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• Relativity means that physically it is impossible to detect absolute
motion. This can be stated as a symmetry in physics: physics equations
are unchanged under coordinate transformations (i.e. when viewed by
different observers).

• Special relativity (SR) is the symmetry with respect to coordinate trans-
formations among inertial frames, general relativity (GR) among more
general frames, including accelerating coordinate systems.

• The equivalence between the physics due to acceleration and to gravity
means that GR is also the relativistic theory of gravitation, and SR is
valid only in the absence of gravity.

• Einstein’s motivations to develop GR are reviewed, and his basic idea
of curved spacetime as the gravitation field is outlined.

• Relativity represents a new understanding of space and time. In SR we
first learn that time is also a frame-dependent coordinate; the arena
for physical phenomena is four-dimensional spacetime. GR interprets
gravity as the structure of this spacetime. Ultimately, according to
Einstein, space and time have no independent existence: they express
the relational and causal structure of physical processes in the world.

• GR provides the natural conceptual framework for cosmology. The
expanding universe reflects a dynamical spacetime. Basic features of
an “exploding space” during the big bang (inflation) and the accelerated
expansion during the current epoch (dark energy) can be accommodated
simply by a vacuum energy term in the GR field equation, which gives
rise to a gravitational repulsive force.

• The experimental foundation of GR will be emphasized in our presen-
tation. The necessary mathematics is introduced as they are needed.
After the preliminaries of Part I, we discuss the description of spacetime
by the metric function in Part II. From this we can discuss many GR
applications, including the study of cosmology, given in Part III. Only
in Part IV do we introduce the full tensor formulation of the GR field
equations and the ways to solve them.

Einstein’s general theory of relativity is a classical field theory of gravitation.
It encompasses, and goes beyond, Newton’s theory, which is valid only for
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particles moving with slow velocity (compared to the speed of light) in a weak
and static gravitational field. Although the effects of general relativity (GR)
are often small in the terrestrial and solar domains, its predictions have been
accurately verified whenever high precision observations can be performed.
When it comes to situations involving strong gravity, such as compact stellar
objects and cosmology, the use of GR is indispensable. Einstein’s theory
predicted the existence of black holes, where the gravity is so strong that
even light cannot escape from them. GR, with its fundamental feature of a
dynamical spacetime, offers a natural conceptual framework for cosmology
of an expanding universe. Furthermore, GR can simply accommodate the
possibility of a constant “vacuum energy density” giving rise to a repulsive
gravitational force. Such an agent is the key ingredient of modern cosmological
theories of the big bang (the inflationary cosmology) and of the accelerating
universe (having a dark energy).

Creating new theories for the phenomena that are not easily observed on
earth poses great challenges. We cannot repeat the steps that led to the for-
mulation of Maxwell’s theory of electromagnetism, as there are not many
experimental results one can use to deduce their theoretical content. What
Einstein pioneered was the elegant approach of using physics symmetries as
a guide to the new theories that would be relevant to the yet-to-be-explored
realms. As we shall explain below, relativity is a coordinate symmetry. Sym-
metry imposes restrictions on the equations of physics. The condition that the
new theory should be reduced to known physics in the appropriate limit often
narrows it down further to a very few possibilities. The symmetry Einstein
used for this purpose is the coordinate symmetries of relativity, and the guiding
principle in the formulation of GR is the “principle of general covariance.” In
Section 1.1 we shall explain the meaning of a symmetry in physics, as well as
present a brief historical account of the formulation of relativity as a coordinate
symmetry. In Section 1.2 we discuss the motivations that led Einstein to his
geometric view of gravitation that was GR.

Besides being a theory of gravitation, GR, also provides us with a new
understanding of space and time. Starting with special relativity (SR), we
learnt that time is not absolute. Just like spatial coordinates, it depends on
the reference frame as defined by an observer. This leads to the perspective
of viewing physical events as taking place in a 4D continuum, called the
spacetime. Einstein went further in GR by showing that the geometry of this
spacetime was just the phenomenon of gravitation and was thus determined by
the matter and energy distribution. Ultimately, this solidifies the idea that space
and time do not have an independent existence; they are nothing but mirroring
the relations among physical events taking place in the world.

General relativity is a classical theory because it does not take into account
quantum effects. GR being a theory of space and time means that any viable
theory of quantum gravity must also offer a quantum description of space and
time. Although quantum gravity1 is beyond the scope of this book, we should1Currently the most developed study of quan-

tum gravity is string theory. For recent
textbook expositions see Zwiebach (2009),
Becker, Becker, and Schwarz (2007), and
Kiritsis (2007).

nevertheless mention that current research shows that such a quantum theory
has a rich enough structure to be a unified theory of all matter and interactions
(gravitation, strong, and electroweak, etc.). Thus the quantum generalization
of GR should be the fundamental theory in physics.
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In this introductory chapter, we shall put forward several “big motifs” in
the theory of relativity without much detailed explanation. Our purpose is to
provide the reader with an overview of the subject—a roadmap, so to speak.
It is hoped that, proceeding through the subsequent chapters, the reader will
have occasion to refer back to this introduction, to see how various themes are
substantiated.

1.1 Relativity as a coordinate symmetry

We are all familiar with the experience of sitting in a train, and not able to
“feel” the speed of the train when it is moving with a constant velocity, and,
when observing a passing train on a nearby track, find it difficult to tell which
train is actually in motion. This can be interpreted as saying that no physical
measurement can detect the absolute motion of an inertial frame. Thus we have
the basic concept of relativity, stating that only relative motion is measurable
in physics.

In this example, the passenger is an observer who determines a set of coor-
dinates (i.e. rulers and clocks). What this observer measures is the physics with
respect to this coordinate frame. The expression “the physics with respect to
different coordinate systems” just means “the physics as deduced by different
observers.” Physics should be independent of coordinates. Such a statement
proclaims a symmetry in physics: Physics laws remain the same (i.e. physics
equations keep the same form) under some symmetry transformation, which
changes certain conditions, for example, the coordinates. The invariance of
physics laws under coordinate transformation is called symmetry of relativity.
This coordinate symmetry can equivalently be stated as the impossibility of any
physical measurement to detect a coordinate change. Namely, if the physics
remains the same in all coordinates, then no experiment can reveal which
coordinate system one is in, just as the passenger cannot detect the train’s
constant-velocity motion.

Rotational symmetry is a familiar example of coordinate symmetry. Physics
equations are unchanged when written in different coordinate systems that are
related to each other by rotations. Rotational symmetry says that it does not
matter whether we do an experiment facing north or facing southwest. After
discounting any peculiar local conditions, we should discover the same physics
laws in both directions. Equivalently, no internal physical measurement can
detect the orientation of a laboratory. The orientation of a coordinate frame is
not absolute.

1.1.1 From Newtonian relativity to ether

Inertial frames of reference are the coordinate systems in which, according
to Newton’s first law, a particle will, if no external force acts on it, continue
its state of motion with constant velocity (including the state of rest). Galileo
and Newton taught us that the physics description would be the simplest
when given in these coordinate systems. The first law provides us with the
definition of an inertial system (also called Galilean frames of reference). Its
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implicit message that such coordinate systems exist is its physical content.
Nevertheless, the first law does not specify which are the inertial frames in the
physical universe. It is an empirical fact2 that these are the frames moving at2That there should be a physical explanation

why distant matter defines inertial frames
was first emphasized by Bishop George
Berkeley in the eighteenth century, and by
Ernst Mach in the nineteenth. A brief discus-
sion of Mach’s principle can be found in Box
1.1.

constant velocities with respect to the fixed stars—distant galaxies, or, another
type of distant matter, the cosmic microwave background (CMB) radiation (see
Section 10.5). There are infinite sets of such frames, differing by their relative
orientation, displacement, and relative motion with constant velocities. For
simplicity we shall ignore the transformations of rotation and displacement
of coordinate origin, and concentrate on the relation among rectilinear moving
coordinates—frames related by the boost transformation.

Physics equations in classical mechanics are unchanged under such boost
transformations. That is, no mechanical measurement can detect the moving
spatial coordinates. The familiar example of not being able to feel the speed
of a moving train cited at the beginning of this section is a simple illustration
of this principle of Newtonian relativity:3 “physics laws (classical mechanics)3We call it Newtonian relativity as the rela-

tivity principle applied to Newtonian physics.
It is also known alternatively as Galilean rel-
ativity as the principle of relativity was first
stated by Galileo in Dialog Concerning the
Two Chief World Systems (1632), and also as
it is the symmetry with respect to Galilean
transformation, cf. Eq. (2.8).

are the same in all inertial frames of reference.” In this sense, there is no
absolute rest frame in Newtonian mechanics. The situation changed when
electromagnetism was included. Maxwell showed a light speed being given by
the static parameters of electromagnetism. Apparently there is only one speed
of light c regardless of whether the observer is moving or not. Before Einstein,
just about everyone took it to mean that Maxwell’s equations were valid only
in the rest frame of the ether, the purported medium for electromagnetic wave
propagation. In effect this reintroduced into physics the notion of absolute
space (the ether frame).

Also, in Newtonian mechanics the notion of time is taken to be absolute,
as the passage of time is perceived to be the same in all coordinates.

1.1.2 Einsteinian relativity

It is in this context that one must appreciate Einstein’s revolutionary proposal:
All motions are relative and there is no need for concepts such as absolute
space. Maxwell’s equations are valid in every inertial coordinate system.44While emphasizing Einstein’s role, we must

also point out the important contribution to
SR by Henri Poincaré and Hendrik Lorentz.
In fact the full Lorentz transformation was
originally written down by Poincaré (who
named it in Lorentz’s honor). Poincaré was
the first one to emphasize the view of rela-
tivity as a physics symmetry. For accessible
accounts of Poincaré’s contribution, see Sar-
tori (1996) and Logunov (2001).

There is no ether. Light has the peculiar property of propagating with the same
speed c in all (moving) coordinate systems—as confirmed by the Michelson–
Morley experiment.5 Furthermore, the constancy of the light speed implies

5Michelson and Morley, using a Michelson
interferometer, set out to measure a possible
difference in light speeds along and trans-
verse to the orbit motion of the earth around
the sun. Their null result confirmed the notion
that the light speed was the same in different
inertial frames.

that, as Einstein would show, there is no absolute time.
Einstein generalized Newtonian relativity in two stages:

• 1905 Covariance of physics laws under boost transformations were
generalized from Newtonian mechanics to include electromagnetism.
Namely, the laws of electricity and magnetism, as well as mechanics, are
unchanged under the coordinate transformations that connect different
inertial frames of reference. Einstein emphasized that this generalization
implied a new kinematics: not only space but also time measurements
are coordinate dependent. It is called the principle of special relativity
because we are still restricted to the special class of coordinates: the
inertial frames of reference.
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• 1915 The generalization is carried out further. General relativity is
the physics symmetry allowing for more general coordinates, including
accelerating frames as well. Based on the empirical observation that the
effect of an accelerating frame and gravity is the same (the principle of
equivalence), GR is the field theory of gravitation; SR is special because
it is valid only in the absence of gravity. GR describes gravity as curved
spacetime, which is flat in SR.

To recapitulate, relativity is a coordinate symmetry. It is the statement that
physics laws are the same in different coordinate systems. Thus, physically it
is impossible to detect absolute motion and orientation because physics laws
are unchanged under coordinate transformations. For SR, these are the trans-
formations among Galilean frames of reference (where gravity is absent); for
GR, among more general frames, including accelerating coordinate systems.

1.1.3 Coordinate symmetry transformations

Relativity is the symmetry describing the covariance of physics equations
(i.e. invariance of the equation form) under coordinate transformations.
We need to distinguish among several classes of transformations:

• Galilean transformation In classical (nonrelativistic) mechanics, iner-
tial frames are related to each other by this transformation. Thus, by
Newtonian relativity, we mean that laws of Newtonian mechanics are
covariant under Galilean transformations. From the modern perspective,
Galilean transformations such as t ′ = t are valid only when the relative
velocity is negligibly small compared to c.

• Lorentz transformation As revealed by SR, the transformation rule con-
necting all the inertial frames, valid for all relative speed ≤ c, is the
Lorentz transformation. That is, Galilean is the low-speed approximation
of the Lorentz transformation. Maxwell’s equations were first discovered
to possess this symmetry—they are covariant under the Lorentz trans-
formation. It then follows that Newtonian (nonrelativistic) mechanics
must be modified so that relativistic mechanics, valid for particles having
arbitrary speed up to c, can also have this Lorentz symmetry.

• General coordinate transformation The principle that physics equations
should be covariant under the general transformations that connect dif-
ferent coordinate frames, including accelerating frames, is GR. Such a
symmetry principle is called the principle of general covariance. This is
the basic guiding principle for the construction of the relativistic theory
of gravitation.

Thus, in GR, all sorts of coordinates are allowed—there is a “democracy
of coordinate systems.” All sorts of coordinate transformations can be used.
But the most fruitful way of viewing the transformations in GR is that they
are local Lorentz transformations (i.e. an independent transformation at every
spacetime point), which in the low-velocity limit are Galilean transformations.
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1.1.4 New kinematics and dynamics

Einstein’s formulation of the relativity principle involves a sweeping change of
kinematics: not only space, but also time measurements, may differ in different
inertial frames. Space and time are on an equal footing as coordinates of a
reference system. We can represent space and time coordinates as the four
components of a (spacetime) position vector xμ (μ = 0, 1, 2, 3), with x0 being
the time component, and the transformation for coordinate differentials is now
represented by a 4 × 4 matrix A,

dxμ → dx ′μ =
∑

ν

[A]μν dxν, (1.1)

just like a rotational coordinate transformation is represented by a 3 × 3
matrix. The Galilean and Lorentz transformations are linear transforma-
tions, i.e. the transformation matrix elements do not themselves depend on
the coordinates, [A] �= [A (x)]. That the transformation matrix is a constant
with respect to the coordinates means that one makes the same transfor-
mation at every coordinate point. We call this a global transformation. By
contrast, general coordinate transformations are nonlinear transformations.
Recall, for example, the transformation to an accelerating frame, x → x ′ =
x + vt + at2/2, is nonlinear in the time coordinate. Here the transformations
are coordinate-dependent, [A] = [A (x)]—a different transformation for each
coordinate spacetime point. We call this a local transformation, or a gauge
transformation. Global symmetry leads to kinematic restrictions, while local
symmetry is a dynamics principle. As we shall see, the general coordinate
symmetry (general relativity) leads to a dynamical theory of gravitation.6

6Following Einstein’s seminal work, physi-
cists learned to apply the local symmetry
idea also to the internal charge-space coordi-
nates. In this way, electromagnetism as well
as other fundamental interactions among ele-
mentary particles (strong and weak interac-
tions) can all be understood as manifestation
of local gauge symmetries. For respective ref-
erences of gauge theory in general and GR as
a gauge theory in particular, see for example
Cheng and Li (1984, 2000).

1.2 GR as a gravitational field theory

The problem of noninertial frames of reference is intimately tied to the physics
of gravity. In fact, the inertial frames of reference should properly be defined as
the reference frames having no gravity. GR, which includes the consideration
of accelerating coordinate systems, represents a new theory of gravitation.

The development of this new theory is rather unique in the history of
physics: it was not prompted by any obvious failure (crisis) of Newton’s theory,
but resulted from the theoretical research, “pure thought,” of one person—
Albert Einstein. Someone puts it this way: “Einstein just stared at his own
navel, and came up with general relativity.”7

7The reader of course should not take this
description to imply that the discovery was in
any sense straightforward and logically self-
evident. In fact, it took Einstein close to 10
years of difficult research, with many false
detours, to arrive at his final formulation.
To find the right mathematics of Riemannian
geometry, he was helped by his friend and
collaborator Marcel Grossmann. 1.2.1 Einstein’s motivations for the general theory

If not prompted by experimental crisis, what were Einstein’s motivations in his
search for this new theory? From his published papers,8 one can infer several

8Einstein’s classical papers in English trans-
lation may be found in the collected work
published by Princeton University Press
(Einstein, 1989). A less complete, but more
readily available, collection may be found in
Einstein et al. (1952).

interconnected motivations (Uhlenbeck, 1968):

1. To have a relativistic theory of gravitation. The Newtonian theory of
gravitation is not compatible with the principle of (special) relativity as
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it requires the concept of an “action-at-a-distance” force, which implies
instantaneous transmission of signals.

2. To have a deeper understanding of the empirically observed equality
between inertial mass and gravitational mass.9 9These two types of masses will be discussed

in detail in Section 4.2.1.3. “Space is not a thing” Einstein phrased his conviction that physics laws
should not depend on reference frames, which express the relationship
among physical processes in the world and do not have independent
existence.

“Space is not a thing” While the first two of the above-listed motivations
will be discussed further in Chapter 4, here we make some comments on
the third motivation. Einstein was dissatisfied with the prevailing concept of
space. SR confirms the validity of the principle of special relativity: physics
is the same in every Galilean frame of reference. But as soon as one attempts
to describe physical phenomena from a reference frame in acceleration with
respect to an inertial frame, the laws of physics change and become more
complicated because of the presence of the fictitious inertial forces. This is
particularly troublesome from the viewpoint of relative motion, since one
could identify either frame as the accelerating frame. (The example known
as Mach’s paradox is discussed in Box 1.1.) The presence of the inertial
force is associated with the choice of a noninertial coordinate system. Such
coordinate-dependent phenomena can be thought of as brought about by space
itself. Namely, space behaves as if it is the source of the inertial forces.
Newton was thus compelled to postulate the existence of absolute space, as
the origin of these coordinate-dependent forces. The unsatisfactory feature
of such an explanation is that, while absolute space is supposed to have an
independent existence, yet no object can act on this entity. Being strongly
influenced by the teaching of Ernst Mach, Einstein emphasized that space and
time should not be like a stage upon which physical events take place, thus
having an existence even in the absence of physical interactions. In Mach and
Einstein’s view, space and time are nothing but expressing relationships among
physical processes in the world—“space is not a thing”. Such considerations
led Einstein to the belief that the laws of physics should have the same
form in all reference frames. Put another way, spacetime is a fixed for pre-
GR physics, and in GR it is dynamic, as determined by the matter/energy
distribution.

Fig. 1.1 Mach’s paradox: Two identical
elastic spheres, one at rest, and the other
rotating, in an inertial frame of reference. The
rotating sphere is observed to bulge out in
the equatorial region, taking on an ellipsoidal
shape.

Box 1.1 Mach’s principle

At the beginning of his 1916 paper on general relativity, Einstein discussed
Mach’s paradox (Fig. 1.1) to illustrate the unsatisfactory nature of New-
ton’s conception of space as an active agent. Consider two identical elastic
spheres separated by a distance much larger than their size. One is at rest,
and the other rotating around the axis joining these two spheres in an inertial
frame of reference. The rotating body takes on the shape of an ellipsoid.
Yet if the spheres are alone in the world, each can be regarded as being

(cont.)
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Box 1.1 (Continued)

in rotation with respect to the other. Thus there should be no reason for
dissimilarity in shapes.

Mach had gone further. He insisted that it is the relative motion of
the rotating sphere with respect to the distant masses that was responsi-
ble for the observed bulging of the spherical surface. The statement that
the “average mass” of the universe gives rise to the inertia of an object has
come to be called Mach’s principle. While in Einstein’s theory, the structure
of space and time is influenced by the presence of matter in accordance
to Mach’s idea, the question of whether GR actually incorporates all of
Mach’s principle is still being debated.10 For a recent discussion see, for

10An affirmative answer can be argued by
invoking the example of “dragging of inertial
frames” by a rotating massive source, to be
discussed in Section 8.4.1 (see Fig. 8.9).

example, Wilczek (2004), who emphasized that even in Einstein’s theory
not all coordinate systems are on an equal footing.11 Thus the reader should11This is related to the fact that the Einstein

theory is a geometric theory restricted to a
metric field, as discussed below.

be aware that there are subtle points with respect to the foundation questions
of GR that are still topics in modern theoretical physics research.

1.2.2 Geometry as gravity

Einstein, starting with the equivalence principle (EP)—see Chapter 4—made
the bold inference that the proper mathematical representation of the gravita-
tional field is a curved spacetime (see Chapter 6). As a result, while spacetime
has always played a passive role in our physics description, it has become
a dynamic quantity in GR. Recall our experience with electromagnetism; a
field theoretical description is a two-step description: the source, e.g. a proton,
gives rise to a field everywhere, as described by the field equations (i.e. the
Maxwell’s equations); the field then acts locally on the test particle, e.g.
an electron, to determine its motion, as dictated by the equation of motion
(Lorentz force law).

source −→ field −→ test particle.

GR as a field theory of gravity with curved spacetime as the gravitational
field offers the same two-step description. Its essence is nicely captured in
an aphorism (by John A. Wheeler):

Spacetime tells matter how to move
Matter tells spacetime how to curve.

Since a test particle’s motion in a curved space follows “the shortest possible
and the straightest possible trajectory” (called the geodesic curve), the GR
equation of motion is the geodesic equation (see Sections 5.2, 6.2, and 14.1).
The GR field equation (the Einstein equation) tells us how the source of
mass/energy can give rise to a curved space by fixing the curvature of the
space (Sections 6.3 and 14.2). This is what we mean by saying that “GR is a
geometric theory of gravity,” or “gravity is the structure of spacetime.”
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1.2.3 Mathematical language of relativity

Our presentation will be such that the necessary mathematics is introduced as
it is needed. Ultimately what is required for the study of GR is Riemannian
geometry.

Tensor formalism Tensors are mathematical objects having definite trans-
formation properties under coordinate transformations. The simplest examples
are scalars and vector components. The principle of relativity says that physics
equations should be covariant under coordinate transformation. To ensure that
this principle is automatically satisfied, all one needs to do is to write physics
equations in terms of tensors. Because each term of the equation transforms in
the same way, the equation automatically keeps the same form (it is covariant)
under coordinate transformations. Let us illustrate this point by the familiar
example of Fi = mai as a rotational symmetric equation. Because every term
of the equation is a vector, under a rotation the same relation F ′

i = ma′
i holds

in the new coordinate system. The physics is unchanged. We say this physics
equation possesses rotational symmetry. (See Section 2.1.1 for more details.)
In relativity, we shall work with tensors that have definite transformation prop-
erties under ever more general coordinate transformations: the Lorentz trans-
formations and general coordinate transformations (see Chapters 12 and 13).
If physics equations are written as tensor equations, then they are automati-
cally relativistic. This is why a tensor formalism is needed for the study of
relativity.

Our presentation will be done in the coordinate-based component formal-
ism, although this may lack the deep geometric insight that can be provided by
the coordinate-independent formulation of differential geometry. This choice
is made so that the reader can study the physics of GR without overcoming the
hurdle of another layer of abstraction.

Metric description vs. full tensor formulation Mathematically understand-
ing the structure of the Einstein field equation is more difficult because it
involves the Riemannian curvature tensor. A detailed discussion of the GR
field equation and the ways of solving it in several simple situations will be
postponed till Part IV. In Part II, our presentation will be restricted mainly to
the description of space and time in the form of the metric function, which
is a mathematical quantity that describes the shape of space through length
measurements. From the metric function one can deduce the corresponding
geodesic equation required for various applications. We will demonstrate in
Part IV that the metric functions used in Parts II and III are the solutions of the
Einstein field equation.

In this introductory chapter, we have emphasized the viewpoint of relativity
as a coordinate symmetry. We can ensure that physics equations are covariant
under coordinate transformations if they are written as tensor equations. Since
the tensor formalism will not be fully explicated until Part IV, this also means
that the symmetry approach will not be properly developed until later in the
book, in Chapters 12–14.
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GR as a geometric theory vs. GR as a theory of a metric field Instead of
emphasizing the geometric language of general relativity, a mathematically
equivalent formulation (that’s even more like the field theories of other
fundamental interactions) is to have GR as a theory of a metric field. The
metric function is viewed as the propagating (spin-2) field of gravity, just
as electromagnetic potentials is viewed as the propagating (spin-1) field of
electromagnetism. This viewpoint also clarifies the origin of GR’s nonlinearity.
Maxwell’s theory is a linear theory because the mediator of the electro magnetic
(EM) interaction does not carry EM charge itself—the photon is electrically
neutral. Since anything carrying energy and momentum is a source of gravity,
the gravitational metric field carries energy and momentum, hence, “gravity
charge” also—much in the way the Yang–Mills fields of strong and weak
interactions do.12 In Chapter 15, where we discuss gravitational waves, the

12QCD’s gluon fields of strong interaction
are examples of Yang–Mills fields. These
mediating fields among quarks themselves
carry, just like quarks, strong interaction
charges (called “color”). Such non-Abelian
gauge fields are discussed, e.g. in Cheng and
Li (1984, 1988).

metric field viewpoint of GR will be employed. In that discussion we work in the
approximation of ignoring the gravity charge of the gravity waves themselves;
thus, it’s the linearized Einstein theory that we will be working in.

1.2.4 Observational evidence for GR

Our presentation of general relativity (GR) and cosmology will emphasize
heavily the experimental foundation of these subjects. Although the effects
GR are small in the terrestrial and solar domains,13 its predictions have been13Even the largest GR effects in terres-

trial and solar domains are limited by small
parameters,

GN M⊕
c2 R⊕

= O
(
10−10)

and

GN M�
c2 R�

= O
(
10−6)

,

with GN being Newton’s constant,
(M⊕, R⊕) and (M�, R�) being respectively
the (mass, radius) values of the earth and the
sun.

accurately verified whenever high precision observations can be performed.
Notably we have the three classical tests of GR:

• the precession of the planet Mercury’s perihelion, as discussed in Section
7.3.1;

• the bending of star light by the sun, in Sections 4.3.2 and 7.2.1;
• the redshift of light’s frequency in a gravitational field, as in Sections

4.3.1 and 6.2.2.

An electromagnetic signal is delayed while traveling in a warped spacetime;
this Shapiro time delay will be studied in Section 7.3.2. We must also use GR
for situations involving time-dependent gravitational fields as in emission and
propagation of gravitational waves. The existence of gravitational waves pre-
dicted by GR has been verified by observing the rate of energy loss, due to the
emission of gravitational radiation, in a relativistic binary pulsar systems such
as the Hulse–Taylor system (PSR B1913+16), discussed in Section 15.4.3. In
recent years a most impressive set of confirmations of GR has been carried out
in the newly discovered double pulsar PSR J0737 − 3039A/B (Burgay et al.,
2003; Lyne et al., 2004).

The double pulsar system as a unique laboratory for GR tests A pulsar
is a magnetized star whose rapid rotation generates a circulating plasma that
serves as a source of beamed radio waves detectable on earth as periodic
pulses. PSR J0737 − 3039A/B is a binary system composed of one pulsar
with a period of 22 ms (pulsar A) in a 2.4-hour orbit with a younger pulsar
with a period of 2.7 s (pular B). Neutron binaries being compact systems in
rapid motion exhibit large GR effects. For example, the precession rate of
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this double pulsar’s periastron14 is ω̇ � 17 degrees per year,15 as compared 14This is the point of closest approach
between the pulsar and its companion star.
15This is more than four times the corre-
sponding value for the Hulse–Taylor binary.

to planet Mercury’s 43 arcseconds per century. Even better, with both neutron
stars being pulsars there is an abundant amount of timing data; this has allowed
for more than six GR tests in one system. Each GR effect has a unique
dependence on the two pulsar masses, MA and MB. For example the decay
rate of its orbit period Ṗb (MA, MB), due to gravitational wave emission, is
predicted by GR in Eq (15.71):16

16e is the eccentricity of the binary orbit.

Ṗb,GR = −192π

5c5

(
2πGN

Pb

)5/3 1 + (73/24)e2 + (37/96)e4

(1 − e2)7/2

MA MB

(MA + MB)1/3
.

As a result, the measured value Ṗb,obs = −1.252(17) × 10−12 can then be
translated as a (double lined) curve in the “mass–mass diagram” of Fig. 1.2.
The other quantities that have been measured in this system are ω̇, the pre-
cession of the periastron mentioned above, two parameters, r (range) and
s (shape), related to the Shapiro time-delay, and the γ parameter related to
special relativistic and gravitational time dilation effects. Evidently, all these
curves meet at one point of MA = 1.33817(7) and MB = 1.2487(7) in units of
the solar mass M�. In fact, from this one can infer that GR has been verified
at the impressive 0.1% level (Kramer et al. 2006). Furthermore, the double
pulsar J0737 − 3039A/B has provided us with up-to-now the most precise
test of GR’s prediction of relativistic (geodetic) spin precession �B with an
uncertainty of only 13% (Breton et al., 2008). This phenomenon can be viewed
as spin–orbit coupling of the system and is (indirectly) related to the intriguing
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Fig. 1.2 The mass–mass plot that provides
a graphical summary of GR parameters ω̇,

γ, r, s, Ṗb and �B of the double pul-
sar J0737 − 3039A/B is from Breton et al.
(2008); the inset is an expanded view of
the region of principal interest. Since both
of the projected semimajor axes xA,B =
aA,B (sin i) /c (with i being the inclina-
tion between the binary orbit plane and
the plane of the sky) have been measured,
one can fix the mass ratio R ≡ MA/MB =
xB/xA as the two stars must be orbiting
around the system’s center of mass (so that
xA MA = xB MB). The shaded area is disal-
lowed because mass functions in this region
would lead to sin i ≥ 1.
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14 Introduction and overview

GR feature of “dragging of the inertial frame,” as discussed in Section 8.4 and
in Problem 14.6.

1.2.5 GR as the framework for cosmology

The universe is a huge collection of matter and energy. The study of its struc-
ture and evolution, the subject of cosmology, has to be carried out in the frame-
work of GR. The Newtonian theory for a weak and static gravitational field
will not be adequate. The large collection of matter and fields means we must
deal with strong gravitational effects, and to understand its evolution, the study
cannot be carried out in static field theory. In fact, the very basic description of
the universe is now couched in the geometric language of general relativity. A
“closed universe” is one having positive spatial curvature, an “open universe”
is negatively curved, etc. Thus for a proper study of cosmology, we must first
learn GR.

Observationally it is clear that GR is needed to provide the conceptual
framework for cosmology. The expanding universe reflects a dynamical space-
time. Basic features of the big bang (inflation) and the accelerated expansion
of the universe (due to dark energy) in the present epoch can be accommodated
simply by a vacuum energy term (called the cosmological constant) in the
GR field equation, which gives rise to the surprising feature of gravitational
repulsion.

Review questions

1. What is relativity? What is the principle of special relativ-
ity? What is general relativity?

2. What is a symmetry in physics? Explain how the statement
that no physical measurement can detect a particular phys-
ical feature (e.g. orientation, or the constant velocity of a
lab), is a statement about a symmetry in physics. Illustrate
your explanation with the examples of rotation symmetry,
and the coordinate symmetry of SR.

3. In general terms, what is a tensor? Explain how a physics
equation, when written in terms of tensors, automatically
displays the relevant coordinate symmetry.

4. What are inertial frames of reference? Answer this in three
ways.

5. The equations of Newtonian physics are unchanged
when we change the coordinates from one to another
inertial frame. What is this coordinate transformation?

The equations of electrodynamics are unchanged under
another set of coordinate transformations. How are these
two sets of transformations related? (You need only
give their names and a qualitative description of their
relation.)

6. What is the key difference between the coordinate trans-
formations in special relativity and those in general rela-
tivity?

7. What motivated Einstein to pursue the extension of special
relativity to general relativity?

8. In the general relativistic theory of gravitation, what is
identified as the gravitational field? What is the GR field
equation? The GR equation of motion? (Again, only the
names.)

9. How does the concept of space differ in Newtonian
physics and in Einsteinian (general) relativistic physics?


