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2.2 Inverse Lorentz transformation The Lorentz transformation (2.46), and its
inverse, written out only for the nontrivial components are

(
ct ′
x ′
)

= γ

(
1 −β

−β 1

)(
ct
x

)

(
ct
x

)
= γ

(
1 β

β 1

)(
ct ′
x ′
)

. (1)

The inverse matrix relation is demonstrated, using γ 2 = (1 − β2)−1, by

γ 2
(

1 −β

−β 1

)(
1 β

β 1

)
=
(

1 0
0 1

)
.

2.3 Lorentz transformation of derivative operators

(a) Start with the chain rule,

∂

∂x ′ = ∂x

∂x ′
∂

∂x
+ ∂t

∂x ′
∂

∂t
= γ

∂

∂x
+ γβ

∂

c∂t
.

To reach the last equality, we used (1) showing (ct, x) as functions of
(ct ′, x ′) to calculate ∂x/∂x ′ = γ and ∂t/∂x ′ = γβ/c. Similarly, we have

∂

c∂t ′ = γ
∂

c∂t
+ γβ

∂

∂x
.

(b) L̄ can be found by substituting into δν
μ = ∂(x ′

ν)/∂x
′
μ ≡ ∂ ′

μx ′ν the respec-

tive Lorentz transformations L and L̄ for coordinates and coordinate deriva-
tives Eqs. (2.47) and (2.48):

δν
μ = ∂ ′

μx ′ν =
∑
λ,ρ

(
L̄ λ

μ ∂λ

) (
Lν

ρ xρ
)

=
∑
λ,ρ

L̄ λ
μ Lν

ρδ
ρ
λ =

∑
λ

L̄ λ
μ Lν

λ. (2)

Namely, 1 = L̄L. Thus, the transformation for the coordinate derivative
operators is just the inverse shown in (1)—as already indicated by the
substitution of v → −v.

2.4 Lorentz covariance of Maxwell’s equations Given (2.51), we show the validity
of (2.50) by applying the Lorentz transformations for the fields and spacetime
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derivatives:

∇′ · B′ = ∂ B′
x

∂x ′ + ∂ B′
y

∂y′ + ∂ B′
z

∂z′

= γ

(
∂

∂x
+ β

∂

c∂t

)
Bx + ∂

∂y
γ
(
By + βEz

)+ ∂

∂z
γ
(
Bz − βEy

)

= γ

(
∂ Bx

∂x
+ ∂ By

∂y
+ ∂ Bz

∂z

)
︸ ︷︷ ︸

∇·B=0

+ γβ

[
∂ Bx

c∂t
+
(

∂ Ez

∂y
− ∂ Ey

∂z

)]
︸ ︷︷ ︸(

∇×E+ 1
c

∂B
∂t

)
x
=0

(3)

where we have used Lorentz transformation of (2.49) and (2.16) to reach the
second line. The x-component of Faraday’s equation is singled out because we
have assumed a Lorentz boost in the x direction.

2.5 From Coulomb’s to Ampere’s law We illustrate the general approach by the
example of a derivation of Faraday’s law from the magnetic Gauss’s law. We
note that since the magnetic Gauss’s law is valid in both frames, ∇ · B = 0
and ∇′ · B′ = 0. Eq. (3) implies that the x component of ∇ × E + 1

c
∂B
∂t is

zero. Hence, all three components of ∇ × E + 1
c

∂B
∂t = 0 (all of the vector

components are zero) as the y and z components can be similarly deduced by
considering Lorentz boosts in the y and z directions.

2.6 Length contraction and light-pulse clock In the rest frame of the clock, the total
time �t ′ for a light pulse to go from one end to another and back is the sum
�t ′ = �t ′1 + �t ′2, where �t ′2 is the time for the pulse to make the return trip.
Clearly �t ′1 = �t ′2 = L ′/c, where L ′ is the rest frame length of this clock. Now
consider the clock in motion, moving with velocity v from left to right. The
length the pulse must travel is lengthened when going from left to right, and
shortened when going from right to left (on the return trip), due to the fact that
the ends of the light clock are moving to the right:

c � t1 = L + v � t1, c � t2 = L − v � t2,

where L and �t are the length and time measured in the moving frame. We can
solve the above equations for �t1 and �t2 to get the time it takes the light pulse
to go from one end of the light clock to the the other in the moving frame:

�t = �t1 + �t2 = L

c − v
+ L

c + v
= γ 2 2L

c
. (4)

Using the time-dilation formula (2.26), we can find �t in terms of L ′. By
equating �t = γ � t ′ = γ (2L/c) to the result of (4), which gives �t in terms
of L , we obtain the Lorentz length-contraction formula of L = L ′/γ .

2.8 Invariant spacetime interval and relativity of simultaneity

(a) The invariant spacetime interval gives −c2	t ′2 + 	x ′2 = 	x2, or

c	t ′ =
√

	x ′2 − 	x2.

(b) The Lorentz transformation for the spatial coordinates, with 	t = 0, is
	x ′ = γ	x . This implies that γ = (1 − β2)−1/2 = (	x ′/	x) and γβ =√

γ 2 − 1 =
√

(	x ′/	x)2 − 1. The Lorentz transformation for the time
coordinates then leads to the same result as in (a), c	t ′ = γβ	x =√

	x ′2 − 	x2.
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2.9 More simultaneity calculations

(a) Given the Lorentz transformation (2.34) and (2.36), as well as its inverse
(2.37) and (2.38), it is clear that 	t ′ = 0 implies, through (2.36), 	t =
(β/c)	x, and through (2.38), 	t = (β/c)γ	x ′. These two equalities
require the consistency condition 	x = γ	x ′, which is compatible with
the Lorentz transformation (2.37) with 	t ′ = 0.

(b) Our derivation of length contraction in Section 2.2.3 would lead us to expect
the result of 	x ′ = γ −1	x because the key input of the two ends of an
object being measured at the same time in the “moving frame” is satisfied
by our 	t ′ = 0 condition.

(c) In Section 2.2.2, especially Eqs. (2.24) and (2.25), we have shown that the
time intervals for the light signals to reach the back and front ends of the
railcar as recorded by the platform observer are

t1 = L

2c

1

1 + β
, t2 = L

2c

1

1 − β
,

where L is the length of the moving railcar as seen by the platform observer.
If we let the railcar length as seen by the railcar observer be 	x ′, then the
railcar length as seen by the platform observer should be L = γ −1	x ′ due
to length contraction. We can calculate the time difference, as in (2.25),
to be

	t = t2 − t1 = β

c
γ 2L = β

c
γ	x ′,

which agrees with 	t = (β/c)γ	x ′ obtained above. With respect to the O
observer, the emission points are located at

x1 = −ct1 = −	x ′
2γ

1

1 + β
, x2 = ct2 = 	x ′

2γ

1

1 − β
.

Hence, according to the platform observer, the two emission events have a
separation of

	x = x2 − x1 = 	x ′
2γ

(
1

1 − β
+ 1

1 + β
) = γ	x ′

which agrees with the result 	x = γ	x ′ gotten from Lorentz transforma-
tion above.

2.10 Reciprocity of twin-paradox measurements In this reciprocal arrangement, the
γ factors are exactly the same. Al’s yearly flashes are received every 3 years
by Bill at home during the outward-bound part (15 years) of Al’s journey; thus,
15 flashes are seen by Bill during the 45 years between Al’s departure and his
turn-around. Thereafter, the flashes are received every 4 months; thus 15 flashes
are seen by Bill in the last 5 years before Al’s return. Therefore, Bill sees a total
of 30 of Al’s birthday fireworks over a period of 50 years of his time.

2.11 Velocity addition in the twin paradox The speed of the rocketship before
its turn-around is β1 = 4/5 and after the turn-around it is β2 = −4/5.

Hence, the relative speed between the spaceship, before and after the turn-
around, can be computed using the velocity addition rule of (2.22) β12 =
(β1 − β2)/(1 − β1β2) = 40/41, which corresponds to a gamma factor of
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γ12 = (1 − β2
12)−1/2 = 41/9. Hence a reading of t1 = 9 years by the clock on

the rocketship before the turn-around will be seen by the clock after the turn-
around, according to the SR time-dilation, to be t2 = γ12t1 = 41 years.

3.2 Contraction and dummy indices After interchanging both pairs of indices, the
symmetry properties of these two tensors yield Tμν Sμν = −TνμSνμ. Since
we can rename the dummy indices (e.g. rename μ as ν, and ν as μ) we
have Tμν Sμν = −TνμSνμ = −Tμν Sμν. Thus Tμν Sμν equals to the negative
of itself; it can only be zero.

3.4 Orthogonality fixes the rotation matrix The orthogonal condition

(
a b
c d

)(
a c
b d

)
=
(

1 0
0 1

)

includes the diagonal conditions of a2 + b2 = c2 + d2 = 1, which can be
solved by the parametrization of a = cos φ, b = sin φ and c = sin φ′, d =
cos φ′; while the off-diagonal condition of ac + bd = sin(φ + φ′) = 0 implies
φ = −φ′. In terms of the actual rotation angle θ , we make the identification
φ = θ .

(
a b
c d

)
=
(

cos θ sin θ

− sin θ cos θ

)
.

3.5 Group property of Lorentz transformations We shall only display the group
property of the boost transformation: Given the Lorentz boost (3.22), we have
the combined transformation

[
L (ψ1)

] [
L (ψ2)

] =
(

c1 s1
s1 c1

)(
c2 s2
s2 c2

)

where c1 ≡ cosh ψ1 and s1 ≡ sinh ψ1. A straightforward matrix multiplication
and the trigonometric identities, c12 ≡ cosh(ψ1 + ψ2) and s12 ≡ sinh(ψ1 +
ψ2), of c12 = c1c2 + s1s2 and s12 = s1c2 + c1s2, lead us to

[
L (ψ1)

] [
L (ψ2)

] =
(

c12 s12
s12 c12

)
= [

L (ψ1 + ψ2)
]
,

which is the stated result.
3.6 Group multiplication leads to velocity addition rule With the identifica-

tion of (3.25) β = − tanh ψ so that u/c = β1 = − tanh ψ1 and −v/c = β2 =
− tanh ψ2, and the group multiplication of (3.58), u′/c = β12 = − tanh ψ12 =
− tanh(ψ1 + ψ2), the velocity addition rule (2.22) follows from the trigonomet-
ric identity of

tanh (ψ1 ± ψ2) = tanh ψ1 ± tanh ψ2

1 ± tanh ψ1 tanh ψ2
.

3.7 Lorentz transform and velocity addition rule Suppressing the transverse spatial
components, the 4-velocities, according to (3.31), have components (in self-
evident notations) Uμ = γu(c, u) and U ′μ = γ ′

u(c, u′), which are connected
by Lorentz transformation U ′μ = Lμ

ν Uν

(
γ ′

uc
γ ′

uu′
)

=
(

γv −γvβv

−γvβv γv

)(
γuc
γuu

)
= cγvγu

(
1 − βvβu
−βv + βu

)
.



978–0–19–957364–6 17-Cheng-AppB Cheng (Typeset by SPi, Chennai) 376 of 414 September 24, 2009 17:51

376 Solutions to selected problems

Equating the first-row elements leads to γ ′
u = γvγu(1 − βvβu). When this is

substituted into the equality of the second-row elements, we obtain the velocity
addition rule of (2.22).

3.8 Antiproton production threshold The minimum energy needed to produce the
final state of three protons and one antiproton in the center-of-mass frame is
Efinal = 4 mc2. The square of the total 4-momentum of the final state, given the
total 3-momentum being zero (because of CM frame), pμ

final = (c−1 Efinal, �0)

must then be ημν pμ
final pν

final = −16 m2c2. By energy–momentum conserva-
tion, this must also the square of the total 4-momentum of the initial state of
two protons (projectile and target): pμ

final = pμ
initial, where pμ

initial is the initial
total 4-momentum with total energy and total 3-momentum of the initial state,
denoted by (E, �p), as its components. We then have, from (3.38),

−16m2c4 = −E2 + | �p|2 c2. (5)

In the lab frame, in which the target proton is at rest, we have E = E1 + mc2,

where E1 is the energy of the projectile proton. The 3-momentum is given
entirely by the projectile proton �p = �p1, which is related to E1 by the usual
energy–momentum relation: | �p|2c2 = | �p1|2c2 = E2

1 − m2c4. Substitute these
two relations into (5) and solve for the projectile proton’s lab energy to get
E1 = 7 mc2, which corresponds to a kinetic energy of the projectile Klab =
E1 − mc2 = 6 mc2 = 5.6 GeV.

3.9 More conventional derivation of Doppler effect Since the sender is at rest,
we have t = τ and dφ = ωdt; on the other hand, for the moving receiver,
we have dφ = ω′dt ′/γ =

√
1 − β2ω′dt ′. Thus invariance of the phase leads

to (ω′/ω) = (dt/dt ′)/
√

1 − β2. Now the two events (x, t) and (x ′, t ′) are
connected by a light signal, we have (x ′ − x) = c(t ′ − t) or (dt/dt ′) = 1 − β

(after using dx ′/dt ′ = v). In this way we obtain

ω′
ω

= 1 − β√
1 − β2

=
√

1 − β

1 + β
.

3.10 Twin paradox measurements and Doppler effect We can view the sending
and observing birthday fireworks as the sending and receiving of light signals.
Thus the respective emission and receiving frequencies should obey the Doppler
relation (3.47). The relative velocities for the outward and inward bound trips
being β = ±4/5, the formula yields ω′ = ω/3, and ω′ = 3ω, respectively.
This is just the frequency changes of birthday fireworks observed, for example,
during the outward bound part β = 4/5, the emission frequency is red-shifted
to ω′ = ω/3 and Al sees Bill’s annual firework every three years.

3.11 Spacetime diagram for the twin paradox (see displayed diagram.)
3.12 The twin paradox – the missing 32 years

(a) The gamma factor between O and O ′′ frames being γ = 5/3, Al’s inbound
15 years corresponds to the last 9 years (= tQ P ′′ ) of the total tQ = 50 years.
Hence tP ′′ = tQ − tQ P ′′ = 41 years.

(b) First we need to calculate the time dilation factor between O ′ and O ′′
frames. For this we need to work out the relative velocity β̄ of these two
frames. We can deduce it from the relative velocities β1,2 = ±4/5 of these
two frames with respect to the O system by using the velocity addition
rule of (2.22), β̄ = (β1 − β2)/(1 − β1β2) = 40/41. This gives rise to a
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Problem 3.11 Three worldlines of the twin
paradox: OQ is that for the stay-at-home
Bill, OP that for the outward-bound part
(β = 4/5) , PQ that for the inward-bound
part (β = −4/5) of the Al’s journey. M is the
midpoint between O and Q. These three lines
define three inertial frames: O, O ′, and O ′′
systems. When Al changes from the O ′ to the
O ′′ system at P the point that’s simultaneous
(with P) along Bill’s worldline O Q jumps
from point P ′ to P ′′. From the viewpoint of
Bill, this is a leap of 32 years.

γ̄ = 41/9. We then find the turning point P as having an O ′′ frame time
of t ′′O P = γ̄ t ′P = (41/9) × 15 = (205/3) years. This moving clock time
corresponds to the rest-frame time of tP ′′ = (205/3)/(5/3) = 41 years.

3.13 Spacetime diagram for the pole-and-barn paradox (see displayed diagram.)

Problem 3.13 Spacetime diagram for the
pole-and-barn paradox. Ground (barn)
observer has (x, t) coordinates, while
the runner (pole) rest frame has (x ′, t ′)
coordinates. The heavy lines are the
worldlines for the front-door (F), rear-door
(R) of the barn, and front-end (A), back-end
(B) of the pole. Note the order reversal:
tAR > tB F and t ′AR < t ′B F .

4.1 Inclined plane, pendulum and EP

(a) Inclined plane The F = ma equation along the inclined plane, is
mIa = mGg sin θ , leading to a material-dependent acceleration: aA =
g sin θ

(
mG
mI

)
A

.

(b) Pendulum For the simple pendulum with a light string of length L , we have
mIL(d2θ/dt2) = −mGg sin θ. This has the form of a simple harmonic
oscillator equation when approximated by sin θ ≈ θ , leading to a period of

TA = 2π

ω
= 2π

√
L

g

(
mI

mG

)
A

for a blob made up of material A.

4.2 Two EP brain-teasers

(a) Forward leaning balloon According to EP the effective gravity is the vec-
tor sum geff = g + (−a), where g is the normal gravity (pointing vertically
downward) while a is the acceleration of the vehicle. The buoyant force is
always opposite to geff.

(b) A toy for Einstein Normally what is difficult to do is to have a net force
pulling the ball back into the bowl. The net force is the combination of grav-
ity and spring restoring force. But the task can be made easy by dropping
the whole contraption—because EP informs us that gravity would disappear
in this freely falling system. Without the interference of gravity, the spring
will pull back the ball each time without any difficulty.

4.3 The Global Position System

(a) A satellite’s centripetal acceleration is produced by earth’s gravity: v2
s /rs =

GN M⊕/rs . The orbit period Ts is related to the radius and tangential
velocity: Ts = 2πrs/vs . Knowing that Ts = 12 h = 4.32 × 104 s we can
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find rs and vs from these two equations: rs 
 2.7 × 107 m 
 4.2R⊕, vs 

3.9 km/s, where R⊕ is earth’s radius.

(b) The SR time dilation factor being γs = (1 − β2
s )−1/2 = 1 + β2

s /2 + · · · the
fractional change is then t/τ − 1 = γs − 1 = β2

s /2 = (vs/c)2/2 
 0.85 ×
10−10. Here we have neglected the rotational speed of the clock on the
ground—the corresponding β2 value is a hundred times smaller even for
the largest value on the equator.

(c) The gravitational time dilation effect is given by (4.31) with � =
−GN M/r :

�⊕ − �s

c2
= −GN

M⊕
c2

(
1

R⊕
− 1

rs

)

 −5.2 × 10−10.

Thus, the general relativity (GR) effect is about six times larger than the
special relativity (SR) effect.

(d) In one minute duration (	t)GR 
 −30 ns, and (	t)SR 
 5 ns. The grav-
itational effect makes the satellite clock go faster because it is at a higher
gravitational potential. The SR dilation slows it down. The net effect is to
make the clock in the satellite, when compared to the clock on the ground,
run faster by about 25 ns for every passage of 1 min. This translates into a
distance of (2.5 × 10−8 s) × (3 × 108 m/s) = 7.5 m.

Here is an example of the practical application in our daily life of this
“pure science” of general relativity.

4.4 Gravitational redshift directly from Doppler effect The receiver being in
motion, moving with nonrelativistic velocity β = 	u/c, the SR Lorentz fre-
quency transformation (3.47) becomes

ωrec

ωem
=
√

1 − β

1 + β

 1 − β.

Or, equivalently 	ω/ω = −	u/c, which is just the expression shown in (4.22)
leading to the final gravitational result of (4.24).

5.2 Basis vectors on a spherical surface The respective basis vectors are

eθ = Rûθ , eφ = R sin θ ûφ,

where ûθ is the unit vector in the polar angle direction, and ûφ is perpendicular
to ûθ in the azimuthal direction. The resultant metric matrix, according to
Eq. (5.7), is

gab =
(

eθ · eθ eθ · eφ

eφ · eθ eφ · eφ

)
=
(

R2 0
0 R2 sin2 θ

)
.

5.3 Coordinate transformation of the metric Given the transformation (5.18), we
have the inverse matrix

R−1 =
(

(R cos θ)−1 0

0 1

)
.
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Using the metric transformation condition given in sidenote 11 of Chapter 3, we
can obtain the metric for the cylindrical system from that of the polar system

R−1ᵀgR−1 = R−1ᵀ
(

R2 0
0 R2 sin2 θ

)
R−1

=
(

(cos2 θ)−1 0
0 R2 sin2 θ

)
=
(

1 − (ρ2/R2)−1 0
0 ρ2

)

= g′.

5.4 Geodesics on simple surfaces

(a) Flat plane For this 2D space with Cartesian coordinates (x1, x2) =
(x, y), the metric gab = δab. The second term in the geodesic Eq. (5.30)
vanishes, as well as the two components of the equation dẋν/dλ so
that ẍ = 0 and ÿ = 0, which have respective solutions of x = A +
Bλ and y = C + Dλ. They can be combined as y = α + βx, with (A,
B, C, D) and (α, β) being constants. We recognize this as the equation for a
straight line.

(b) Spherical surface For a 2-sphere, we choose the coordinates (x1, x2) =
(θ, φ) with a metric given by (5.13) For the θ component of the
geodesic Eq. (5.30) is θ̈ = sin θ cos θφ̇2, the φ component equation,
2 sin θ cos θ θ̇ φ̇ + sin2 θφ̈ = 0. Instead of working out the full parametric
representation, we will just check that φ = constant and θ = α + βλ solve
these two equations. Clearly these solutions describe longitudinal great
circles on the sphere.

5.5 Locally flat metric The distance between two neighboring points can be rear-
ranged by adding and subtracting a factor of (g12dx2)2/g11 so that

ds2 = g11(dx1)2 + 2g12dx1dx2 + g22(dx2)2

=
(

√
g11dx1 + g12dx2

√
g11

)2

+
(

g22 − g2
12

g11

)
(dx2)2.

The new coordinate system (x̄1, x̄2) has the metric ḡab = δab because ds2 =
(dx̄1)2 + (dx̄2)2 where

dx̄1 = √
g11dx1 + g12dx2

√
g11

, dx̄2 =
√

g22 − g2
12

g11
dx2.

On the other hand, if the original metric determinant is negative, g11g22 −
g2

12 < 0, then ds2 = (dx̄1)2 − (dx̄2)2 with

dx̄2 =
√

g2
12

g11
− g22dx2.

5.7 3-sphere and 3-pseudosphere

(a) 3D flat space

x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ.
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The relation for the solid angle factor follows simply from the two expres-
sions for the invariant separations in two coordinate systems:

ds2 = dx2 + dy2 + dz2 = dr2 + r2d�2.

(b) 3-sphere Given the metric for 3-sphere being

ds2 = dr2 +
(

R sin
r

R

)2
d�2, (6)

the relation from part (a) r2d�2 = dx2 + dy2 + dz2 − dr2 suggests

(
R sin

r

R

)2
d�2 = d X2 + dY 2 + d Z2 −

[
d
(

R sin
r

R

)]2
.

Substituting this into (6), we have

ds2 = dW 2 + d X2 + dY 2 + d Z2

where

dW 2 = dr2 −
[
d
(

R sin
r

R

)]2 =
[
sin

r

R
dr
]2

so we can identify dW = sin(r/R)dr . This ds2 invariant interval implies
a Euclidian metric gμν = diag(1, 1, 1, 1). Also, it suggests the embedding
relation between (r, θ, φ) and (W, X, Y, Z) as

W = R cos
r

R
, X =

(
R sin

r

R

)
sin θ cos φ,

Y =
(

R sin
r

R

)
sin θ sin φ, Z =

(
R sin

r

R

)
cos θ.

This set of relations lead immediately to the constraint W 2 + X2 + Y 2 +
Z2 = R2.

(c) 3-pseudosphere With W = R cosh(r/R), the relations

W = R cosh
r

R
, X =

(
R sinh

r

R

)
sin θ cos φ,

Y =
(

R sinh
r

R

)
sin θ sin φ, Z =

(
R sinh

r

R

)
cos θ,

lead, through the trigonometric relation cosh2 χ − sinh2 χ = 1 to

ds2 = −dW 2 + d X2 + dY 2 + d Z2

thus a Minkowski metric ημν = diag(−1, 1, 1, 1) and the condition

−W 2 + X2 + Y 2 + Z2 = −R2.

5.8 Volume of higher dimensional space

dV =
√

det g
∏

i

dxi . (7)
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(a) 3D flat space For Cartesian coordinates
√

det g = 1, (7) reduces to
dV = dxdydz, and for spherical coordinates

√
det g = r2 sin θ and dV =

r2 sin θ drd θ dφ.

(b) 3-sphere From (7) we have
√

det g = R2 sin2(r/R) sin θ , thus the volume
of a 3-sphere with radius R can be calculated:

R2
∫ π R

0
sin2 r

R
dr
∫ π

0
sin θdθ

∫ 2π

0
dφ = 2π2 R3.

5.9 Non-Euclidean relation between radius and circumference of a circle

(a) The case of a sphere The radius of a circle being the displacement ds
along a constant radial coordinate (dr = 0), we have from either (5.48),
(5.49) or (5.51), (5.52), ds = R sin(r/R)dφ. Thus, making a Taylor series
expansion of the circumference S = ∫

ds, we have:

S = 2π R sin
r

R
= 2π R

(
r

R
− 1

3

r3

R3
+ · · ·

)

= 2πr − 1

R2

πr3

3
+ · · ·

which is just the claimed result in (5.39) with K = 1/R2.

(b) The case of a pseudosphere: For k = −1 surface, the displacement,
according to either (5.48), (5.49) or (5.51), (5.52), is given by ds =
R sinh(r/R)dφ, giving a circumference of S = 2π R sinh(r/R). Since the
Taylor expansion of the hyperbolic sine differs from that for the sine func-
tion in the sign of the cubic term, again we obtain the result in agreement
with (5.39) with K = −1/R2. Thus, on a pseudospherical surface, the
circumference of a circle with radius r is S > 2πr .

5.10 Angular excess and polygon area Any polygon is made up of triangles.
5.11 Local Euclidean coordinates From the chain rule of differentiation,

dξ1 = ∂ξ1

∂x1
dx1 + ∂ξ1

∂x2
dx2

dξ2 = ∂ξ2

∂x1
dx1 + ∂ξ2

∂x2
dx2.

Equate ds2 = (dξ1)2 + (dξ2)2 = g11(dx1)2 + 2g12(dx1)(dx2) + g22(dx2)2

we can immediately get the relation we are looking for:

g11 =
(

∂ξ1

∂x1

)2

+
(

∂ξ2

∂x1

)2

g12 =
(

∂ξ1

∂x1

)(
∂ξ1

∂x2

)
+
(

∂ξ2

∂x1

)(
∂ξ2

∂x2

)

g22 =
(

∂ξ1

∂x2

)2

+
(

∂ξ2

∂x2

)2

.
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For the spherical polar coordinates (x1, x2) = (θ, φ), we have ξ1 = Rθ and
ξ2 = (R sin θ)φ with their direction be along (θ, φ) so that dξ1 = Rdθ and
dξ2 = (R sin θ)dφ. In this way, we have

(
∂ξ1

∂x2

)
=
(

∂ξ2

∂x1

)
= 0

to obtain the metric element g12 = 0 and

g11 =
(

∂ξ1

∂x1

)2

= R2, g22 =
(

∂ξ2

∂x2

)2

= R2 sin2 θ.

6.2 Spatial distance and spacetime metric
The spacetime separation vanishes (ds2 = 0) for a light pulse:

g00

(
dx0

)2 + 2g0i dxi dx0 + gi j dxi dx j = 0.

Solving this quadratic equation for the coordinate time interval that takes the
pulse going from A to B

dx0
AB = − g0i dxi

g00
−
√

(g0i g0 j − g00gi j )dxi dx j

g00

and the time for it to go from B to A (involving the change of dxi → −dxi )

dx0
BA = + g0i dxi

g00
−
√

(g0i g0 j − g00gi j )dxi dx j

g00
.

Therefore the total coordinate time

dx0 = dx0
AB + dx0

BA,

which is related to the proper time interval dτA (see Problem 6.1), hence the
spatial distance dl,

dl ≡ cdτA

2
=

√−g00dx0

2
=
√(

gi j − g0i g0 j

g00

)
dxi dx j .

Since dl2 = γi j dxi dx j , we have γi j = gi j − (g0i g0 j g00). Thus, γi j �= gi j
when g0i �= 0.

6.3 Non-Euclidean geometry of a rotating cylinder Let us denote the spatial coor-
dinates as follows:

(ct, r, φ, z) lab observer,

(ct, r0, φ0, z) observer on the rotating disk.

They are related by (see Fig. 6.1)

r = r0, φ = φ0 + ωt.

We shall ignore the vertical coordinate z below.
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The line element written in terms coordinates at rest with respect to the observer
on the rotating disk is, see (5.33)

ds2 = −c2dt2 + dr2
0 + r2

0 dφ2
0 ,

which can be written in terms of the lab coordinate (see Cook, 2004) by substi-
tuting in dφ0 = dφ − ωdt :

ds2 = −
[

1 −
(ωr

c

)2
]

c2dt2 + dr2 + r2dφ2 − 2ωr2dtdφ.

The metric with respect to the (ct, r, φ) coordinates thus has elements

g00 = −
[

1 −
(ωr

c

)2
]

, grr = 1, gφφ = r2, g0φ = −ωr2

c
.

From Problem 6.2, we have the spatial distance

dl2 =
(

gi j − g0i g0 j

g00

)
dxi dx j = dr2 + r2dφ2

1 − (ωr/c)2

showing clearly length contraction of the circumference, but not the radius.
6.5 The geodesic equation and light deflection The geodesic equation (6.9), after

using pμ = dxμ/dλ, can be written as

d

dλ
pμ + �

μ
νσ pν dxσ

dλ
= 0

or equivalently

dpμ = −�
μ
νσ pνdxσ .

We are interested in the μ = 2 component p2 ≡ py :

dpy = −�2
00 p0dx0 − �2

11 p1dx1 − �2
10 p1dx0 − �2

01 p0dx1

= −(�2
00 + �2

11 + 2�2
10)pdx, (8)

where we have used dxμ = (dx, dx, 0, 0) and pμ = (p, p, 0, 0). Christoffel
symbols can be calculated by (6.10). Since we are working in the weak-field
approximation, that is, the metric is very close to being the flat space Minkowski
metric ημν = diag(−1, 1, 1, 1), and the Christoffel symbols (being the deriva-
tives of the metric) must also be small. Thus the metric on the left-hand side
(LHS) of (6.10) can be taken to be ημν, which is diagonal. Consider the LHS
component η2σ �σ

μν = �σ
μν :

�2
μν = 1

2

[
∂gμ2

∂xν
+ ∂gν2

∂xμ
− ∂gμν

∂x2

]
.

If the only position-dependent metric element is g00 = −1 − �/c2 (as sug-
gested by EP physics), then the only nonzero term on the RHS is the ∂g00/∂x2.
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That is,

�2
00 = −1

c2

∂�

∂y

and Eq. (8) reduces to dpy = −�2
00 pdx . This way we get

δφEP =
∫

dpy

p
= 1

c2

∫
∂�

∂y
dx (9)

which is the result obtained by Huygens’ principle in Eq. (4.44). For the argu-
ment that the GR value is twice that of the EP value, see Sections 7.2.1 and
7.3.2.

6.7 The matrix for tidal forces is traceless We can take the trace of the tidal force
matrix by contracting the two indices with the Kronecker delta:

δi j
∂2�

∂xi ∂x j
= ∂

∂xi

∂

∂xi
� = ∇2�.

Since the mass density vanishes (ρ = 0) at any field point away from the source,
the Newtonian field equation (6.5) informs us that the gravitational potential
satisfies the Laplace equation ∇2� = 0.

6.8 GN as a conversion factor One easily finds that this yields the dimension
relation (curvature) = (length)−2. This is consistent with the fact that curvature
is the second derivative of the metric, which is dimensionless.

7.1 Energy relation for a particle moving in the Schwarzschild spacetime Equation
(7.44) with r∗ = 0 is

−c2
(

dt

dτ

)2
+
(

dr

dτ

)2
+ r2

(
dφ

dτ

)2
= −c2,

where τ is the proper time d/dτ = γ d/dt with γ = (1 − v2/c2)−
1
2 . Multiply-

ing a factor of −m2c2 on both sides, we obtain

γ 2m2
[
c4 − c2v2

]
= m2c4,

where v2 = (dr/dt)2 + r2(dφ/dt)2 is the velocity (squared) in the spherical
coordinate system (r, θ, φ) when the polar angle θ is fixed. We recognize
this is the energy–momentum relation E2 = p2c2 + m2c4 after identifying the
relativistic expression for energy E = γ mc2 and momentum p = γ mv.

7.2 Gravitational red shift via energy conservation The frequency ratio being

ωem

ωrec
=

(
g00 p0

)
em

U0
em(

g00 p0
)
rec U0

rec
= U0

em

U0
rec

,

where to reach the last equality we have used the energy conservation relation
of gμν pμK ν

(t)em = gμν pμK ν
(t)rec with the Killing vector K μ

(t) = (1, 0, 0, 0).
The invariance of the 4-velocity squared (g00U0U0)em = (g00U0U0)rec leads
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to the desired result of

ωem

ωrec
= U0

em

U0
rec

=
√

(g00)rec
(g00)em

,

which can be translated into the standard expression of (	ω)/ω = −(	�)/c2

as done in Section 6.2.2.
7.3 Light deflection via the geodesic equation The L = ds2/dλ2 = 0 equation in

the form of (7.77) can be written slightly differently as

(
dr

dλ

)2
+
(

1 − r∗
r

)
λ2

r2
= κ2.

After the usual change of variables (r, λ) → (u, φ) , we have

u′′ + u − εu2 = 0.

For a perturbative solution of u = u0 + εu1 with ε = O
(
r∗) ,

(
u′′

0 + u0
)+ ε

(
u′′

1 + u1 − u2
0

)
+ · · · = 0.

The zeroth order, being a “simple harmonic oscillator” equation, has the solution
u0 = r−1

min sin φ. To solve the first order equation

d2u1

dφ2
+ u1 = 1 − cos 2φ

2r2
min

one tries u1 = α + β cos 2φ, and finds α = (2r2
min)−1 and β = (6r2

min)−1.

Putting the zeroth and first order terms together we get

1

r
= sin φ

rmin
+ 3 + cos 2φ

4

r∗

r2
min

.

In the absence of gravity (r∗ = 0), the asymptotes (r = ∓∞) corresponds to
φ−∞ = π and φ+∞ = 0, and the trajectory is straight line (no deflection). When
gravity is turned on, there is an angular deflection δφ = (φ−∞ − φ+∞ − π).
Picking our coordinates so that φ−∞ = π + δφ/2 and φ+∞ = −δφ/2 and the
trajectory equations yields (for either asymptote):

0 = − sin
δφ

2
+ 3 + cos δφ

4

r∗
rmin

.

For small deflection angle δφ we have 0 = −δφ/2 + r∗/rmin; we obtain the
result of δφGR = 2r∗/rmin.

7.5 Total energy in curved spacetime We can check this claim by showing that
starting with κ/c = E/mc2 one can deduce E = E − mc2 in the NR limit. From
the definition, we have

E ≡ m
(
κ2 − c2

)
/2 = 1

2
mc2

[(
E

mc2

)2
− 1

]
.
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The NR total energy eNR is defined in the NR limit by E = mc2 + eNR with
mc2 � eNR. Thus, the above equation does turn into E = eN R in the NR limit.

7.6 Details for time-delay calculation
We substitute in the expansion of b given in (7.80) and expand

c
dt

dr
=
(

1 − r∗
r

)−1
[

1 − b2

r2

(
1 − r∗

r

)]−1/2



(

1 + r∗
r

)[
1 −

(
r2
0

r2
+ r0r∗

r2

)(
1 − r∗

r

)]−1/2



(

1 + r∗
r

)[
1 − r2

0

r2
− r0r∗

r2
+ r2

0r∗

r3

]−1/2



(

1 + r∗
r

)(
1 − r2

0

r2

)−1/2
⎡
⎣1 + 1

2

r0r∗
r2

1 + r0
r

⎤
⎦



(

1 − r2
0

r2

)−1/2 [
1 + r∗

r

(
1 +

1
2r0

r + r0

)]

=
(

1 − r2
0

r2

)−1/2 [
1 + r∗

r

r + 3
2r0

r + r0

]
.

7.7 4-velocity of a particle in a circular orbit

(a) The orbit equation (7.59) for the variable u ≡ 1/r has u′ = 0 corre-
sponding to a circular orbit case: u2 − (r∗c2/λ2)u − r∗u3 = constant,
with λ = l/m = r2dφ/dτ . If we differentiate this equation, we have
(r∗c2/λ2) = 2u − 3r∗u2. Putting in the specific value u = 1/R, it implies

R4
(

dφ

dτ

)2
= λ2 = r∗c2 R

2

(
1 − 3r∗

2R

)−1

or

(
Uφ
)2 =

(
dφ

dτ

)2
= r∗c2

2R3

(
1 − 3r∗

2R

)−1
. (10)

As worked out in Problem (8.5), we can deduce from the energy balance
equation (7.52) the conserved time-component of the 4-velocity

(
Ut )2 =

(
dt

dτ

)2
=
(

1 − 3r∗
2R

)−1
. (11)

(b) From these two equations (10) and (11), we can easily work out the orbital
frequency

�2 ≡
(

dφ

dt

)2
=
(

dφ

dτ

)2 (dτ

dt

)2

= r∗c2

2R3
= GN M

R3
,
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which is Kepler’s third law. We also note trivially that, for this simple
kinematics, the proportionality constant for Uφ and Ut is just this orbital
frequency: Uφ = �Ut .

(c) Finally we perform the consistency check for the invariant length of the 4-
vector. For the particle in the circular orbit (r = R) in the equatorial plane
(θ = π/2), the other two components of the velocity vanihse Ur = U θ =
0, and at the trajectory the metric elements have values g00 = −(1 − r∗

R )

and gφφ = R2. We see that the 4-velocity indeed has the correct invariant
length:

gαβUαUβ = g00

(
U0
)2 + gφφ

(
Uφ
)2

= c2
(

−1 + r∗
R

+ r∗
2R

)(
1 − 3r∗

2R

)−1
= −c2.

8.2 The coordinate time across an event horizon In the region outside the
Schwarzschild surface, in order to find the full expression of the Schwarzschild
coordinate time as a function of the radial distance, one can integrate (from r0
to r ) the equation in (8.5) to obtain

t = t0 − 2r∗
3c

[( r

r∗
) 3

2 −
( r0

r∗
) 3

2

]

+r∗
c

{
ln

∣∣∣∣∣
√

r/r∗ + 1√
r/r∗ − 1

·
√

r0/r∗ − 1√
r0/r∗ + 1

∣∣∣∣∣− 2

[( r

r∗
) 1

2 −
( r0

r∗
) 1

2

]}
. (12)

In the limit of r and r0 are much greater than r∗, the coordinate time of (12)
approaches the proper time of (8.4) as it should. In order to study the limit of
r → r∗, we note that the above logarithmic term can be written as

ln

∣∣∣∣∣
√

r + √
r∗

√
r − √

r∗ ·
√

r0 − √
r∗

√
r0 + √

r∗

∣∣∣∣∣ = ln

∣∣∣∣∣∣∣

(√
r + √

r∗
)2

r − r∗ · r0 − r∗
(√

r0 + √
r∗
)2

∣∣∣∣∣∣∣
.

When r is near r∗, we can drop all non-singular terms in (12) to recover the
result shown in (8.4).

8.3 Null 3-surface We are discussing a dr = 0 surface. The light-like con-
dition in the EF coordinates (see Table 8.1) is ds2 = (1 − r∗/r)dp2 =
0. The tangent discussed in the text holds for dθ = dφ = 0. Thus we
can certainly pick the other two tangents one with dθ �= 0 and the
other with dφ �= 0. With tμ ≡ (t p, tr , tθ , tφ), the infinitesimal tangents
tμ1 = (dp, 0, 0, 0) = nμ, tμ2 = (dp, 0, dθ, 0), tμ1 = (dp, 0, 0, dφ) are mutu-
ally orthogonal, with t1 = n being the normal to the surface as well: gμν tμ1 tν1 =
gμν tμ1 tν2 = gμν tμ1 tν3 = gμν tμ2 tν3 = 0 because gpp = −(1 − r∗/r).

8.4 Kruskal coordinates Start from the definition V = (p′ + q ′)/2, which in turn
can be expressed in terms of (t̄, r) and (t̃, r) through (8.25)

V = 1

2

[
exp

(
p/2r∗)− exp

(−q/2r∗)]

= 1

2

[
exp

(
t̄ + r

2r∗
)

− exp

(
− t̃ − r

2r∗
)]

. (13)
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From Table 18.1 we have

t̄ + r

2r∗ = 1

2r∗
[

ct + r∗ ln

∣∣∣∣r − r∗
r∗

∣∣∣∣+ r

]
,

− t̃ − r

2r∗ = 1

2r∗
[
−ct + r∗ ln

∣∣∣∣r − r∗
r∗

∣∣∣∣+ r

]
.

Since

exp

(
1

2
ln

∣∣∣∣r − r∗
r∗

∣∣∣∣
)

=
( r

r∗ − 1
)1/2

for r > r∗ (14)

it then follows from (13) that

V =
( r

r∗ − 1
)1/2

er/2r∗ ect/2r∗ − e−ct/2r∗

2

=
( r

r∗ − 1
)1/2

er/2r∗
sinh

(
ct

2r∗
)

which is the result quoted in Eq. (8.30). The expression for U (t, r) can be
similarly derived. As for the regime of r < r∗, it just changes the sign on the
RHS of (14).

8.5 Circular orbits For a circular orbit, the radial distance and the orbital angular
momentum must satisfy a definite relation so that the effective potential (8.35)

�eff = − c2r∗
2r

+ l2

2m2r2
− l2r∗

2m2r3

is minimized (at this radial distance) ∂�eff/∂r = 0, which fixes the angular
momentum to be

l2 = GN Mm2r

(
1 − 3

2

r∗
r

)−1
. (15)

Furthermore, ṙ = 0 for circular orbit, the total energy must equal the potential
energy:

E = m�eff

or, using the suggested form for �eff and the relation E/m = (κ2 − c2)/2 the
total energy may be written as

κ2 − c2

2
= c2

2

[(
1 − r∗

r

)(
1 + l2

m2r2c2

)
− 1

]
.

After plugging the result in (15), one finds

κ2 = c2
(

1 − r∗
r

)2 (
1 − 3

2

r∗
r

)−1
. (16)
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From this we immediately see that at r0 = 3r∗

[E (∞)]0 = mcκ0 =
√

8

9
mc2.

8.6 No stable circular orbit for light Equation (7.77) can be written as κ2/2 =
ṙ2/2 + �eff with �eff(r) = (λ2/2r2)(1 − (r∗/r)). From this one can easily
show an extremum is at r0 = 3r∗/2 which is unstable as ∂2�eff/∂r2

r0 =
−2r4

0 < 0.

8.7 No counter-rotating light is possible in ergosphere The Kerr metric for an
extreme spinning black hole for dr = 0 at θ = π/2 is

ds2 = −
(

1 − r∗
r

)
c2dt2 − r∗2

r
cdtdφ + r̄2dφ2

where

r̄2 = r2 + r∗2

4
+ r∗3

4r
.

Thus the null interval ds2 = 0 for a light ray obey is a quadratic equation for
the angular velocity

r̄2

c2

(
dφ

dt

)2
− r∗2

cr

(
dφ

dt

)
−
(

1 − r∗
r

)
= 0

with the solutions

dφ

dt
= cr∗2

2rr̄2

⎡
⎣1 ±

√
1 +

(
2rr̄2

cr∗2

)2 c2

r̄2

(
1 − r∗

r

)⎤⎦ .

At the stationary limit surface (i.e. the outer boundary of the ergosphere) r =
rS = r∗ thus r̄2 = (3/2) r∗2,

[
dφ

dt

]
S

=
⎧⎨
⎩

2c
3r∗ co-rotating light

0 counter-rotating light.

That is, because of frame dragging the angular velocity of counter-rotating light
vanishes. At the horizon surface (i.e., the inner boundary of the ergosphere)
r = rh = r∗/2 thus r̄ = r∗,

[
dφ

dt

]
h

= c

r∗

for both co-rotating and counter-rotating light rays. Namely, inside the ergo-
sphere, because of frame dragging, light can only rotate in the same direction as
the source.
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8.8 Circulating light at the horizon On the equatorial plane θ = π/2 (hence
ρ = r ), the event horizon r = r+ of a Kerr black hole corresponds to the
� = r2+ − r+r∗ + a2 = 0, or

r2+
(

1 − r∗
r+

)
= −a2.

Consequently, metric elements at r+ have values of

gtt = −
(

1 − r∗
r+

)
c2, gφφ = r2+ + a2

(
1 + r∗

r+

)
, gtφ = − r∗

r+
ac.

Thus,

gtt gφφ = −r2+
(

1 − r∗
r+

)
−
(

1 − r∗2

r2+

)
a2c2

= a2c2 − (1 − r∗2

r2+
)a2c2 = g2

tφ.

With g2
tφ = gtt gφφ, it is clear that Eq. (8.45) has only one solution dφ/dt = ω

of (8.43) for both co-rotating and counter-rotating lights. For the extreme spin-
ning case r+ = a = r∗/2

ω = − gtφ

gφφ
= −−r∗c

r∗2
= c

r∗ ,

which agrees with the result shown in Problem 8.7.
8.9 Binding energy of a particle in ISCO of a rotating black hole Given the

effective potential
[
�

(K)
eff

]
as in (8.71) the radius can be found by the condition

of ∂
[
�

(K)
eff

]
/∂r = 0 to yield r2 − 2Br + C = 0 with

B = l2 − a2m2(κ2 − c2)

c2m2r∗ , C = 3 [l − amκ]2

c2
.

The quadratic equation has the solutions r = B ±
√

B2 − C . The inner most
stable orbit corresponds the case of vanishing square root, B2 = C :

l2
0 − a2m2(κ2

0 − c2)

c2m2r∗ =
√

3

c

[
l0 − amκ0

]
(17)

and an orbit radius of

r0 =
√

3

mc

[
l0 − amκ0

]
. (18)

For such orbit, the energy balance equation (as ṙ = 0) becomes

κ2
0 − c2

2
=
[
�

(K)
eff

]
0

= − c2r∗
2r0

+
l2
0 − a2m2

(
κ2

0 − c2
)

2m2r2
0

− r∗ (l0 − amκ0)2

2m2r3
0

.

(19)
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We thus have three equations (17), (18), and (19) for the three unknowns
of (r0, l0, κ0). It is straightforward exercise to check that r0 = r∗/2, l0 =
mcr∗/

√
3, κ0 = c/

√
3 satisfy these equations for an extreme spinning black

hole (a = r∗/2). This is the result of an extraordinary binding energy of
0.42 mc2.

9.2 Luminosity distance to the nearest star The observed flux being f = L/4πd2,

we have

d∗ =
(

f�
f∗

)1/2
× AU = 3 × 105AU = 1.5 pc.

9.3 Gravitational frequency shift contribution to the Hubble redshift The gravita-
tional redshift being given by (4.26), we can estimate to be

zG = MG

M�
R�
RG

z� = O(10−7),

Thus, the shift due to gravity is quite negligible.
9.4 Energy content due to star light Let us denote the average stellar luminosity by

L∗ and star number density by n. Their product is then the luminosity density
as given by (9.19),

nL∗ = 2 × 108 L�
(Mpc)3

= 2.6 × 10−33 W m−3,

which is the energy emitted per unit volume per unit time. Stars have been
assumed to be emitting light at this luminosity during the entire t0 
 tH 
 13.6
Gyr = 4.3 × 1017 s, leading to an energy density contribution at present of
ρ∗c2 = nL∗tH 
 10−15 J m−3 or, using (9.17), a density ratio �∗ =
(ρ∗/ρc) 
 10−5.

9.5 Night sky as bright as day Flux being in watts per unit area, the total flux due
to all the starlights is, according to (9.2) and Problem 9.4,

f∗ = (nL∗) ctH 

(

2 × 108 L�
Mpc3

)
ctH

= 0.8 × 1012 L�
Mpc2

= 2.5 × 10−10 L�
4π(AU)2

.

Thus, we need to lengthen the age by a factor of 4 billion before we can get a
night sky as bright as day!

9.6 The Virial theorem Time derivative of the virial yields (for notational simplic-
ity we drop subscript n and the summation sign)

dG

dt
≡ p · ṙ + ṗ · r = mv2 + F · r = 2T − ∂V

∂r
r = 2T + V

where, to reach the last expression, we have used the r dependence of the
gravitational potential V = ar−1. We now time average 〈..〉 = τ−1 ∫ dt this
equation; the LHS becomes

〈
dG

dt

〉
= 1

τ

∫ τ

0
dG = 1

τ
[G (τ ) − G (0)]
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which vanishes for a periodic system. In this way we obtain the virial theorem
of 2〈T 〉 + 〈V 〉 = 0.

9.8 Wavelength in an expanding universe A radial light signal follows the null
worldline in the RW geometry and its proper distance is given by (9.45). Con-
sider two successive wavecrests with wavelength λ; the second one is emitted
(and recieved) later by a time interval δt = λ/c. Both wavecrests travel the same
distance dp(ξ, t0):

(
dp =)

∫ t0

tem

cdt

a(t)
=
∫ t0+λ0/c

tem+λem/c

cdt

a(t)
.

After cancelling out the common interval from tem + λem/c to t0 from both
sides of the integral equality, we have

∫ tem+λem/c

tem

cdt

a(t)
=
∫ t0+λ0/c

t0

cdt

a(t)
.

Since the scale factor would not have changed much during the small time
interval between these two crests

1

a(tem)

∫ tem+λem/c

tem

dt = 1

a(t0)

∫ t0+λ0/c

t0
dt

which immediately leads to the expected result of (λ0/λem) = a(t0)/a(tem).

9.9 The deceleration parameter and Taylor expansion of the scale factor

a(t) 
 a(t0) + (t − t0)ȧ(t0) + 1

2
(t − t0)2ä(t0)

= 1 + (t − t0)H0 − 1

2
(t − t0)2q0 H2

0 (20)

and

1

a(t)

 1 − (t − t0)H0 + (t − t0)2

(
1 + q0

2

)
H2

0 . (21)

9.10 The steady-state universe

(a) “Perfect CP” means that the universe is not only homogeneous in space but
also in time.

(b) From (9.43) we have da/dt = H0a, which has the solution a(t) = exp
H0(t − t0). Thus ȧ = H0a and ä = H2

0 a so that q0 = −1.

(c) According to (5.46), the curvature for the 3D space in the Steady-State
Universe (SSU) is K = k R−2(t). Since the scale factor does depend on
t , an unchanging K can come about only for the curvature signature k = 0.
Namely, an SSU requires a 3D space with a flat geometry.

(d) For a constant density, the rate of mass increase must be proportional to that
of volume increase

d M

dt
= d M

dV

dV

dt
= ρM

dV

dt
,



978–0–19–957364–6 17-Cheng-AppB Cheng (Typeset by SPi, Chennai) 393 of 414 September 24, 2009 17:51

Solutions to selected problems 393

while the normalized volume increase rate can be directly related to the
Hubble constant

V̇

V
= 3ȧ

a
= 3H.

The mass creation rate per unit volume can then be calculated

Ṁ

V
= ρM

V̇

V
= 3H0ρM 
 0.7 × 10−24 g/year/km3.

Given that mp = 1.7 × 10−24 g, this means the creation of one hydrogen
atom, in a cubic kilometer volume, every 2–3 years.

9.11 z2 correction to the Hubble relation

(a) From (9.45)

dp(t0) = a(t0)

∫ t0

tem

cdt

a(t)

and the first two terms of the Taylor series (21) we have

dp(t0) = c(t0 − tem) + c

2
H0(t0 − tem)2. (22)

The first term on the RHS is just the distance traversed by a light signal in
a static environment; the second term represents the correction due to the
expansion of the universe.

(b) (t0 − tem) can be related to the redshift z through (9.50) and (21):

z = −1 + 1

a(tem)
= (t0 − tem)H0

[
1 + (t0 − tem)H0

(
1 + q0

2

)]
.

(23)

(c) Equation (23) can be inverted to yield

t0 − tem 
 z

H0

[
1 − (t0 − tem)H0

(
1 + q0

2

)]


 z

H0

[
1 − z

(
1 + q0

2

)]
. (24)

Plug this expression for the look-back time into (22), we have

Dp(t0) 

[

cz

H0
− cz2

H0

(
1 + q0

2

)]
+ cz2

2H0

= cz

H0

(
1 − 1 + q0

2
z

)
.

10.2 Newtonian interpretation of second Friedmann equation For the pressureless
matter used for our Newtonian system, cf. Fig. 10.1, the gravitational attraction
by the whole sphere being −GN M/r2 = r̈ , or −(4π/3)GNaρ = ä, which is
just Eq. (10.2) without the pressure term.

10.4 The empty universe The nontrivial solution to ȧ2 = −kc2 R−2
0 is a negatively

curved open universe k = −1 and a = t/t0, with t0 = c−1 R0, which is just the
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straight-line a(t) in Fig. 10.2. From (9.45) we can obtain the proper distance in
terms of z.

dp(t0) =
∫ t0

tem

cdt

a(t)
= ct0

∫ t0

tem

t−1dt = ct0 ln

(
t0

tem

)
= ct0 ln(1 + z),

where we have used t0/tem = (a(tem))−1 = (1 + z). It is clear that for small
redshift this equation reduces to the Hubble relation (9.5) with H0 = t−1

0 .
Namely, in an empty universe the age is given by the Hubble time t0 = tH, and
the “radius” by the Hubble length R0 = lH = ctH.

10.5 Hubble plot in matter-dominated flat universe Since distance modulus is a
simple logarithmic expression (9.62) of luminosity distance dL, which in turn
is related to our proper distance dp by dL = (1 + z)dp of (9.57), all we need
is to calculate the proper distance according to (9.47). This integration can be
performed for this matter dominated flat universe, which has a(t) = (t/t0)2/3

as given in (10.30):

dp(t0) =
∫ t0

tem

cdt

a(t)
= ct2/3

0

∫ t0

tem

t−2/3dt = 3ct0

[
1 −

(
tem

t0

)1/3
]

= 3ct0
(

1 − [a (tem)]1/2
)

= 2c

H0
(1 − 1 + z−1/2),

where we have used a(tem) = (tem/t0)2/3 one more time as well as the basic
redshift relation of (9.50) and the age of a flat MDU t0 = 2

3 H−1
0 of (10.30).

This way one finds the distance modulus to be

m − M = 5 log10
2cH−1

0 (1 + z − 1 + z1/2)

10 pc
.

10.7 Distance to a light emitter at redshift z Plug (10.26), a(t) = (t/t0)x into
Eq. (9.47), we have

dp(t0) =
∫ t0

tem

cdt ′
a(t ′) = ct0

1 − x

[
1 −

(
tem

t0

)1−x
]

. (25)

On the other hand, the time of light emission from a receding galaxy with
redshift z can be obtained through (9.50) and (10.26)

1 + z = a(t0)

a(tem)
=
(

t0
tem

)x

and thus tem = t0(1 + z)−1/x . Plugging into (25), we have

dp(t0) = ct0
1 − x

[
1 − 1

(1 + z)(1−x)/x

]
.

We note in particular for a matter-dominated flat universe x = 2
3 we have

dp(t0) = 3ct0

[
1 − 1

(1 + z)1/2

]
, (26)
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which for t0 = 2/(3H0) agrees with the result obtained in Problem 10.5.
For a radiation-dominated flat universe x = 1

2 , we have dp(t0) = 2ct01 −
(1 + z)−1. NB: These simple relations between redshift and time hold only
for a universe with a single-component on energy content; moreover, it does
not apply to the situation when the equation-of-state parameter is negative
(w = −1), even though the energy content is a single-component case.

10.8 Scaling behavior of number density and Hubble’s constant

(a) For material particles the number density scales as the inverse volume
factor, n(t)/n0 = a(t)−3. The basic relation (9.50) between scale factor
and redshift leads to n(t)/n0 = (1 + z)3. This scaling property also holds
for radiation because n ∼ T 3 ∼ a−3 as given in (10.35).

(b) We can obtain the scaling behavior of the Hubble parameter from Fried-
mann equation (10.1) for a flat universe: ȧ2/a2 = 8πGNρ/3, which
can be written as H2/H2

0 = ρ/ρc,0. For an epoch when the density
is dominated by radiation ρ 
 ρR = ρR,0a−4, the above expression for
H becomes H2/H2

0 = �R,0(1 + z)4. Similarly, in a matter dominated

epoch obeys H2/H2
0 = �M,0(1 + z)3.

10.9 Radiation and matter equality time Since the universe from tRM to tγ is
matter-dominated, we have from (10.30), a(tRM)/a(tγ ) = (tRM/tγ )2/3, or

tRM =
[

a(tRM)

a(tγ )

]3/2
tγ =

[
1 + zRM

1 + zγ

]−3/2
tγ 
 tγ

83/2

 16 000 years.

10.10 Density and deceleration parameter Use the definition of w in (10.4), the
second Friedmann Eq. (10.2) becomes

ä(t)

a(t)
= −4πGN

3

∑
i

ρi (1 + 3wi ).

In terms of the deceleration parameter (9.63) q0 ≡ −ä(t0)/a(t0)H2
0 and the

critical density (10.6) the second derivative equation leads to the claimed result

q0 = 1

2

∑
i

�i,0(1 + 3wi ) = �R,0 + 1

2
�M,0 + · · ·

10.13 Cosmological limit of neutrino mass Even if we assume that all the non-
baryonic dark matter is made of three species (flavors) of neutrinos ρDM =
�3

i=1ρ(νi ) = 3nνm̄, where nν is the neutrino number density and m̄ is the
average neutrino mass. From the neutrino and photon temperature of (10.75)
and density being the cubic power of temperature (10.35),

nν =
(

Tν

Tγ

)3
nγ 
 (1.7)−3 × 400 
 150 cm−3.

The energy density ratio becomes �DM = (3nνm̄c2)/(ρcc2) 
 0.21. Using
the critical energy density value of (9.17), we have the upper limit for the
averaged neutrino mass of m̄c2 
 (0.21 × 5500)/(3 × 150) 
 3 eV.

10.14 Temperature dipole anisotropy as Doppler effect Recall that temperature
scales as a−1, that is, as inverse wavelength, or as frequency: δT/T = δω/ω.
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But the nonrelativistic Doppler effect (the small β limit of (3.46)) reads
ω′ = (1 − (v/c) cos θ)ω or (δω/ω) = (v/c) cos θ .

11.1 Another form of the expansion equation Consider the energy balance equa-
tion (10.11), ṙ2/2 − GN M/r = const. leading to ȧ2 − (8π/3) GNρa2 =
const′. which can also be obtained easily from (10.1). Dividing through by the
second term and using the definition of critical density we have �−1 − 1 =
const./(ρa2).

11.2 The epoch-dependent Hubble constant and a(t) Using (10.7) to replace the
curvature parameter k in the Friedmann equation (10.1), we have

ȧ2(t)

a2(t)
= 8πGN

3
ρ + ȧ2(t0)

a2(t)
(1 − �0) = H2

0

(
ρ

ρc,0
+ 1 − �0

a2(t)

)
. (27)

Putting the time-dependence of the densities

ρ

ρc,0
= �(t) = �R,0

a4
+ �M,0

a3
+ ��,0,

Eq. (27) becomes

H2(t)

H2
0

= �R,0

a4
+ �M,0

a3
+ ��,0 + 1 − �0

a2
.

11.4 Negative � and the “big crunch” For the �0 = 1 flat universe with matter
and dark energy, we have the Friedmann equation (11.38)

H(a) = H0�M,0a−3 + ��
1/2.

At a = amax the universe stops expanding and H(amax) = 0, thus amax =
(−�M,0/��)1/3. The cosmic time for the big crunch being twice the time
for the universe to go from amax to a = 0, we calculate in a way similar to that
shown in sidenote 28,

2tH

∫ amax

0

da

�M,0a−1 + ��a21/2
= 4tH

3
√−��

∫ a3/2
max

0

dx

a3
max − x21/2

= 4tH
3
√−��

[
sin−1

(
x

a3/2
max

)] a3/2
max

0

= 2π

3
√−��

tH = t∗.

11.5 Estimate of matter and dark energy equality time We define the mat-
ter and dark energy equality time tM� as ρM(tM�) = ρ�(tM�). Using
the scaling properties of these densities we have ρM,0/a3

M�
= ρ�,0 or

1 + zM� = (aM�)−1 = (��/�M,0)1/3, which differs from the result in
(11.48) by a factor of 21/3 ≈ 1.25 to yield aM� = 0, 7 (and a redshift of
zM� = 0.42). Using the formula given in sidenote 25, we obtain the corre-
sponding cosmic age tM� = t (aM�) = 9.5 Gyr.

12.1 Basis and inverse basis vectors: a simple exercise

(a) Given the basis vectors, the inverse basis vectors can be worked out: e1 =
1
a (1, − cot θ) and e2 = 1

b (0, csc θ). The condition e1 · e1 = e2 · e2 = 1

and e1 · e2 = e2 · e1 = 0 can be easily checked by explicit vector multi-
plication. For example, e2 · e1 = b

a (cos θ − cos θ) = 0.
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(b) Similarly by explicit vector multiplications, we have

gi j = ei · e j =
⎛
⎝ a2 ab cos θ

ab cos θ b2

⎞
⎠

gi j = ei · e j =

⎛
⎜⎝

1
a2 sin2 θ

− cos θ

ab sin2 θ

− cos θ

ab sin2 θ

1
b2 sin2 θ

⎞
⎟⎠

so that gi j g jk = δik can be checked by matrix multiplication.

(c) We can verify the completeness condition by calculating the direct-
products of basis vectors,

∑
i

ei ⊗ ei =
(

1
0

) (
1 − cot θ

)+
(

cos θ

sin θ

) (
0 csc θ

)

=
(

1 − cot θ
0 0

)
+
(

0 cot θ
0 1

)
= 1.

12.4 Transformation: coordinates vs. basis vectors Aμ transform “oppositely”
from the bases vectors eμ

eμ −→ e′
μ =

[
L−1

] ν

μ
eν (28)

because the vector itself A =Aμeμ does not change under the coordinate
transformations.

12.5 gμν is a tensor

(a) Plugging in the transformations of the basis vectors (28) in the metric def-
inition g′

μν = e′
μ · e′

ν we immediately obtain that for the metric, (12.17).

(b) The invariance of the scalar product A · B can also expressed as

AμBνgμν = A′
λB′

ρg′λρ = AμBν

[
L−1

]μ
λ

[
L−1

]ν
ρ

g′λρ,

or

gμν =
[
L−1

]μ
λ

[
L−1

]ν
ρ

g′λρ.

We can invert this equation by multiplying two [L] factors on both sides
to obtain

g′μν = [L]μλ [L]νρ gλρ.

This shows, cf. Eq. (12.16), that the (inverse) metric is indeed a bona fide
contravariant tensor.

12.6 The quotient theorem Given that the product AμBνgμν is a scalar, and
vectors Aμ and Bν are known to be tensors, their quotient gμν must also
be a tensor.
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12.7 Transformation of the metric From (5.34) we can immediately deduce the
coordinate transformation

(
dx
dy

)
=
(

cos φ −r sin φ

sin φ r cos φ

)(
dr
dφ

)
,

hence the transformation matrix

[L] =
(

cos φ −r sin φ

sin φ r cos φ

)
and

[
L−1

]
=
(

cos φ sin φ

−r−1 sin φ r−1 cos φ

)
.

Clearly the metric transformation checks out

[
L−1

]ᵀ ( 1 0
0 r2

)[
L−1

]
=
(

1 0
0 1

)
.

12.8 Generalized orthogonality condition and the boost transformation We can
work this out in a way that’s entirely similar to Problem 3.4. Writing out the
condition LηLᵀ = η

(
a b
c d

)(−1 0
0 1

)(
a c
b d

)
=
(−1 0

0 1

)
, (29)

we have the conditions of a2 − b2 = −c2 + d2 = 1, which can be solved
by the parametrization of a = cosh ψ, b = sinh ψ and c = sinh ψ ′, d =
cosh ψ ′, while the off-diagonal condition of −ac + bd = − cosh ψ sinh ψ ′ +
sinh ψ cosh ψ ′ = sinh(ψ − ψ ′) = 0 yields ψ = ψ ′. The identification of
tanh ψ = v/c was worked out in Box 3.2.

12.9 Covariant Lorentz force law

(a) This identification is justified because our relativistic force �F = γ m�a
becomes the usual �F = m�a in the non-relativistic situation when γ = 1.

(b) For μ = i,

K i = q

c
FiνUν = q

c

(
Fi0U0 + Fi j U j

)
,

γ Fi = q

c

[−Ei (−γ c) + εi jk Bk
(
γ v j

)]
,

which, after the cancellation of the γ factor from both sides, is just the
familiar Lorentz force law written in its components.

(c) For μ = 0,

K 0 = q

c
F0i Ui = γ

q

c
�E · �v (30)

is indeed γ �F · �v/c because the dot product with the magnetic field term
in Lorentz force vanishes.

12.11 Homogeneous Maxwell’s equations To show that ∂μFνλ + ∂λFμν +
∂ν Fλμ = 0 follows from ∂μ F̃μν = 0: From the definition of dual field tensor,
we have ∂μFλρεμνλρ = 0, which is a trivial relation (0 = 0) if any pair
of indices in (μ, λ, ρ) are equal. Thus, only when the indices are unequal
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do we get non-trivial relation: take the example of equation of ∂μ F̃μ0 =
∂μFλρεμ0λρ = 0 we have

∂1 F23 + ∂3 F12 + ∂2 F31 = 0.

We can regard this as a relation in a particular coordinate frame with μ = 1,

ν = 2, and λ = 3. Once written in the Lorentz covariant version, it must be
valid in every frame. This is just the relation we set out to prove:

∂μFνλ + ∂λFμν + ∂ν Fλμ = 0.

To prove the converse statement, all we need to do is to contract εμνλρ onto
the above equation.

12.15 T μν for a system of EM field and charges We first calculate the divergence
of T μν

charge = ρ′
massUμUν to find that

∂μT μν
charge = ρ′

mass
(
Uμ∂μ

)
Uν

where we have also used the mass conservation law of ∂μ(ρ′
massUμ) = 0.

The Lorentz invariant product Uμ∂μ can be evaluated in any convenient
reference frame; we choose the comoving frame Uμ = γ (c, �0) to obtain
Uμ∂μ = γ ∂t = ∂τ , the differentiation with respect to the proper time τ . The
term ρ′

mass∂τ Uν is the 4-force density (ie, mass replace by mass density). Use
the formula (12.44) for the Lorentz force density (charge replaced by charge
density), we then have

∂μT μν
charge = ρ′

mass∂τ Uν =
ρ′

charge

c
FνλUλ = 1

c
Fνλ jλ

where we have used the expression for the electromagnetic current for free
charges jλ = ρ′

chargeUλ.

We now calculate the divergence of T μν
field in (12.80) to find

∂μT μν
field = ηαβ

(
∂μFμα

)
Fνβ .

Here we have used the calculation performed in (12.82) and by noting the
fact that, in the presence of charges, the inhomogeneous Maxwell’s equation
∂μFμα = − 1

c jα has a non-vanishing RHS

∂μT μν
field = −1

c
ηαβ jα Fνβ = −1

c
Fνλ jλ.

This shows clearly that the sum T μν = T μν
field + T μν

charge has zero divergence.

12.16 Radiation pressure and energy density The system of electromagnetic
field can be viewed either as a system of field with energy–momentum
tensor

T μν
field = ηαβ Fμα Fνβ − 1

4
ημν Fαβ Fαβ,
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or as a system of ideal fluid made up of photons with, cf. (12.72),

T μν
γ fluid =

⎛
⎜⎜⎝

ρ′c2

p
p

p

⎞
⎟⎟⎠

with ρ′c2 and p being the radiation energy density and pressure, respectively.
Since these two representations both describe the same system we should
expect T μν

γ fluid = T μν
field, in particular their traces should equal: ημνT μν

γ fluid =
ημνT μν

field. But a simple inspection shows that ημνT μν
field = 0 because

ημνημν = 4. The vanishing trace ημνT μν
γ fluid = 0 leads to the result p =

ρ′c2/3. (That T μν is traceless is related to the scale invariance of the system.)
13.1 Covariant derivative for covariant components Given that Aμ Aμ is an invari-

ant, in the notation of (13.43), we also have 	(Aμ Aμ)coord = 0:

Aμ

[
	Aμ

]
coord + Aμ

[
	Aμ

]
coord = 0.

	Aμ
coord being given by (13.45), we get

Aμ
[
	Aμ

]
coord = Aμ�

μ
νλ Aνdxλ = Aμ

(
�ν

μλ Aνdxλ
)

.

The last expression is reached by relabelling μ ↔ ν. The result of
	Aμcoord = +�ν

μλ Aνdxλ implies that Dν Aμ = ∂ν Aμ − �λ
νμ Aλ.

13.2 Christoffel symbols of polar coordinates for a flat plane

(a) Explicitly differentiating the relation r = r cos θ i + r sin θ j, we have

dr ≡ dr er + dθ eθ = dr cos θ i − r sin θdθ i + dr sin θ j + r cos θdθ j.

Collecting the dr and dθ terms,

er = cos θ i + sin θ j, eθ = −r sin θ i + r cos θ j.

The inverse bases can be gotten by contracting with the inverse metric
gμν = diag(1, r−2):

er = cos θ i + sin θ j, eθ = −r−1 sin θ + r−1 cos θ j.

(b) To calculate the Christoffel symbols through their definition of ∂νeμ =
−�

μ
νλeλ we first observe:

∂er

∂r
= 0,

∂eθ

∂r
= −1

r2
(− sin θ i + cos θ j) = −1

r
eθ .

Then the definitions

∂er

∂r
= �r

rr er + �r
rθ eθ ,

∂eθ

∂r
= �θ

rr er + �θ
rθ eθ
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allow us to read off the Christoffel symbols �r
rr = �r

rθ = �θ
rr = 0 and

�θ
rθ = r−1. Similarly, from

∂er

∂θ
= − sin θ i + cos θ j = reθ ,

∂eθ

∂θ
= −r−1 cos θ i −r−1 sin θ j = − r−1er

we obtain �r
θr = �θ

θθ = 0, �r
θθ= −r and �θ

θr = r−1.

(c) Work out the components in

Dμ Aμ = ∂μ Aμ + �
μ
μν Aν

= ∂r Ar + ∂θ Aθ +
(
�r

rr + �θ
θr

)
Ar +

(
�r

rθ + �θ
θθ

)
Aθ

= ∂r Ar + ∂θ Aθ + 1

r
Ar = 1

r

∂

∂r

(
r Ar )+ ∂

∂θ
Aθ

=
(

1
r

∂
∂r r ∂

∂θ

)( Ar

Aθ

)
.

(d) Because the scalar function �(x) is coordinate independent, Dμ� =
∂μ�. To raise the index we must multiply it by the inverse metric
gμν∂μ�. Using the result obtained in (c) we have

DμDμ� (x) = Dμ

(
gμν∂μ�

)

=
(

1
r

∂
∂r r ∂

∂θ

)( 1 0
0 r−2

)(
∂r �

∂θ�

)

= 1

r

∂

∂r

(
r
∂�

∂r

)
+ 1

r2

∂2�

∂θ2
.

(e) The metric in polar coordinates has only one nontrivial element gθθ = r2.

Checking the covariant differentiation with respect to the radial coordinate
r , we get

Dr gθθ = ∂r gθθ − 2�
μ
rθ gμθ = 2r − 2

1

r
r2 = 0.

(f) Substituting gθr = 0 and gθθ = r2 into (13.37), we have

�r
θθ = 1

2
grμ

(
∂θ gθμ + ∂θ gθμ − ∂μgθθ

)

= 1

2
grr (2∂θ gθr − ∂r gθθ ) = −r

�θ
θθ = 1

2
gθθ ∂θ gθθ = 0.

(g) We have a diagonal metric g11 = grr = 1 and g22 = gθθ = r2 so that

R1212 = g1a Ra
212 = g11

(
∂1�1

22 − ∂2�1
21 + �1

b1�b
22 − �1

b2�b
21

)
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From part (b), we have the only nonvanishing elements being �r
θθ= −r

and �θ
θr =�θ

rθ = r−1:

R1212 = ∂r �r
θθ − �r

θθ�θ
θr = −1 + r/r = 0.

13.3 Symmetry property of Christoffel symbols Because a scalar field �(x) is
coordinate-independent, there is no difference between their covariant and
ordinary derivatives, Dμ� = ∂μ�. We then apply the result of Problem 13.1
to the torsion-free statement, after using ∂ν∂μ� = ∂μ∂ν�, to obtain

Dν Dμ� − DμDν� = −�λ
νμ∂λ� + �λ

μν∂λ�

=
(
−�λ

νμ + �λ
μν

)
∂λ� = 0.

13.4 Metric is covariantly constant: by explicit calculation Take the covariant
derivative of the metric tensor (with covariant indices) and then express the
resulting Christoffel symbols in terms of derivatives of the metric

Dμgνλ = ∂μgνλ − �
ρ
μνgρλ − �

ρ
μλgρν

= ∂μgνλ − 1

2
gρσ

(
∂μgνσ + ∂νgμσ − ∂σ gμν

)
gρλ

−1

2
gρσ

(
∂μgλσ + ∂λgμσ − ∂σ gμλ

)
gρν .

After summing over repeated indices, we find all terms cancel.
13.5 Dν Vμ is a good tensor: another proof Start with (13.50) and use the fact

that the σ -dependence is always through xμ(σ)

D

dσ

(
Vμ

dxμ

dσ

)
= D

dxν

(
Vμ

dxμ

dσ

)
dxν

dσ
= 0.

We can use the geodesic equation in the form of D(dxμ/dσ)/Dσ = 0 to
obtain

(
Dν Vμ

) dxμ

dσ

dxν

dσ
= 0.

The quotient theorem then informs us that Dν Vμ is a good tensor, because it
is contracted into a good tensor: (dxμ/dσ)(dxν/dσ).

13.6 Parallel transport and the angular excess The triangle has three vertices
(A, B, C) connected by geodesic curves with interior angles (α, β, γ ). We
now transport a vector around this triangle, along the three geodesic sides of
the triangle. The key observation is that the angle subtended by the vector and
the geodesic is unchanged (cf. the worked example in the text).

1. At vertex A, the vector makes an angle θ1 with the tangent along AB.

2. At vertex B, the vector makes the same angle θ1 with the tangent along
AB, thus it makes θ2 = θ1 + (π − β) along BC.

3. At vertex C , the vector makes θ3 = θ2 + (π − γ ) along CA.

4. Returning to A, the vector makes θ4 = θ3 + (π − α) along the original AB.
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Plug in θi sequentially and take out a trivial factor of 2π , we obtain the
directional change of the vector

δθ = θ1 − θ4 = α + β + γ − π,

which is just the angular excess ε.

13.7 Riemann curvature tensor as the commutator of covariant derivatives Fol-
lowing the rule of (13.30), we have

Dα Dβ Aμ = ∂α

(
Dβ Aμ

)−
�ν

αβ Dν Aμ

drop
− �ν

αμDβ Aν

= ∂α∂β Aμ

drop
− ∂α

(
�ν

βμ Aν

)
− �ν

αμ∂β Aν + �ν
αμ�λ

βν Aλ

= −
(
∂α�λ

βμ

)
Aλ

−�ν
βμ∂α Aν − �ν

αμ∂β Aν

drop
+ �ν

αμ�λ
βν Aλ.

The underlined terms are symmetric in the indices (α, β) and will be can-
celled when we include the −Dβ Dα Aμ calculation. From this we clearly get
Dα, Dβ Aμ = −Rλ

μαβ Aλ with Rλ
μαβ given by (13.58).

13.9 Counting independent elements of Riemann tensor Write the curvature tensor
as R{μν,αβ} to remind ourselves the symmetry properties of (13.69) to (13.71):
antisymmetry of Eq. (13.69) as μν, that of (13.70) as αβ, and the symmetry
of (13.71) as {μν, αβ} . An n × n matrix has 1

2 n(n + 1) independent elements
if it is symmetric, and 1

2 n(n − 1) if antisymmetric. Hence, for the purpose of
counting independent components, we can regard R{μν,αβ} as a 1

2 n(n − 1) by
1
2 n(n − 1) matrix, which is symmetric. This yields a count of

M(n) = 1

2

[
1

2
n (n − 1)

]
×
[

1

2
n (n − 1) + 1

]

= 1

8
n (n − 1)

(
n2 − n + 2

)
.

There are not as many independent elements as M(n) because we also need
to factor-in the cyclic symmetry constraint of (13.72). Actually, (13.72) repre-
sents extra conditions that reduce the number of independent elements only if
all four indices are different—because otherwise this cyclic condition reduces
to the first three symmetry conditions. The number of additional constraint
conditions as represented by (13.72) is given by:

C(n) =
(n

4

)
= n (n − 1) (n − 2) (n − 3) /4

Subtracting C(n) from M(n) leads to the the number of independent compo-
nents of a curvature tensor in an n -dimensional space:

N(n) = M(n) − C(n) = 1

12
n2(n2 − 1). (31)

13.10 Counting metric’s independent second derivatives

(a) Remembering that the number of independent elements of a symmetric
n × n matrix is n(n + 1)/2, we see that the tensor gμν has 10 elements,
and its first derivative ∂αgμν has 40, and its second derivative ∂α∂β gμν
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has 100 elements, when we used the fact that ∂α∂β = ∂β∂α . Namely,

index sym A(4)

gμν {μν} (4 × 5) /2 = 10
∂αgμν α {μν} 4 × 10 = 40

∂α∂β gμν {αβ} {μν} 10 × 10 = 100

In particular the number of components for the second derivative
∂α∂β gμν in an n-dimensional space is

A(n) =
[

1

2
n (n + 1)

]2
. (32)

(b) Using the same notation as in (a), we find the number of parameters in the
transformations for the four-dimensional space:

index sym B(4)(
∂αxβ

)
αβ 4 × 4 = 16

∂γ

(
∂αxβ

) {γα} β 10 × 4 = 40

∂γ ∂δ

(
∂αxβ

) {αγ δ} β 20 × 4 = 80

where, on the last line for the second derivative ∂γ ∂δ(∂αxβ), we have used
the fact that there are 20 possible totally symmetric combinations of three
indices (d = 3) when each index can take on four possible values (n = 4).
This is an example of the general result N (d, n) being the number of
symmetric combinations of d objects each can take on n possible values:

N (d, n) =
(

d + n − 1

d

)
= (n + d − 1)

d (n − 1)
. (33)

One can understand this result by thinking of the ways, for example, of
placing d identical balls into n boxes, which is equivalent to the problem
of permuting d identical balls together with the n − 1 partitions between
the boxes.

(c) Of the results obtained in (a) and (b)

A(4) B(4)

gμν 10
(
∂αxβ

)
16

∂αgμν 40 ∂γ

(
∂αxβ

)
40

∂α∂β gμν 100 ∂γ ∂δ

(
∂αxβ

)
80

we note several features:
(i) The gμν case Do we need the 16 parameters of (∂αxβ) to deter-

mine the 10 elements of gμν? Yes, this count is correct, because
the transformation includes the six parameter Lorentz transformations
that leave the Euclidean metric gμν = ημν invariant.

(ii) The ∂αgμν case There are just the correct number (40) of parame-
ters in ∂γ (∂αxβ) to set all the 40 independent elements of ∂αgμν to
zero. (Compare this to the flatness theorem.)

(iii) The ∂α∂β gμν case We still have 20 yet undetermined elements in
the second derivative ∂α∂β gμν . This just corresponds to the number
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of independent elements in the four dimensional curvature tensor
N(4) = 20 as shown in Problem 13.9.

(d) For a general n dimensional space, the number of second derivatives of
the transformation ∂γ ∂δ∂αxβ as given by (33) for d = 3 (with a further
multiplication of n for the β index) is

B(n) = 1

6
n2 (n + 2) (n + 1) . (34)

The number of independent elements of the second derivative must be
the difference of (32) and (34): N(n) = A(n) − B(n) = n2(n2 − 1)/12,

which exactly matches the result of (31).

13.11 Reducing Riemann tensor to Gaussian curvature

(a) For a two-dimensional space with orthogonal coordinates, we have the
metrics

gμν =
(

g11 0
0 g22

)
, gμν =

(
g11 0
0 g22

)

with g11 = 1/g11 and g22 = 1/g22 so that gμνgνλ = δλ
μ. The Christoffel

symbols can be calculated from

�1
μν = 1

2
g11 (∂μg1ν + ∂νg1μ − ∂1gμν

)

so that

�1
11 = 1

2g11
∂1g11, �1

22 = − 1

2g11
∂1g22

�1
12 = �1

21 = 1

2g11
∂2g11.

Similarly, we also have

�2
22 = 1

2g221
∂2g22, �2

12 = �2
21 = 1

2g22
∂1g22.

The only nontrivial (and independent) curvature element is

R1212 = g1μ Rμ
212

= g11

(
∂2�1

21 − ∂1�1
22 + �ν

21�1
ν2 − �ν

22�1
ν1

)

= g11

(
∂2�1

21 − ∂1�1
22 + �1

21�1
12 + �2

21�1
22 − �1

22�1
1ν1 − �2

22�1
21

)

= 1

2

{
∂2

2 g11 + ∂2
1 g22 − 1

2g11

[
(∂1g11) (∂1g22) + (∂2g11)2

]

− 1

2g22

[
(∂2g11) (∂2g22) + (∂1g22)2

]}

which, when divided by the metric determinant g = g11g22, the ratio
−R1212/g is recognized as the Gaussian curvature of (5.35).

(b) The Ricci scalar is simply the twice contracted Riemann tensor
R = gαβ gμν Rαμβν = 2g11g22 R1212 because R1212 = R2121. Since

g11g22 = 1/g, the result (a) leads to R = −2K .
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(c) Equation (13.57) may be written as d A2 = R2
112 A1σ . Since the angular

excess is related to the vector component change as ε = d A2/A1, we can
write this as

ε = R2
112σ = −g22 R1212σ = g22gKσ

= g22 (g11g22) Kσ = Kσ,

where we have used g22g22 = 1 and g11 = 1 as, e.g. in polar system
(r, θ).

13.12 Bianchi identities (1) The structure of the Bianchi identity (13.77) suggests
that we consider the combination of double commutator of covariant deriva-
tives, which manifestly vanishes (i.e. the Jacobi identity) when we expand out
all the commutators:

[
Dλ,

[
Dμ, Dν

]]+ [
Dν,

[
Dλ, Dμ

]]+ [
Dμ, [Dν, Dλ]

]
(35)

= DλDμDν − DλDν Dμ − DμDν Dλ + Dν DμDλ

+ Dν DλDμ − Dν DμDλ − DλDμDν + DμDλDν

+ DμDν Dλ − DμDλDν − Dν DλDμ + DλDν Dμ

= 0.

(2) We now express these double commutators as covariant derivatives of
the Riemann curvature tensors. We will find that Dλ, Dμ, Dν is essentially
Dλ Rμναβ with the extra terms from the three double commutators mutually
cancel. Using the expression of the Riemann tensor in terms of commutator of
covariant derivatives as worked out in Problem 13.7 (because Dλ Aα is a good
tensor), we have

[
Dλ,

[
Dμ, Dν

]]
Aα = Dλ

[
Dμ, Dν

]
Aα − [

Dμ, Dν

]
Dλ Aα

= −Dλ

(
Rγ

αμν Aγ

)+ Rγ
αμν Dλ Aγ + Rγ

λμν Dγ Aα

= −Dλ Rγ
αμν Aγ − Rγ

αμν Dλ Aγ + Rγ
αμν Dλ Aγ

+ Rγ
λμν Dγ Aα

= −Dλ Rγ
αμν Aγ + Rγ

λμν Dγ Aα, (36)

as the two middle terms on the third line cancel. Applying this result to every
double commutator, equation (35) can then be written as

0 = ([
Dλ,

[
Dμ, Dν

]]+ [
Dν,

[
Dλ, Dμ

]]+ [
Dμ, [Dν, Dλ]

])
Aα

= −Dλ Rγ
αμν Aγ − Dν Rγ

αλμ Aγ − Dμ Rγ
ανλ Aγ

+Rγ
λμν Dγ Aα + Rγ

νλμ Dγ Aα + Rγ
μνλDγ Aα

= −
(

Dλ Rγ
αμν − Dν Rγ

αλμ − Dμ Rγ
ανλ

)
Aγ

+
(

Rγ
λμν + Rγ

νλμ + Rγ
μνλ

)
Dγ Aα.
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The second term on the RHS vanishes because of the cyclic symmetry property
of (13.72); the parentheses in the prior term must then vanish, leading to the
Bianchi identities.

13.14 Contraction of Christoffel symbols The inverse matrix gμν
−1 has elements

gμν, which are related to the determinant g of the matrix gμν and the cofactors
Cμν (associated with elements gμν ) as

gμν = Cμν

g
. (37)

Also, the determinant g can be expanded as (for any fixed μ)

g =
∑
ν

gμνCμν (38)

where we have displayed the summation sign to emphasize that there is no
summation over the index μ. Because the determinant is a function of the
matrix elements gμν which in turn are position dependent, we have

∂g

∂xα
= ∂g

gμν

∂gμν

∂xα
= Cμν ∂gμν

∂xα
= ggμν∂αgμν (39)

where we have used (38) and (37) to reach the last two expressions. Knowing
this identify, we proceed to make contraction of the Christoffel symbols

�
μ
μα = 1

2
gμν

[
∂αgμν + ∂μgαν − ∂νgμα

]
.

The last two terms cancel, ∂νgαν = ∂μgμα, so that the contraction can be
rewritten by (39) as

�
μ
μα = 1

2
gμν∂αgμν = 1

2g

∂g

∂xα

which is equivalent to the sought after result of

�
μ
μα = 1√−g

∂

∂xα

√−g.

13.15 Contraction of Riemann tensor Contracting the first two indices Rμ
μαβ

(13.58): ∂α�
μ
μβ − ∂β�

μ
μα + �

μ
να�ν

μβ − �
μ
νβ�ν

μα. The dummy indices in the
last two terms can be relabelled μ ↔ ν; we see that they cancel each other. A
straightforward calculation of the first two terms by using the result obtained
in Problem 13.14 shows that they cancel each other also.

14.4 The equation of geodesic deviation Following the procedure used in Box 6.3,
let us consider two particles: one has the spacetime trajectory xμ and another
has xμ + sμ. These two particles, separated by the displacement vector sμ,
obey the respective equations of motion:

d2xμ

dτ2
+ �

μ
αβ(x)

dxα

dτ

dxβ

dτ
= 0

and
(

d2xμ

dτ2
+ d2sμ

dτ2

)
+ �

μ
αβ(x + s)

(
dxα

dτ
+ dsα

dτ

)(
dxβ

dτ
+ dsβ

dτ

)
= 0.
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When the separation distance sμ is small, we can approximate the Christoffel
symbols �

μ
αβ(x + s) by a Taylor expansion

�
μ
αβ(x + s) = �

μ
αβ(x) + ∂λ�

μ
αβsλ + · · · .

From the difference of the two geodesic equations, we obtain, to first order
in sμ,

d2sμ

dτ2
= −2�

μ
αβ

dsα

dτ

dxβ

dτ
− ∂λ�

μ
αβsλ dxα

dτ

dxβ

dτ
. (40)

What we are seeking is the relative acceleration (the second derivative of the
separation sμ) along the worldline; thus, a double differentiation along the
geodesic curve. From (13.47) we have the first derivative

Dsμ

dτ
= dsμ

dτ
+ �

μ
αβsα dxβ

dτ

and the second derivative

D2sμ

dτ2
= D

dτ

(
Dsμ

dτ

)
= d

dτ

(
Dsμ

dτ

)
+ �

μ
αβ

(
Dsα

dτ

)
dxβ

dτ

= d

dτ

(
dsμ

dτ
+ �

μ
αβsα dxβ

dτ

)
+ �

μ
αβ

(
dsα

dτ
+ �α

λρsλ dxρ

dτ

)
dxβ

dτ

= d2sμ

dτ2
+ ∂λ�

μ
αβ

dxλ

dτ
sα dxβ

dτ
+ �

μ
αβ

dsα

dτ

dxβ

dτ
+ �

μ
αβsα d2xβ

dτ2

+�
μ
αβ

dsα

dτ

dxβ

dτ
+�

μ
αβ�α

λρsλ dxρ

dτ

dxβ

dτ
. (41)

For the d2sμ/dτ2 term we use (40); for the d2xβ/dτ2 term we use the
geodesic equation

d2xβ

dτ2
= −�

β
λρ

dxλ

dτ

dxρ

dτ
.

This way one finds

D2sμ

dτ2
= − 2�

μ
αβ

dsα

dτ

dxβ

dτ
− ∂λ�

μ
αβsλ dxα

dτ

dxβ

dτ
+ ∂λ�

μ
αβ

dxλ

dτ
sα dxβ

dτ

+ 2�
μ
αβ

dsα

dτ

dxβ

dτ
− �

μ
αβsα�

β
λρ

dxλ

dτ

dxρ

dτ

+ �
μ
αβ�α

λρsλ dxρ

dτ

dxβ

dτ
.

After a cancellation of two terms and relabeling of several dummy indices,
this becomes

D2sμ

dτ2
= −∂λ�

μ
αβsλ dxα

dτ

dxβ

dτ
+ ∂α�

μ
λβ

dxα

dτ
sλ dxβ

dτ

−�
μ
λρsλ�

ρ
αβ

dxα

dτ

dxβ

dτ
+ �

μ
ρβ�

ρ
λαsλ dxα

dτ

dxβ

dτ
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or

D2sμ

dτ2
= −Rμ

αλβsλ dxα

dτ

dxβ

dτ
,

where

Rμ
αλβ = ∂λ�

μ
αβ − ∂β�

μ
λα + �

μ
λρ�

ρ
αβ − �

μ
βρ�

ρ
λα

in agreement with (13.58).
14.5 From geodesic deviation to NR tidal forces Besides slow moving particles,

the Newtonian limit means a weak gravitational field: gμν = ημν + hμν with
hμν being small. Thus (13.37) becomes

�
μ
αβ = 1

2
ημρ∂αhβρ + ∂βhαρ − ∂ρhαβ .

Also, in this weak-field limit, we can drop the quadratic terms (��) in the
curvature so that there are only two terms, related by the interchange of (β, λ)

indices

Rμ
αλβ = ∂λ�

μ
αβ − ∂β�

μ
λα

= 1

2
ημρ∂λ∂αhβρ − ∂λ∂ρhαβ − ∂β∂αhλρ + ∂β∂ρhαλ

after cancelling two terms. Thus

Ri
0 j0 = 1

2
∂ j ∂0h0i − ∂ j ∂i h00 − ∂0∂0h ji + ∂0∂i h0 j = −1

2
∂i ∂ j h00.

Because the Newtonian limit also has the static field condition, to reach the
last line we have dropped all time derivatives. With h00 = −2�/c2 as given
by (6.20), we have the sought-after relation of

R i
0 j0 = 1

c2

∂2�

∂xi ∂x j
.

14.6 Relativistic spin precession The Schwarzschild metric for a circular orbit
(radius R) in the equatorial plane (θ = π/2) has elements of

gtt = −
(

1 − r∗
R

)
, grr =

(
1 − r∗

R

)−1
, gθθ = gφφ = R2. (42)

From this and the orthogonality condition SμUμ = 0 we can immediately
deduce the proportionality relation between St and Sφ :

gαβ SαUβ = −
(

1 − r∗
R

)
St Ut + R2Sφ�Ut = 0

or

St =
(

1 − r∗
R

)−1
R2�Sφ. (43)
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From (42) we can calculate the Christoffel symbols, which mostly vanish, with
the nonzero ones being

�r
r t = r∗

2R2

(
1 − r∗

R

)
, �r

φφ = −R

(
1 − r∗

R

)
,

�t
r t = r∗

2R2

(
1 − r∗

R

)−1
, �

φ
rφ = 1

R
. (44)

The gyroscope equation DSμ/dτ = 0, for the μ = φ component, may then
be written out as

d Sφ

dτ
+ �

φ
rφ Sr Uφ = 0.

Substituting in the Christoffel symbol value and replacing the proper time
derivative by the coordinate time derivative d/dτ = Ut d/dt, we get

d Sφ

dt
+ �

R
Sr = 0. (45)

For the μ = r component, we have

d Sr

dτ
+ �r

tt St U t + �r
φφ SφUφ = 0

which, using the relation (43), becomes

d Sr

dt
− R�

(
1 − 3r∗

R

)
Sφ = 0. (46)

For the two other components, d Sθ /dτ = d Sθ /dt = 0 leads to Sθ (t) =
Sθ (0) = 0, while the μ = t equation can be shown to be identical to (45).
We can now solve for Sr (t) by first time-differentiating Eq. (46)

d2Sr

dt2
− R�

(
1 − 3r∗

R

)
d Sφ

dt
= 0

and plug in the expression for d Sφ/dt from (45) to obtain

d2Sr

dt2
+ �′2Sr = 0 (47)

with

�′ =
(

1 − 3r∗
R

)1/2
�. (48)

The simple harmonic oscillator equation (47), with the initial condition of
(14.77), has the standard solution

Sr (t) = Sr
0 cos �′t.

The Sφ component can then be gotten by (46)

Sφ = �

R�′2
d Sr

dt
= − �

R�′ Sr
0 sin �′t.
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15.1 Gauge transformations

(a) Consider a coordinate (gauge) transformation as given in (15.12) so that,
according to (15.17), h′

αβ = hαβ − ∂αχβ − ∂βχα . This implies (by con-
tracting the indices on both sides) the transformation for the trace h′ =
h − 2∂βχβ . These two relations can be combined to yield the gauge
transformation of h̄αβ ,

h′
αβ − h′

2
ηαβ = h̄′

αβ = h̄αβ − ∂αχβ − ∂βχα + ηαβ(∂γ χγ ). (49)

(b) Taking the derivative on both sides of (49), ∂α h̄′
αβ = ∂α h̄αβ − �χβ. The

new metric perturbation field can be made to obey the Lorentz condition
∂α h̄′

αβ = 0, if �χβ = ∂α h̄αβ .

(c) Plugging h̄μν = εμνeikx and χν = Xνeikx into the gauge transformation
(49), we have

ε′
μν = εμν − ikμXν − ikν Xμ + iημν(k · X) (50)

which implies the trace relation ε
′μ
μ = ε

μ
μ + 2ikμXμ. This means that if

we start with a polarization tensor that is not traceless, it will be traceless
ε
′μ
μ = 0 in a new coordinate if the gauge vector function Xμ for the coor-

dinate transformation is chosen to satisfy the condition 2ik · X = −ε
μ
μ .

Now we have used one of the four numbers in Xμ to fix the trace. How
can we use the remaining three to obtain εμ0 = 0 which would seem to
represent four conditions? This is possible because we are working in the
Lorentz gauge and kμ is a null-vector. Here is the reason. Starting with
εμ0 �= 0, new coordinate transformation leads to (50) with

ε′
μ0 = εμ0 − ikμ X0 − ik0 Xμ + iημ0(k · X).

Formally ε′
μ0 = 0 represents four conditions. But, because of kμεμ0 = 0

and k2 = 0, these four equations must obey a constraint relation, obtained
by a contraction with the vector kμ:

kμεμ0 − ik2 X0 − ik0(k · X) + ik0(k · X) = 0.

That is, kμε′
μ0 = 0. Thus, ε′

μ0 = 0 actually stands for three independent
relations.

(d) The polarization tensor being symmetric, εμν = ενμ, it
has 10 independent elements. The Lorentz gauge condition
kμεμν = 0 represents four constraints, ε

μ
μ = 0 is one, and

εμ0 = 0, as discussed above, is three. Thus there are only
10 − 4 − 1 − 3 = 2 independent elements in the polarization
tensor.

15.2 The Schwarzschild solution We work first in the Cartesian coordinates xμ =
(ct, xi ) with an approximate flat metric according to (15.1). The solution
(15.74) must fulfill the Lorentz gauge condition (15.18)

∂μh̄μν = Cμν∂μ

(
1

r

)
= Ciν∂ i

(
1

r

)
= − xi Ciν

r
= 0.
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for any xi . This can only be satisfied by Ciν = 0. That is, every element of h̄μν

vanishes except h̄00 = C00/r. This also means that the trace h̄ = ημν h̄μν =
−C00/r and h = ημνhμν = C00/r. From (15.19) we find the perturbation
element h00 = C00/2r. Because of spherical symmetry, we have h11 = h22 =
h33, and, to have the correct trace, each must equal to C00/2r; namely,
hμν = (C00/2r)δμν. We can also fix the constant C00 by its Newtonian value
as in (15.1) and (6.3)

g00 = −1 + C00

2r
= −1 − 2�

c2
= −1 + 2GN M

c2r
,

or C00 = 4GN M/c2 = 2r∗. In this way we find the approximate
Schwarzschild metric in Cartesian coordinates as

ds2 = −
(

1 − r∗
r

)
c2dt2 +

(
1 + r∗

r

)(
dx2

1 + dx2
2 + dx2

3

)
.

In terms of the spherical coordinate we have

[
dx2

1 + dx2
2 + dx2

3

]
=
[
dr2 + r2

(
dθ2 + sin2 θdφ2

)]
.

In order to show our result in a form closer to the exact Schwarzschild metric
of (14.54), we make the coordinate change of r̄2 = (1 + (r∗/r))r2 so that,
within the approximation of dropping O(r∗2) terms, we have

r∗
r


 r∗
r̄

and dr = dr̄

and

ds2 = −
(

1 − r∗
r̄

)
c2dt2 +

(
1 + r∗

r̄

)
dr̄2 + r̄2

(
dθ2 + sin2 θdφ2

)
.

This is the expected result of (15.75).
15.3 Wave effect via the deviation equation With a collection of nearby particles,

we can consider velocity and separation fields, Uμ(x) and Sμ(x). The equa-
tion of geodesic deviation (Problem 14.4) may be written as

D2

dτ2
Sμ = Rμ

νλρUνUλSρ.

Since a slow moving particle Uμ = (c, 0, 0, 0) + O(h) and the Riemann
tensor Rμ

νλρ = O(h), this equation has the structure

D2

dτ2
Sμ = c2ημσ R(1)

σ00ρ
Sρ + O(h2).

The Christoffel symbols being of higher order, the covariant derivative may be
replaced by ordinary differentiation; this equation at O(h) is

d2Sμ

dt2
= Sρ

2

d2

dt2
hμ
ρ .
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On the RHS we have used (15.6) and the TT gauge condition of
h00 = h0μ = 0. The longitudinal component of the separation field Sz
is not affected because h3ρ = 0 in the TT gauge. For an incoming
wave in the “plus” polarization state, the transverse components obey the
equations

d2Sx

dt2
= Sx

2

d2

dt2
(h+ei(kx−ωt)),

d2Sy

dt2
= − Sy

2

d2

dt2
(h+ei(kx−ωt)).

These equations, to the lowest order, have solutions

Sx (x) =
(

1 + 1

2
h+ei(kx−ωt)

)
Sx (0),

Sy(x) =
(

1 − 1

2
h+ei(kx−ωt)

)
Sy(0)

in agreement with the result in (15.30) and (15.31).

15.4 �
μ
νλ and R(2)

μν in the TT gauge

(a) Christoffel symbols: we give samples of the calculation

�1
00 = 1

2
g11(∂0g10 + ∂0g01 − ∂1g00) = 0

because h10 = h01 = h00 = 0 in the TT gauge:

�1
01 = 1

2
(1 − h̃11)(∂0h̃11 + ∂1h̃01 − ∂1h̃10)

= 1

2
(∂0h̃+ − h̃+∂0h̃+).

(b) Ricci tensor: from what we know of Christoffel symbols having the non-
vanishing elements of

�1
10 = �1

01 = �0
11 = 1

2
∂0h̃+,

�1
13 = �1

31 = −�3
11 = −1

2
∂0h̃+

together with the same terms with the replacement of indices from 1 to 2,
we can calculate the second-order Ricci tensor by

R(2)
μν = �α

αλ�λ
μν − �α

μλ�λ
αν.

Thus

R(2)
00 = �α

αλ�λ
00 − �α

0λ�λ
α0

= 0 − 2�1
01�1

10 = −1

2
(∂0h̃+)2 = R(2)

33 ,

R(2)
11 = �α

αλ�λ
11 − �α

1λ�λ
α1

= 2�1
1λ�λ

11 − �0
1λ�λ

01 − �1
1λ�λ

11 − �3
1λ�λ

31
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= 2�1
10�0

11 + 2�1
13�3

11 − �0
11�1

01 − �1
10�0

11 − �1
13�3

11 − �3
11�1

31

= 0 = R(2)
22 .

15.5 Trace calculation of Ĩ TT
i j From the definition (15.58), we have

Ĩ TT
i j = �ik� jl Ĩkl − 1

2
�i j

(
�kl Ĩkl

)
.

To calculate its trace, we need to compute δi j �ik� jl and δi j �i j :

δi j �ik� jl = δi j (δik − ni nk)
(
δ jl − n j nl

)
= (δkl − nknl ) = �kl .

Since δi j �i j = δi j
(
δi j − ni n j

) = 3 − 1 = 2, we have the trace of Ĩ TT
i j as

δi j Ĩ TT
i j = (

δi j �ik� jl
)

Ĩkl − 1

2

(
δi j �i j

)
�kl Ĩkl

= �kl Ĩkl − �kl Ĩkl = 0.

15.6 Derive the relation (15.59) From the definition of (15.58) and the shorthand(
� Ĩ
)

= �kl Ĩkl , we have

Ĩ TT
i j Ĩ TT

i j =
[
�ik� jl Ĩkl − 1

2
�i j

(
� Ĩ
)] [

�im� jn Ĩmn − 1

2
�i j

(
� Ĩ
)]

.

Using the result, �ik�il = �kl , obtained in Problem 15.5 we can carrying
out the various multiplications:

�ik� jl�im� jn Ĩkl Ĩmn = (�ik�im)
(
� jl� jn

)
Ĩkl Ĩmn

= �km�nl Ĩkl Ĩmn

= (δkm − nknm) (δnl − nnnl ) Ĩkl Ĩmn

= Ĩi j Ĩi j − 2nknl Ĩki Ĩli + nknl nmnn Ĩkl Ĩmn

and

�i j �i j

(
� Ĩ
)2 = (

δi j − ni n j
) (

δi j − ni n j
) (

� Ĩ
)2 = 2

(
� Ĩ
)2

,

and

�i j �im� jn Ĩmn

(
� Ĩ
)

= � jm� jn Ĩmn

(
� Ĩ
)

= �mn Ĩmn

(
� Ĩ
)

=
(
� Ĩ
)2

so we have

Ĩ TT
i j Ĩ TT

i j = Ĩi j Ĩi j − 2nknl Ĩki Ĩli + nknl nmnn Ĩkl Ĩmn − 1

2

(
� Ĩ
)2

= 1

2

[
2 Ĩi j Ĩi j − 4 Ĩik Ĩil nknl + Ĩi j Ĩkl ni n j nknl

]

because
(
� Ĩ
)

= −ni n j Ĩi j and
(
� Ĩ
)2 = Ĩi j Ĩkl ni n j nknl .


