		9.3.2 Lorentz's corresponding states and local time	133
		9.3.3 The Michelson–Morley experiment	136
		9.3.4 Length contraction and the Lorentz transformation	137
		9.3.5 Poincaré and special relativity	138
	9.4	Reconstructing Einstein's motivation	139
		9.4.1 The magnet and conductor thought experiment	139
		9.4.2 From "no absolute time" to the complete theory	
		in five weeks	141
		9.4.3 Influence of prior investigators in physics	
		and philosophy	142
	9.5	SuppMat: Lorentz transformation à la Lorentz	143
		9.5.1 Maxwell's equations are not Galilean covariant	143
		9.5.2 Lorentz's local time and noncovariance at $O(v^2/c^2)$	144
		9.5.3 Maxwell's equations are Lorentz covariant	146
10	The	e new kinematics and $E = mc^2$	147
		The new kinematics	148
		10.1.1 Einstein's two postulates	148
		10.1.2 The new conception of time and the derivation	
		of the Lorentz transformation	149
		10.1.3 Relativity of simultaneity, time dilation,	
		and length contraction	151
	10.2	2 The new velocity addition rule	154
		10.2.1 The invariant spacetime interval	154
		10.2.2 Adding velocities but keeping light speed constant	155
	10.3	3 Maxwell's equations are Lorentz covariant	156
		10.3.1 The Lorentz transformation of	
		electromagnetic fields	156
		10.3.2 The Lorentz transformation of radiation energy	158
		The Lorentz force law	158
	10.5	5 The equivalence of inertia and energy	159
		10.5.1 Work–energy theorem in relativity	159
		10.5.2 The $E = mc^2$ paper three months later	160
	10.0	5 SuppMat: Relativistic wave motion	162
		10.6.1 The Fresnel formula from the velocity addition rule	162
		10.6.2 The Doppler effect and aberration of light	162
		10.6.3 Derivation of the radiation energy transformation	163
	10.1	7 SuppMat: Relativistic momentum and force	164

PART III SPECIAL RELATIVITY

9	Pre	lude to special relativity	127
		Relativity as a coordinate symmetry	128
		9.1.1 Inertial frames of reference and Newtonian relativity	128
	9.2	Maxwell's equations	129
		9.2.1 The electromagnetic wave equation	130
		9.2.2 Aether as the medium for electromagnetic wave	
		propagation	131
	9.3	Experiments and theories prior to special relativity	131
		9.3.1 Stellar aberration and Fizeau's experiment	131
		9.3.2 Lorentz's corresponding states and local time	133
		9.3.3 The Michelson–Morley experiment	136
		9.3.4 Length contraction and the Lorentz transformation	137
		9.3.5 Poincaré and special relativity	138
	9.4	Reconstructing Einstein's motivation	139
		9.4.1 The magnet and conductor thought experiment	139
		9.4.2 From "no absolute time" to the complete theory	
		in five weeks	141
		9.4.3 Influence of prior investigators in physics	
		and philosophy	142
	9.5	SuppMat: Lorentz transformation à la Lorentz	143
		9.5.1 Maxwell's equations are not Galilean covariant	143
		9.5.2 Lorentz's local time and noncovariance at $O(v^2/c^2)$	144
		9.5.3 Maxwell's equations are Lorentz covariant	146
10	The	e new kinematics and $E = mc^2$	147
		The new kinematics	148
		10.1.1 Einstein's two postulates	148
		10.1.2 The new conception of time and the derivation	
		of the Lorentz transformation	149
		10.1.3 Relativity of simultaneity, time dilation,	
		and length contraction	151
	10.2	2 The new velocity addition rule	154
		10.2.1 The invariant spacetime interval	154
		10.2.2 Adding velocities but keeping light speed constant	155
	10.3	3 Maxwell's equations are Lorentz covariant	156
		10.3.1 The Lorentz transformation of	
		electromagnetic fields	156
		10.3.2 The Lorentz transformation of radiation energy	158
		The Lorentz force law	158
	10.5	5 The equivalence of inertia and energy	159
		10.5.1 Work–energy theorem in relativity	159
		10.5.2 The $E = mc^2$ paper three months later	160
	10.0	5 SuppMat: Relativistic wave motion	162
		10.6.1 The Fresnel formula from the velocity addition rule	162
		10.6.2 The Doppler effect and aberration of light	162
		10.6.3 Derivation of the radiation energy transformation	163
	10.1	7 SuppMat: Relativistic momentum and force	164

11	Geometric formulation of relativity	166
	11.1 Minkowski spacetime	167
	11.1.1 Rotation in 3D space—a review	168
	11.1.2 The Lorentz transformation as a rotation in	
	4D spacetime	168
	11.2 Tensors in a flat spacetime	169
	11.2.1 Tensor contraction and the metric	169
	11.2.2 Minkowski spacetime is pseudo-Euclidean	171
	11.2.3 Relativistic velocity, momentum, and energy	172
	11.2.4 The electromagnetic field tensor	173
	11.2.5 The energy-momentum-stress tensor for a	
	field system	174
	11.3 The spacetime diagram	176
	11.3.1 Basic features and invariant regions	176
	11.3.2 Lorentz transformation in the spacetime diagram	177
	11.4 The geometric formulation—a summary	179

PART IV GENERAL RELATIVITY

12	Towa	ards a general theory of relativity	183
	12.1	Einstein's motivations for general relativity	184
	12.2	The principle of equivalence between inertia and gravitation	184
		12.2.1 The inertia mass vs. the gravitational mass	184
		12.2.2 "My happiest thought"	186
	12.3	Implications of the equivalence principle	187
		12.3.1 Bending of a light ray	187
		12.3.2 Gravitational redshift	188
		12.3.3 Gravitational time dilation	190
		12.3.4 Gravity-induced index of refraction in free space	191
		12.3.5 Light ray deflection calculated	192
		12.3.6 From the equivalence principle to "gravity	
		as the structure of spacetime"	193
	12.4	Elements of Riemannian geometry	193
		12.4.1 Gaussian coordinates and the metric tensor	194
		12.4.2 Geodesic equation	195
		12.4.3 Flatness theorem	197
		12.4.4 Curvature	197
13	Curv	red spacetime as a gravitational field	200
	13.1	The equivalence principle requires a metric	
		description of gravity	201
		13.1.1 What is a geometric theory?	201
		13.1.2 Time dilation as a geometric effect	202
		13.1.3 Further arguments for warped spacetime	
		as the gravitational field	203
	13.2	General relativity as a field theory of gravitation	204
		13.2.1 The geodesic equation as the general relativity	
		equation of motion	205

	13.2.2 The Newtonian limit	205
13.3	Tensors in a curved spacetime	207
	13.3.1 General coordinate transformations	207
	13.3.2 Covariant differentiation	209
13.4	The principle of general covariance	213
	13.4.1 The principle of minimal substitution	213
	13.4.2 Geodesic equation from the special relativity	
	equation of motion	214
14 The	Einstein field equation	216
14.1	The Newtonian field equation	217
14.2	Seeking the general relativistic field equation	218
14.3	Curvature tensor and tidal forces	219
	14.3.1 Tidal forces—a qualitative discussion	219
	14.3.2 Newtonian deviation equation and the	
	equation of geodesic deviation	220
	14.3.3 Symmetries and contractions of the curvature	
	tensor	222
	14.3.4 The Bianchi identities and the Einstein tensor	223
14.4	The Einstein equation	225
	14.4.1 The Newtonian limit for a general source	225
	14.4.2 Gravitational waves	226
14.5	The Schwarzschild solution	226
	14.5.1 Three classical tests	228
	14.5.2 Black holes—the full power and glory	
	of general relativity	231
15 Cosr		234
15.1	The cosmological principle	235
	15.1.1 The Robertson–Walker spacetime	236
	15.1.2 The discovery of the expanding universe	238
	15.1.3 Big bang cosmology	239
15.2	Time evolution of the universe	240
	15.2.1 The FLRW cosmology	240
	15.2.2 Mass/energy content of the universe	242
15.3	The cosmological constant	244
	15.3.1 Einstein and the static universe	244
	15.3.2 The Inflationary epoch	247
	15.3.3 The dark energy leading to an accelerating universe	249

PART V WALKING IN EINSTEIN'S STEPS

16 Internal symmetry and gauge interactions	255
16.1 Einstein and the symmetry principle	256
16.2 Gauge invariance in classical electromagnetism	257
16.2.1 Electromagnetic potentials and gauge transformation	258
16.2.2 Hamiltonian of a charged particle in an	
electromagnetic field	259

	16.3	Gauge symmetry in quantum mechanics	261
		16.3.1 The minimal substitution rule	261
		16.3.2 The gauge transformation of wavefunctions	262
		16.3.3 The gauge principle	263
	16.4	Electromagnetism as a gauge interaction	266
		16.4.1 The 4D spacetime formalism recalled	266
		16.4.2 The Maxwell Lagrangian density	268
		16.4.3 Maxwell equations from gauge and Lorentz symmetries	269
	16.5	Gauge theories: A narrative history	270
		16.5.1 Einstein's inspiration, Weyl's program, and Fock's	
		discovery	270
		16.5.2 Quantum electrodynamics	271
		16.5.3 QCD as a prototype Yang–Mills theory	273
		16.5.4 Hidden gauge symmetry and the electroweak interaction	
		16.5.5 The Standard Model and beyond	280
17	The	Kaluza–Klein theory and extra dimensions	283
		Unification of electrodynamics and gravity	284
		17.1.1 Einstein and unified field theory	284
		17.1.2 A geometric unification	284
		17.1.3 A rapid review of electromagnetic gauge theory	285
		17.1.4 A rapid review of general relativistic gravitational theory	286
	17.2	General relativity in 5D spacetime	287
		17.2.1 Extra spatial dimension and the Kaluza–Klein metric	287
		17.2.2 "The Kaluza–Klein miracle"	288
	17.3	The physics of the Kaluza-Klein spacetime	289
		17.3.1 Motivating the Kaluza–Klein metric ansatz	289
		17.3.2 Gauge transformation as a 5D coordinate change	289
		17.3.3 Compactified extra dimension	290
		17.3.4 Quantum fields in a compactified space	290
	17.4	Further theoretical developments	292
		17.4.1 Lessons from Maxwell's equations	292
		17.4.2 Einstein and mathematics	293
	17.5	SuppMat: Calculating the 5D tensors	293
		17.5.1 The 5D Christoffel symbols	294
		17.5.2 The 5D Ricci tensor components	297
		17.5.3 From 5D Ricci tensor to 5D Ricci scalar	302

PART VI APPENDICES

A	Mathematics supplements	
	A.1 Vector calculus	305
	A.1.1 The Kronecker delta and Levi-Civita symbols	305
	A.1.2 Differential calculus of a vector field	307
	A.1.3 Vector integral calculus	308
	A.1.4 Differential equations of Maxwell electrodynamics	310
	A.2 The Gaussian integral	312

	A.3	Stirling's approximation	313
		A.3.1 The integral representation for <i>n</i> !	313
		A.3.2 Derivation of Stirling's formula	314
	A.4	Lagrangian multipliers	315
		A.4.1 The method	315
		A.4.2 Some examples	316
	A.5	The Euler–Lagrange equation	317
		A.5.1 Mechanics of a single particle	317
		A.5.2 Lagrangian density of a field system	318
B	Einstein's papers		320
	B .1	Einstein's journal articles cited in the text	320
	B.2	Further reading	323
С	Ans	wers to the 21 Einstein questions	325
Glossary of symbols and acronyms			331
	1	Latin symbols	331
	2	Greek symbols	333
	3	Acronyms	334
	4	Miscellaneous units and symbols	335
Bibliography			337
Index			343