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• Einstein introduced the cosmological constant in his field equation so
as to obtain a static universe solution.

• The cosmological constant is the vacuum energy of the universe: This
constant energy density corresponds to a negative pressure, giving rise
to a repulsive force that increases with distance. A vacuum-energy
dominated universe expands exponentially.

• The inflationary theory of cosmic origin—the universe had experienced
a huge expansion at the earliest moment of the big bang—can pro-
vide the correct initial conditions for the standard FLRW model of
cosmology: solving the flatness, horizon problems, and providing an
origin of matter/energy, as well as giving just the right kind of density
perturbation for subsequent structure formation.

• The primordial inflation leaves behind a flat universe, which can be
compatible with the observed matter density being less than the critical
density and a cosmic age greater than 9 Gyr if there remains a small but
nonvanishing cosmological constant—a dark energy. This would imply
a universe now undergoing an accelerating expansion.

• The measurement of supernovae at high redshift provided direct evi-
dence for an accelerating universe. Such data, together with other obser-
vational results, especially the anisotropy of the cosmic microwave
background and large structure surveys, gave rise to a concordant
cosmological picture of a spatially flat universe � = �� + �M = 1,
dominated by dark energy �� � 0.75. Most of the matter �M � 0.25
is exotic dark matter �DM � 0.21, compared to the ordinary (baryonic)
matter �B � 0.04 The cosmic age t0 � 14 Gyr comes out to be close
to the Hubble time.

• The cosmological constant and the cosmic coincidence problems point
to the need for new fundamental physics.

As we have discussed in Sections 9.1.3 and 10.2, Newton’s and the original
Einstein’s equations would lead us to expect the expansion of the universe to
slow down because of gravitational attraction. In this chapter, we shall see
how a modification of the Einstein equation, with the introduction of the
cosmological constant �, allows for the possibility of a gravitational repulsive
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force that increases with distance. This effect was first discovered by Einstein
in his effort of seeking a static solution to the GR field equation. It also
allows for the possibility that the universe had undergone an extraordinarily
rapid expansion at an early moment (the inflationary epoch). The inflationary
scenario of the big bang brings about just the correct initial conditions for
the then standard cosmology (the FLRW model of Box.11.1) and predicts a
flat geometry for the universe at large. Finally, a nonvanishing � term can
account for the recently discovered evidence of an accelerating universe in
the present epoch. An accelerating expansion means slower expansion in the
past, hence a longer age for the naively expected decelerating universe—
long enough to account for the oldest objects observed in the universe. The
cosmological constant also provides us with a dark energy that, together with
the observed matter content, fulfills the inflationary cosmology’s prediction of
a flat universe, which requires the mass/energy density of the universe to be
equal to the critical density.

11.1 The cosmological constant

Before Hubble’s discovery in 1929 of an expanding universe, just about
everyone, Einstein included, believed that we lived in a static universe. Recall
that the then-observed universe consisted essentially of stars within the Milky
Way galaxy. But gravity, whether nonrelativistic or relativistic, is a universal
attraction. Hence, theoretically speaking, a static universe is an impossibility.
Specifically, as we have demonstrated, the Friedmann cosmological equations
(10.1) and (10.2) have solutions corresponding always to a dynamic universe—
a universe which is either contracting or expanding. Namely, these equations
are not compatible with the static condition of an unchanging scale factor
ȧ = ä = 0, which would lead to a trivial empty universe,1 ρ = p = 0.1For the Einstein equation without a cosmo-

logical constant, a static solution necessarily
corresponds to an empty universe. On the
other hand, an empty universe is compati-
ble with an expanding universe with negative
spatial curvature. See Problem 10.4.

� as a modification of the geometry side Recall our brief discussion in
Section 6.3.2 of the GR field equation Gμν = κTμν with κ = −8πc−4GN. The
Einstein tensor Gμν on the left-hand side (LHS) is the curvature of spacetime
and Tμν on the right-hand side (RHS), the energy–momentum source term
for gravity (the curved spacetime). The goal of obtaining a static universe
from general relativity (GR) led Einstein to alter his field equation to make
it contain a repulsion component. This could, in principle, balance the usual
gravitational attraction to yield a static cosmic solution. Einstein discovered
that the geometry side of his field equation could naturally accommodate an
additional term. As will be discussed in Section 14.4.3, the simplest term that
is mathematically compatible with Einstein’s field equation (6.37) is the metric
tensor gμν ,

Gμν − �gμν = κTμν. (11.1)

Such a modification will, however, alter its nonrelativistic limit to differ from
Newton’s equation. In order that this alteration is compatible with known
phenomenology, it must have a coefficient � so small as to be unimportant
in all situations except on truly large cosmic scales. Hence, this additional
constant � has come to be called the cosmological constant.
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� as a vacuum energy momentum contribution While we have introduced
this term as an additional geometric term, we could just as well move it to the
RHS of the equation and view it as an additional source term of gravity. In
particular, when the regular energy–momentum is absent Tμν = 0 (the vacuum
state),

Gμν = �gμν ≡ κT �
μν

where T �
μν = κ−1�gμν = (−c4�/8πGN)gμν can be interpreted as the

energy–momentum tensor of the vacuum.2 Just as the Tμν for ordinary radi- 2It is appropriate that the vacuum energy
momentum tensor is proportional to the met-
ric gμν , which is Lorentz invariant in local
inertial coordinates. This must be the case as
such a T �

μν should not pick out any preferred
direction.

ation and matter depends on two functions of energy density ρ and pressure
p, this vacuum-energy–momentum tensor T �

μν can be similarly parametrized
by “vacuum-energy density” ρ� and “vacuum pressure” p�. As we shall
demonstrate in Section 14.4.3 (after we have properly studied the energy–
momentum tensor in Section 12.3), these two quantities are related to a
positive cosmological constant � as follows: the vacuum energy per unit
volume,

ρ� = �c2

8πGN
> 0, (11.2)

is a constant3 (in space and in time) and the corresponding vacuum pressure, 3In nonrelativistic physics only the relative
value of energy is meaningful—the motion
of a particle with potential energy V (x) is
exactly the same as one with V (x) + C ,
where C is a constant. In GR, since the whole
energy–momentum tensor is the source of
gravity, the actual value of energy makes a
difference.

p� = −ρ�c2 < 0, (11.3)

is negative, corresponding to an equation-of-state parameter w = −1 as
defined in Eq. (10.4). Such a density and pressure, as we shall presently
show, are compatible with basic physics principles, and, most relevant for our
cosmological discussion, they give rise to a gravitational repulsion.

� as constant energy density and negative pressure What is a negative
pressure? Consider the simple case of a piston chamber filled with ordinary
matter and energy, which exerts a positive pressure by pushing out against
the piston. If it is filled with this � energy, Fig. 11.1, it will exert a negative
pressure by pulling in the piston. Physically this is sensible because, as its
energy per unit volume ρ�c2 is a constant, the change in system’s energy is
strictly proportional to its volume change d E = ρ�c2dV . The system would
like to lower its energy by volume-contraction (pulling in the piston). When
we increase the volume of the chamber dV > 0 (hence its energy d E > 0)
by pushing out the piston, we have to do positive work to overcome the
pulling by the � energy. Energy conservation is maintained in such a sit-
uation because the negative pressure p < 0 is just what is required by the
first law of thermodynamics: d E = −pdV when both d E and dV have the
same sign. In fact the first law also makes it clear that if the energy density

Fig. 11.1 The � energy in a chamber has
negative pressure and pulls in the piston.
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is a constant d E = ρc2dV so that the dV factors cancel from both sides, the
pressure must equal the negative of the energy density p = −ρc2 as shown in
(11.3).

11.1.1 Vacuum energy as source of gravitational repulsion

To see that the negative pressure can give rise to a repulsive force, let us first
discuss the Newtonian limit of the Einstein equation with a general source,
composed of mass density ρ as well as pressure p (as is the case for a
cosmology with an ideal fluid as the source). It can be shown (see Box 14.1 for
details) that the limiting equation, written in terms of the gravitational potential
�, is

∇2� = 4πGN

(
ρ + 3

p

c2

)
= 4πGN (1 + 3w) ρ. (11.4)

This informs us that not only mass, but also pressure, can be a source of gravity.
For the nonrelativistic matter having a negligible pressure term, we recover the
familiar equation (6.36) of Newton.

Explicitly displaying the contributions from ordinary matter and vacuum
energy (thus density and pressure each have two parts: ρ = ρM + ρ� and p =
pM + p�), the Newton/Poisson equation (11.4) becomes

∇2� = 4πGN

(
ρM + 3

pM

c2
+ ρ� + 3

p�

c2

)

= 4πGNρM − 8πGNρ� = 4πGNρM − �c2, (11.5)

where we have used (11.3), p� = −ρ�c2, and set pM = 0 because ρMc2 �
pM. For the vacuum-energy dominated case of �c2 � 4πGNρM, the Poisson
equation can be solved (after setting the potential to zero at the origin) by

�� (r) = −�c2

6
r2. (11.6)

Between any two mass points, this potential corresponds to a repulsive force
(per unit mass) that increases with separation r ,

�g� = −�∇�� = +�c2

3
�r , (11.7)

in contrast to the familiar −�r/r3 gravitational attraction. With this per-
vasive repulsion that increases with distance, even a small � can have a
significant effect on truly large dimensions. It would be possible to coun-
teract the gravitational attraction and allow for the static solution sought by
Einstein.
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11.1.2 Einstein’s static universe

We now consider the Friedmann equations (10.1) and (10.2) with a nonvanish-
ing cosmological constant,

ȧ2 + kc2/R2
0

a2
= 8πGN

3
(ρM + ρ�), (11.8)

ä

a
= −4πGN

c2

[
( pM + p�) + 1

3
(ρM + ρ�)c2

]
. (11.9)

The RHS of (11.9) need not necessarily be negative because of the presence
of the negative pressure term p� = −ρ�c2. Consequently, a decelerating uni-
verse is no longer the inevitable outcome. For nonrelativistic matter (pM = 0),
we have

ä

a
= −4πGN

3
(ρM − 2ρ�) . (11.10)

The static condition of ä = 0 now leads to the constraint:

ρM = 2ρ� = �c2

4πGN
. (11.11)

That is, the mass density ρM of the universe is fixed by the cosmological
constant. The other static condition of ȧ = 0 implies, through (11.8), the static
solution a = a0 = 1

kc2

R2
0

= 8πGNρ� = �c2. (11.12)

Since the RHS is positive, we must have

k = +1. (11.13)

Namely, the static universe has a positive curvature (a closed universe) and
finite size. The “radius of the universe” is also determined, according to
(11.12), by the cosmological constant:

R0 = 1√
�

. (11.14)

Thus, the basic features of such a static universe, the density and size,
are determined by the arbitrary input parameter �. Not only is this a rather
artificial arrangement, but also the solution is, in fact, unstable. That is, a small
variation will cause the universe to deviate from this static point. A slight
increase in the separation will cause the gravitational attraction to decrease
and repulsion to increase, causing the system to deviate further from the
initial point. A slight decrease in the separation will increase the gravitational
attraction to cause the separation to decrease further, until the whole system
collapses.
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Box 11.1 Some historical tidbits of modern cosmology

FLRW cosmology The Friedmann equations with both ordinary and vac-
uum energies (11.8) and (11.9) are sometimes call the Friedmann–Lemaître
equations. That Einstein’s equation had expanding, or contracting, solutions
was first pointed out in the early 1920s by A.A. Friedmann. His fundamen-
tal contribution to cosmology was hardly noticed by his contemporaries.4 It4On the other hand, the comoslogical

model with only ρ�, studied by the Dutch
astronomer W. de Sitter soon after Einstein’s
1917 paper, was widely discussed.

was to be rediscovered later by the Belgian civil engineer and priest Georges
Lemaître, who published in 1927 his model of cosmology with a contribu-
tion coming from both ρM and ρ�. More importantly, Lemaître was the first
one, having been aware of Hubble’s work through his contact with Harvard
astronomers (he spent three years studying at Cambridge University and
MIT), to show that the linear relation between distance and redshift (Hub-
ble’s law) follows from such cosmological considerations. The original
derivations by Friedmann and Lemaître were somewhat awkward. Modern
presentations have mainly followed the approach initiated by Howard Percy
Robertson and Arthur G. Walker. Thus the framework using Einstein’s
equation for a homogeneous and isotropic universe has come to be known
as the FLRW (Friedmann–Lemaître–Robertson–Walker) cosmological
model.

Einstein’s greatest blunder? Having missed the chance of predicting an
expanding universe before its discovery, Einstein came up with a solution
which did not really solve the perceived difficulty. (His static solution is
unstable.) It had often been said that later in life Einstein considered the
introduction of the cosmological constant to be “the biggest blunder of
his life!” This originated from a characterization by George Gamow in his
autobiography (Gamow, 1970):

Thus, Einstein’s original gravity equation was correct, and changing it was a
mistake. Much later, when I was discussing cosmological problems with Einstein,
he remarked that the introduction of the cosmological term was the biggest blunder
he ever made in his life.

Then Gamow went on to say,

But this blunder, rejected by Einstein, is still sometimes used by cosmologists even
today, and the cosmological constant � rears its ugly head again and again and
again.

What we can conclude for sure is that Gamow himself considered the cos-
mological constant ‘ugly’ (because this extra term made the field equation
less simple). Generations of cosmologist kept on including it because the
quantum vacuum energy gives rise to such a term (cf. Section 11.7.1) and
there was no physical principle one could invoke to exclude this term. (If
it is not forbidden, it must exist!) In fact the discovery of the cosmological
constant as the source of a new cosmic repulsive force must be regarded
as one of Einstein’s great achievements.5Now, as we shall see, the idea5One can speculate that, if there were regret

on Einstein’s part, it would be the missed
opportunity of predicting the expanding uni-
verse before its observational discovery.

of a nonzero cosmological constant was the key in solving a number of
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fundamental problems in cosmology. That is, Einstein taught us the way to
bring about gravitational repulsion. Although the original goal of a static
universe solution was misguided, this “tool” of the cosmological constant
(a repulsive force) was needed to account for the explosion that was the big
bang (inflationary epoch), and was needed to explain how the expansion of
the universe could accelerate.

11.2 The inflationary epoch

The standard model of cosmology (the FLRW model) has been very successful
in presenting a self-contained picture of the evolution and composition of the
universe: how the universe expanded and cooled after the big bang; how the
light nuclear elements were formed; after the inclusion of the proper density
inhomogeneity, how in an expanding universe matter congealed to form stars,
galaxies, and clusters of galaxies. It describes very well the aftermath of the
big bang. However, the model says very little about the nature of the big bang
itself: how did this “explosion of the space” come about? It assumes that all
matter existed from the very beginning. Furthermore, it must assume certain
very precise initial conditions (see the flatness and horizon problems discussed
later) that just clamor for an explanation.

The inflationary cosmology is an attempt to give an account of this big
bang back to an extremely short instant (something like 10−36 s) after the
t = 0 cosmic singularity.6 During this primordial inflation, the universe had 6This is to be compared to the even ear-

lier period, comparable to the Planck time
tPl = O(10−43 s), when quantum gravity is
required for a proper description. See Sec-
tion 8.5.1.

a burst of expansion during which the scale factor increased by more than
30 orders of magnitude, see Fig. 11.2. In this inflationary process, all the matter
and energy could have been created virtually from nothing. Afterwards, the
universe followed the course of adiabatic expansion and cooling as described

Fig. 11.2 Comparison of the scale factor’s
time evolution. The standard FLRW model
curves are represented by dashed lines; the
solid curve is that of the inflation model
which coincides with the standard model
curve after 10−35 s. The intercepts on the
a-axis correspond respectively to the ini-

tial scales: a(SM)
i in the standard model

(without inflation) and a(IC)
i in the inflation

cosmology.
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by the FLRW cosmology (cf. Chapter 10). Figure 11.2 also makes it clear that
in the inflationary scenario, the observable universe originates from an entity
some 10−30 times smaller than that which would have been the size in the case
without inflation.

11.2.1 Initial conditions for the FLRW cosmology

The standard FLRW model requires a number of seemingly unnatural fine-
tuned initial conditions. As we shall see, they are just the conditions that would
follow from an inflationary epoch. We start the discussion of initial conditions
by listing two such theoretical difficulties, two “problems.”

The flatness problem
Because of the gravitational attraction among matter and energy, we would
expect the expansion of the universe to slow down. This deceleration ä(t) < 0
means that ȧ(t) must be a decreasing function. This is exemplified by the
specific case of a radiation-dominated universe a ∼ t1/2, thus ȧ ∼ t−1/2, or
a matter-dominated universe a ∼ t2/3, and ȧ ∼ t−1/3, as derived in (10.30).
Recall that the Friedmann equation can be written in terms of the mass density
parameter � as in (10.7):

1 − �(t) = −kc2

ȧ(t)2 R2
0

. (11.15)

This displays the connection between geometry and matter/energy: if k = 0
(a flat geometry), we must have the density ratio � = 1 exactly; when k 	=
0 for an universe having curvature, then |1 − �(t)| must be ever-increasing
because the denominator on the RHS is ever decreasing. Thus, the condition
for a flat universe � = 1 is an unstable equilibrium point—if � ever deviates
from 1, this deviation will increase with time. Or, we may say: gravitational
attraction always enhances any initial curvature. In light of this property, it
is puzzling that the present mass density �0 has been found observationally
(see Section 9.2) to be not too different from the critical density value (1 −
�0) = O(1). This means that � must have been extremely close to unity (an
extremely flat universe) in the cosmic past. Such a fine-tuned initial condition
would require an explanation.

We can make this statement quantitatively. Ever since the radiation–matter
equality time t > tRM, with zRM = O(104), cf. (10.68) the evolution of
the universe has been dominated by nonrelativistic matter: a(t) ∼ t2/3 or
ȧ ∼ t−1/3 ∼ a−1/2. We can then estimate the ratio in (11.15):

1 − �(tRM)

1 − �(t0)
=

[
ȧ(tRM)

ȧ(t0)

]−2

=
[

aRM

a0

]

= (1 + zRM)−1 = O(10−4). (11.16)

Successful prediction of light element abundance by primordial nucleosynthe-
sis gave us direct evidence for the validity of the FLRW model of cosmology
back to the big bang nucleosynthesis time tbbn = O(102 s). The time evolu-
tion for t < tRM was radiation dominated: a(t) ∼ t1/2 or ȧ ∼ t−1/2 ∼ a−1.
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This would then imply

1 − �(tbbn)

1 − �(tRM)
=

[
ȧ(tbbn)

ȧ(tRM)

]−2

=
[

a(tbbn)

a(tRM)

]2

=
[

kBTbbn

kBTRM

]−2

� O(10−11), (11.17)

where we have used the scaling behavior of the temperature, and (10.53)
kBTbbn = O(MeV) and (10.69) kBTRM = O(2 eV) to reach the last numerical
estimate. Thus, in order to produce a (�0 − 1) = O(1) now, the combined
result of (11.16) and (11.17) tells us that one has to have at the epoch of
primordial nucleosynthesis a density ratio equal to unity to an accuracy of one
part in 1015. Namely, we must have �(tbbn) − 1 = O(10−15). That the FLRW
cosmology requires such an unnatural initial condition constitutes the flatness
problem.

The horizon problem
Our universe is observed to be very homogeneous and isotropic. In fact, we
can say that it is “too homogeneous and isotropic.” Consider two different
parts of the universe that are outside of each other’s horizons. They are so far
apart that no light signal sent from one at the beginning of the universe could
have reached the other. Yet they are observed to have similar properties. This
suggests their being in thermal contact sometime in the past. How can this be
possible?

This horizon problem can be stated most precisely in terms of the observed
isotropy of the CMB radiation (up to one part in 100 000, after subtracting
out the dipole anisotropy due to the peculiar motion of our Galaxy). When
pointing our instrument to measure the CMB, we obtain the same blackbody
temperature in all directions. However, every two points in the sky with an
angular separation on the order of a degree actually correspond to a horizon
separation back at the photon-decoupling time tγ , see (11.31). The age of
the universe at the photon decoupling time was about 360 000 years, yet the
observed isotropy indicates that regions far more than the horizon distance
360 000 light-year apart were strongly correlated. This is the horizon problem
of the standard FLRW cosmology.

Initial conditions required for the standard cosmic evolution
We have discussed the horizon problem and flatness problem, etc. as the short-
comings of the standard big bang model. Nevertheless, it must be emphasized
that they are not contradictions since we could always assume that the universe
had just these conditions initially to account for the observed universe today.
For example, the horizon problem can be interpreted simply as reflecting
the fact that the universe must have been very uniform to begin with. These
“problems” should be viewed as informing us of the correct initial conditions
for the cosmic evolution after the big bang: “The initial conditions must be just
so.” What we need is a theory of the initial conditions. Putting it in another
way, the FLRW model is really a theory for the evolution of the universe after
the big bang. We now need a theory of the big bang itself. A correct theory
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should have the feature that it would automatically leave behind a universe
with just these desired conditions.

11.2.2 The inflation scenario

The initial condition problems can be solved if, in the early moments, the uni-
verse had gone through an epoch of extraordinarily rapid expansion. This can
solve the flatness problem, as any initial curvature could be stretched flat by the
burst of expansion, and can solve the horizon problem if the associated expan-
sion rate could reach superluminal speed. If the expansion rate could be greater
than the light speed, then one horizon volume could have been stretched out to
such a large volume that corresponded to many horizon volumes after this burst
of expansion. This rapid expansion could happen if there existed then a large
cosmological constant �, which could supply a huge repulsion to the system.
The question is, then, what kind of physics can give rise to such a large �?
In this section, we explain how modern particle physics can suggest a possible
mechanism to generate, for a short instant of time, such a large vacuum energy.

False vacuum, slow rollover phase transition and an effective �

Here we discuss the possibility of a field system that can give rise to an
effective cosmological constant �eff that then brings about an explosion of
the space.

Hierarchy of particle physics unification and the invention of inflationary
cosmology The inflationary cosmology was invented in 1980 by Alan Guth
in his study of the cosmological implications of the grand unified theories
(GUTs) of particle interactions. The basic idea of a GUT is that particle
interactions possess certain symmetry.7 As a result, all the fundamental forces

7“Particle interaction symmetry” has the
same meaning as “symmetry in particle
physics” as explained in Chapter 1: physics
equations are unchanged under some trans-
formation. However, instead of transforma-
tions of space and time coordinates as in
relativity, here one considers transformations
in some “internal charge space.” The math-
ematical description of symmetry is group
theory. An example of a grand unification
group is SU (5) and particles form multiplets
in this internal charge space. Members of
the same multiplet can be transformed into
each other: electrons into neutrinos, or into
quarks, and the GUT physics equations are
covariant under such transformations. After
spontaneous symmetry breaking, the inter-
actions possess less symmetry: for example,
SU (5) is reduced down to SU (3) × SU (2) ×
U (1), which is the symmetry group of the
low energy effective theory known as the
Standard Model of quantum chromodynam-
ics and electroweak interactions.

(the strong, weak, and electromagnetic interactions, except for gravity) behave
similarly at high energy. In fact they are just different aspects of the same
(unified) interaction like the different faces of the same die. However, the
structure of the theory is such that there is a phase transition at a temperature
corresponding to the grand unification energy scale, around 1015–1016 GeV. In
the energy regime higher than this scale, the system is in a symmetric phase and
the unification of particle interactions is manifest (i.e. all interactions behave
similarly); when the universe cooled below this scale, the particle symmetry
became hidden, showing up as distinctive forces.8

8For a discussion of spontaneous symme-
try breakdown, that is, hidden symmetry, as
illustrated by spontaneous magnetization of a
ferromagnet, see Section 11.6 (Appendix C).

Higgs phenomenon in field theory In quantum field theory, particles are
quantum excitations of their associated fields: electrons of the electron field,
photons of the electromagnetic field, etc. New fields are postulated to exist,
related to yet to be discovered particles. What brings about the above-
mentioned spontaneous symmetry breaking and its associated phase tran-
sition is the existence of a certain spin-zero field φ(x), called the Higgs
field (its quanta being Higgs particles). Such a field, just like the familiar
electromagnetic field, carries energy. What is special about a Higgs field
is that it possesses a potential energy density function V (φ) much like
the potential energy function in the ferromagnet example of Section 11.6.
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Normally one would expect field values to vanish in the vacuum state (the
state with the lowest energy). A Higgs field, surprisingly, can have a nonzero
vacuum state field permeating throughout space, cf. Fig. 11.3 (a) and (b). The
effect of this hidden symmetry can then spread to other particles through their
interaction of the Higgs field. For example, a massless particle can gain its
mass when propagating in the background of such a Higgs field. Different
Higgs fields are posited to exist. Here we are referring to the Higgs particles9

9These Higgs particles should not be con-
fused with the Standard Model’s electroweak
Higgs particle, thought to have a mass on the
order of 102 GeV/c2, which is responsible
for giving masses to electrons and quarks
as well as the W and Z bosons that medi-
ate weak interactions. Our discussion of the
inflation scenario is couched in the language
of the grand unified Higgs field. It should be
understood the grand unified theories them-
selves have not been verified experimentally
in any detail because its intrinsic energy scale
of 1016 GeV is so much higher than the
highest energy ≈103 GeV reachable by our
accelerators. On the other hand, we are con-
fident that some version of grand unifica-
tion is correct, as the simplest GUTs can
already explain several puzzles of the Stan-
dard Model of particle physics, such as why
the strong interaction is strong, the weak
interaction weak, and why the quarks and
leptons have the charges that they do. Never-
theless, the connection between grand unifi-
cation and inflation cosmology has remained
only as a suggestive possibility. It was our
knowledge of the grand unification theory
that allowed the construction of a physically
viable scenario that could give rise to an
inflationary epoch. But what precisely is the
inflation field, and what parameters actually
govern its behavior remain as topics of the-
oretical discussion. The remarkable fact is
that some reasonable speculation of this type
can already lead to the resolution of many
cosmological puzzles, and have predictions
that have been consistently checked with
observation.

in GUTs, which may have a mass O(1016 GeV/c2).

Slow rollover from a false vacuum gives rise to � In the cosmological
context, such a postulated field is simply referred to as the inflation field,
or inflation/Higgs field. In order to have a large �eff over an interval long
enough to produce the desired initial conditions for the FLRW cosmology,
it was suggested that parameters of the unified theory were such that the
potential energy function of the inflation field had a very small slope around the
φ = 0 origin as in Fig. 11.3(c). As the universe cools, the temperature depen-
dent parameters change so that the potential energy function changes from
Fig. 11.15(a) to (b). The prior lowest energy point at zero field value became a
local maximum and the system would rollover to the new asymmetric vacuum
state where the Higgs field would have a nonvanishing vacuum value. But
the parameters are such that this rollover was slow. During this transition, we
could regard the system, compared to the true (asymmetric) vacuum state, as
having an extra energy density. We say the system (i.e. the universe) was tem-
porarily in a false vacuum. Having this vacuum-energy density, which is time
and position independent, the universe effectively had a large cosmological
constant.

Exponential expansion in a vacuum-energy dominated universe
Let us consider the behavior of the scale factor a(t) in a model with � > 0
when the matter density can be ignored. In such a vacuum-energy dominated
situation, the expansion rate ȧ(t) is so large, cf. (11.22) that we can always
ignore the curvature term in Eq. (11.8):

ȧ2

a2
= 8πGN

3
ρ� = �c2

3
. (11.18)

Thus ȧ is proportional to the scale factor a itself. Namely, we have the familiar
rate equation. It can be solved to yield an exponentially expanding universe
(called the de Sitter universe):

a (t) ≡ a (t1) e(t−t1)/�τ (11.19)

with the time constant

�τ =
√

3

�c2
=

√
3

8πGNρ�

, (11.20)

where we have expressed the cosmological constant in terms of the vacuum-
energy density ρ�c2 as in (11.2). Physically we can understand this exponen-
tial expansion result because the repulsive expansion is self-reinforcing: as the
energy density ρ� is a constant, the more the space expands, the greater is the
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Fig. 11.3 Potential energy function of a
Higgs field φ(x) is illustrated by the sim-
ple case of V (φ) = αφ2 + λφ4, possessing
a discrete symmetry V (−φ) = V (φ). The
parameter α has temperature-dependence,
for example, α = α0(T − Tc), with positive
constants α0 and λ. (a) Above the critical
temperature (T > Tc , hence α > 0), we have
the normal case of the lowest energy state
(the vacuum) being at φ0 = 0, which is sym-
metric under φ → −φ. (b) Below Tc (hence
α < 0), the symmetric V (φ) has the low-
est energy at points φ± = ±√−α/2λ while
V (φ = 0) is a local maximum. The choice of
the vacuum state being either of the asym-
metric φ+ or φ− breaks the symmetry, cf.
similar plot in Fig 11.15(b). The dashed box
in (b) is displayed in (c) to show that the infla-
tion/Higgs potential V (φ) has an almost flat
portion at the φ = 0 origin for a slow rollover
transition. The dot represents the changing
location of the system—rolling from a high
plateau of the false vacuum towards the true
vacuum at the bottom of the trough.

vacuum energy and negative pressure, causing the space to expand even faster.
In fact, we can think of this � repulsive force as residing in the space itself, so
as the universe expands, the push from this � energy increases as well.10 We

10Because � represents a constant energy
density, it will be the dominant factor ρ� �
ρM at later cosmic time, as ρM ∼ a−3. This
dominance means that it is possible for the
universe to be geometrically closed (� > 1
and k = +1), yet does not stop expanding.
Namely, with the presence of a cosmological
constant, the mass/energy density � (hence
the geometry) no longer determines the fate
of the universe in a simple way. In general,
a universe with a nonvanishing �, regardless
of its geometry, would expand forever. The
only exception is when the matter density is
so large that the universe starts to contract
before ρ� becomes the dominant term.

note that the total energy was conserved during the inflationary epoch’s rapid
expansion because of the concomitant creation of the gravitational field, which
has a negative potential energy (cf. Section 10.3.1).

11.2.3 Inflation and the conditions it left behind

In the previous section we have described how the grand unification Higgs
field associated with spontaneous symmetry breaking can serve as the inflation
field. A patch of the universe with this “inflation/Higgs matter” might have
undergone a slow rollover phase transition and thus lodged temporarily in
a false vacuum with a large constant energy density. The resultant effective
cosmological constant �eff provided the gravitational repulsion to inflate the
scale factor exponentially. The a grand unification thermal energy scale is
EGU = O(1016 GeV), that is, a temperature TGU = O(1029 K), which accord-
ing to (10.44) corresponds11 to the cosmic time tGU � 10−36 s. The energy

11One can check this estimate of tGU �
10−36 s for a thermal energy EGU =
1016 GeV with a primordial nucleosynthesis
time of tNS � 102 s when the thermal energy
was ENS = 1 MeV in this way.

EGU

ENS
= kTGU

kTSN
= a (tNS)

a (tGU)
=

√
tNS

tGU

because the period between inflation and
the nucleosynthesis time was radiation dom-
inated a ∼ √

t . The ratio of EGU/ENS =
1019 indeed matches that of tNS/tGU = 1038

for tGU � 10−36 s.

density ρGUc2 can be estimated as follows: in a relativistic quantum sys-
tem (such as quantum fields) there is the natural energy length scale given
by the product of Planck’s constant (over 2π ) times the velocity of light:
�c = 1.97 × 10−16 GeV · m. Using this conversion factor we have the energy
density scale for grand unification

ρGUc2 � (EGU)4

(�c)3
� 10100 J/m3. (11.21)
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For a vacuum energy density ρ� ≈ ρGU, the corresponding exponential expan-
sion time constant �τ of (11.20) had the value �τ � 10−37 s. Namely, the
exponential inflationary expansion took place when the universe was tGU �
10−36 s old, with an exponential expansion time constant of �τ = O(10−37 s).
By a “slow” rollover phase transition we mean that the parameters of the
theory are such that inflation might have lasted much longer than 10−37 s,
for example, 10−35 s (� 100 e-fold), expanding the scale factor by more than
30 orders of magnitude, until the system rolled down to the true vacuum,
ending the inflation epoch (cf. Fig. 11.3). Afterwards the universe commenced
the adiabatic expansion and cooling according to the standard FLRW model
until the present epoch.12 Such dynamics have the attractive property that they 12It had generally been assumed that the

effective cosmological constant, associated
with the false vacuum, vanished at the end
of the inflationary epoch. The general expec-
tation was that the standard FLRW cosmol-
ogy that followed the inflation epoch was
one with no cosmological constant. Part of
the rationale was that a straightforward esti-
mate of the cosmological constant, as due to
the zero-point energy of a quantum vacuum,
yielded such an enormously large � (see Sec-
tion 11.7) that many had assumed that there
must be some yet-to-be discovered symmetry
argument that would strictly forbid a nonzero
cosmological constant. However, as we shall
see below, more recent discoveries point to a
nonvanishing, but small, �. The challenge is
now how to explain the presence of such a
“dark energy” in the universe.

would leave behind precisely the features that had to be postulated as the initial
conditions for the standard FLRW cosmology.

The horizon and flatness problems solved
With the exponential behavior of the scale factor in (11.19), we can naturally
have superluminal (ȧ R0 > c) expansion as the rate ȧ(t) also grows exponen-
tially.13 This does not contradict special relativity, which says that an object

13The Hubble constant, being the ratio of
scale change rate per unit scale ȧ/a, does not
change under such an exponential expansion
of the scale factor.

cannot pass another one faster than c in one fixed frame. Putting it another way,
while an object cannot travel faster than the speed of light through space, there
is no restriction stipulating that space itself cannot expand faster than c. Having
a superluminal expansion rate, this inflationary scenario can solve the horizon
problem, because two points that are a large number of horizon lengths apart
now (or at the photon decoupling time when the CMB was created) could still
be in causal contact before the onset of the inflationary epoch. They started out
being thermalized within one horizon volume before the inflation epoch, but
became separated by many horizon lengths due to the superluminal expansion.

This inflationary scenario can solve the flatness problem because the space
was stretched so much that it became, after the inflationary epoch, a geomet-
rically flat universe to a high degree of accuracy. When this exponential
expansion (11.19) is applied to the Friedmann equation (11.15), it yields the
ratio

1 − �(t2)

1 − �(t1)
=

[
ȧ(t2)

ȧ(t1)

]−2

= e−2(t2−t1)/�τ . (11.22)

Just as the scale factor was inflated by a large ratio, say, e(t2−t1)/�τ = 1030,
we can have the RHS as small as 10−60. Starting with any reasonable value
of �(t1) we can still have, after the inflation, a �(t2) = 1 to a high accuracy.
While the cosmic time evolution in the FLRW model, being determined by
gravitational attraction, always enhances the curvature by driving the universe
away from � = 1 (hence the flatness problem), the accelerating expansion
due to the vacuum repulsion always pushes the universe (very rapidly) toward
the � = 1 point. Thus a firm prediction by the inflationary scenario is that the
universe left behind by inflation must have a flat geometry and, according to
GR, a density equal to the critical value (11.15)—although it does not specify
what components make up such a density.
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The origin of matter/energy and structure in the universe
Besides the flatness and horizon problems, the standard FLRW cosmology
requires as initial conditions that all the energy and particles of the universe
be present at the very beginning. Furthermore, this hot soup of particles
should have just the right amount of initial density inhomogeneity (density
perturbation) which, through subsequent gravitational clumping, formed the
cosmic structure of galaxies, clusters of galaxies, voids, etc. we observe
today. One natural possibility is that such a density perturbation resulted from
quantum fluctuation of particle fields in a very early universe. However, it is
difficult to understand how such microscopic fluctuations can bring forth the
astrophysical-sized density nonuniformity required for the subsequent cosmic
construction. Remarkably, the inflationary cosmology can provide us with
an explanation of the origin of matter/energy, as well as the structure of the
universe.

The inflation model suggests that at the beginning of the big bang a patch
of the inflation/Higgs matter (smaller than the size of a proton) underwent
a phase transition bringing about a huge gravitational repulsion. This is the
driving force behind the space-explosion that was the big bang. While this
inflation material (the � energy) expanded exponentially in size to encompass
a space that eventually developed into our presently observed universe, its
energy density remained essentially a constant. In this way more and more
particle/field energy was “created” during the inflationary epoch. When it
ended with the universe reaching the true vacuum, its oscillations at the trough
in Fig. 11.3 showed up, according to quantum field theory, as a soup of ordinary
particles. According to the inflation theory, the initial potential energy of
the inflation/Higgs field (having little kinetic energy) was the origin of our
universe’s matter content when it was converted into relativistic particles. In
short, it is the vacuum energy that drove the inflation that would in the end
decay into radiation and matter.

The phenomenon of particle creation in an expanding universe can be
qualitatively understood as follows: according to quantum field theory, the
quantum fluctuations of the field system can take on the form of the appear-
ance and disappearance of particle–antiparticle pairs in the vacuum. Such
energy nonconserving processes are permitted as long as they take place on
a sufficiently short time-scale �t so that the uncertainty relation �E�t ≤ h̄
is not violated. In a static space, such “virtual processes” do not create real
particles. However, when the space is rapidly expanding, that is, the expan-
sion rate was larger than the annihilation rate, real particles were created.14

14This way of seeding the structure formation
can be viewed as “Hawking radiation from
inflation.” Recall our discussion in Section
8.5 of Hawking radiation from black holes
in which virtual particles are turned into real
ones because of a black hole event horizon.
Here the production of real particles from
quantum fluctuation comes about because of
the horizon created by the hyper-accelerating
expansion of the universe.

Thus, inflation in conjunction with quantum field theory naturally gives rise
to the phenomenon of particle creation. This hot, dense, uniform collection
of particles is just the postulated initial state of the standard big bang model.
Furthermore, the scale factor had increased by such a large factor that it could
stretch the subatomic size fluctuation of a quantum field into astrophysical
sized density perturbation to seed the subsequent cosmic structure forma-
tion. The resultant density fluctuation was Gaussian (i.e. maximally random)
and scale-invariant (i.e. the same fluctuation, of the order of 10−5, in the
gravitational potential on all length-scales) as will be discussed in Box 11.2
below.
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11.3 CMB anisotropy and evidence for a
flat universe

As discussed in Section 11.2.3, inflationary cosmology predicts that the space-
time geometry of our universe must be flat. This prediction received more
direct observational support through detailed measurement of the temperature
anisotropy of the CMB radiation.15

15The purpose of Section 11.3 is to present
the observational evidence for a flat universe.
As the discussion is somewhat more difficult,
some readers may wish to skip it and proceed
directly to Section 11.4.

The CMB is the earliest and largest observable thing in cosmology. Its
remarkable uniformity over many horizon lengths reflects its origination from a
single pre-inflation horizon volume. Just before the photon decoupling time tγ ,
the universe was composed of dark matter and a tightly bound photon–baryon
fluid. The inflationary scenario, with its associated phenomenon of particle cre-
ation, also generated a small density perturbation on a wide range of distance
scales onto this overall homogeneity. Because of gravitational instability, this
nonuniform distribution of matter eventually evolved into the cosmic structure
we see today. In the early universe up till tγ , the gravitational clumping of
baryons was resisted by photon radiation pressure. This set up acoustic waves
of compression and rarefaction with gravity being the driving force and radi-
ation pressure the restoring force. All this took place against a background of
dark matter fluctuations, which started to grow right after the radiation–matter
equality time because dark matter did not interact with radiation.16 Such a 16We remind ourselves that the dominant

form of matter in the universe is cold dark
matter. We can have the somewhat simplified
picture: gravitational clumping took place
principally among such nonbaryonic dark
matter particles after tRM. The baryonic mat-
ter inhomogeneity was not amplified until tγ
(when its resistance by radiation pressure dis-
appeared); thereafter it fell into the dominant
gravitational potential (the cosmic scaffold-
ings of Section 10.5.4) formed principally by
the dark matter.

photon–baryon fluid can be idealized by ignoring the dynamical effects of
gravitation and baryons (because the photon number density is much higher
than that of baryons). This leads to a sound wave speed

cs �
√

p

ρ
� c√

3
(11.23)

as pressure and density being approximated by those for radiation p ≈ ρc2/3.
This cosmic sound left an imprint that is still discernible today. The com-
pression and rarefaction was translated through gravitational redshift into a
temperature inhomogeneity. By a careful analysis of this wave pattern, we can
garner much information about the universe at this early epoch.

11.3.1 Three regions of the angular power spectrum

We shall present only a qualitative discussion of the power spectrum of the
temperature anisotropy to give the reader some general idea of how a detailed
analysis will allow one to fix a number of important cosmological parameters.
From (10.86) and (10.88) for the correlation function, we see that the mean-
square temperature anisotropy may be written for large multipole number l as

〈(
δT

T

)2
〉

= 1

4π

∞∑
l=0

(2l + 1)Cl ≈
∫

l(l + 1)Cl

2π
d (ln l) . (11.24)

(l(l + 1)/2π)Cl is approximately the power per logarithmic interval, and is
the quantity presented in the conventional plot of the power spectrum against
a logarithmic multipole number (cf. Figs. 11.4 and 11.13).
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Fig. 11.4 CMB power spectrum as a func-
tion of the multipole moments. The solid
curve with peaks and troughs (the acoustic
peaks) is the prediction by the inflation model
(with cold dark matter). The physics corre-
sponding to the three marked regions is dis-
cussed in the text. The dashed curve is that by
the topological defect model for the origin of
the cosmic structure.

On small sections of the sky where curvature can be neglected, the spher-
ical harmonic analysis becomes ordinary Fourier analysis in two dimensions.
In this approximation the multipole number l has the interpretation as the
Fourier wavenumber. Just as the usual Fourier wavenumber is k ≈ π/x , the
multipole moment number is l ≈ π/θ : large l corresponds to small angular
scales with l ≈ 102 corresponding to degree scale separation.

The CMB anisotropy is observed to be adiabatic (all particle species varied
together) and this is consistent with the idea that the density fluctuation at
tγ was due to the primordial wrinkles of spacetime left behind by the earlier
inflationary epoch. The inflationary scenario left behind density fluctuations
that were Gaussian and scale invariant (cf. Box 11.2). Such the initial density
perturbation, together with the assumption of a dark matter content domi-
nated by nonrelativistic particles (the “cold dark matter” model) leads to a
power spectrum as shown in Fig. 11.4. We can broadly divide it into three
regions:

Region I (l < 102) This flat portion at large angular scales (the “Sachs–
Wolfe plateau”) corresponds to oscillations with a period larger than the age
of the universe at the photon decoupling time. These waves are essentially
frozen in their initial configuration. The flatness of the curve reflects the scale-
invariant nature of the initial density perturbation as given by the inflation
cosmology (cf. Box 11.2).

Region II ( 102 < l < 103) At these smaller angular scales (smaller than
the sound horizon), there had been enough time for the photon–baryon fluid
to undergo oscillation. The peaks correspond to regions having higher, as well
as lower, than average density.17 The troughs are regions with neutral com-17This is so because the power spectrum is

the square of alm and hence indifferent to
their signs.

pression, thus have maximum velocity (recall our knowledge of oscillators).
The CMB from such regions underwent a large Doppler shift. In short, here
is a snapshot of the acoustic oscillations with modes (fundamental plus har-
monics) having different wavelengths and different phases of oscillations. The
relative heights of the acoustic peaks are related to cosmological parameters
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such as the baryon and the cold dark matter densities. Higher �B enhances
the odd-numbered acoustic peaks relative to the even-numbered ones, while
higher �DM lowers all of the peaks. The positions of the peaks depend on the
characteristic length on the surface of last scattering as well as on the spatial
curvature of the intervening universe since (see the subsection below).

Region III (l > 103) Photon decoupling did not take place instanta-
neously, i.e. the last scattering surface had a finite thickness.18 Photons can 18The transition took about 50 000 years.
diffuse out from any over-dense region if it was smaller than the photon’s mean
free path, which was increasing as the universe expanded. The net effect was
an exponential damping of the oscillation amplitude in these sub-arcminute
scales.

Box 11.2 Density fluctuation from inflation is scale-invariant

Inflation produces such a huge expansion that subatomic size quantum
fluctuations were stretched to astrophysical dimensions.19 For fluctuations 19This turns the inevitable quantum effect

into the seeds of structure in our universe.larger than the sound horizon ≈ cs H−1 one can ignore pressure gradients,
as the associated sound waves cannot have crossed the perturbation in a
Hubble time. The density perturbation without a pressure gradient would
evolve like the homogeneous universe (Problem 11.1):

ρa2(�−1 − 1) = const. (11.25)

where a is the scale factor. With � = 1 + �� and ρ = ρc + �ρ, the above
relation implies, for small �� and �ρ,

ρca2�� = a2�ρ = const. (11.26)

We now consider the implication of this scaling behavior for the perturba-
tion in a gravitational potential on a physical distance scale of aL ,

�� = GN�M

aL
= 4π

3

GN�ρ (aL)3

(aL)
=

(
4π L2GN

3

)
a2�ρ.

Because of (11.26), the gravitational potential perturbation �� over
a comoving length L is scale invariant. During the inflationary epoch
the.scale factor a would change by something like 30 decades; yet we
would have the same �� for a huge range20 of physical distances of 20The same level of distortion (the warping

of spacetime due to quantum fluctuation) was
imprinted on all scales.

aL . Thus, inflationary cosmology makes the strong prediction of a scale-
invariant density perturbation—the same fluctuation (of 10−5) on all dis-
tance scales. It can be shown that such a density fluctuation, called the
Harrison–Zel’dovich spectrum, would produce an angular power spectrum
for the CMB anisotropy of the form

Cl = const.

l (l + 1)
.

Thus in the plot of l (l + 1) Cl vs. l in Fig 9.4 the power spectrum for the
large angle region (l < 100) is a fairly flat curve.

In Box 11.2 we have presented the power spectrum as predicted by the
inflationary cosmology: a Gaussian density perturbation leading to a random
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distribution of hot and cold spots on the temperature anisotropy map, and a
power spectrum displaying peaks and troughs. It is illuminating to contrast this
with an alternative theory of cosmic structure origin, the topological defect
model. In this scenario, one posits that as the universe cooled to a thermal
energy of 1016 GeV, the phase transition that breaks the associated grand
unification symmetry also produces defects in the fabric of spacetime—in the
form of strings, knots, and domain walls, etc. This introduced the initial density
perturbation that seeded the subsequent structure formation. Such a density
fluctuation would produce line-like discontinuities in the temperature map and
a smooth power spectrum (instead of the wiggly features as predicted by the
inflation model), see Fig. 11.4. As we shall discuss in the next subsection, the
observed CMB anisotropy favors inflation over this topological defect model
for the origin of the cosmic structure.

11.3.2 The primary peak and spatial geometry
of the universe

Consider the oscillatory power spectrum in region II of Fig. 11.4. The temper-
ature anisotropy of the CMB is the result of a pattern of density fluctuations
on a spherical surface centered on us. It reflects the sound wave spectrum of
the photon–baryon fluid at the photon decoupling time, i.e. on the surface of
last scattering. There would be standing waves having wavelength λn = λ1/n,
with the fundamental wavelength given by the sound horizon,21 cf. (9.45):21This is the distance that a light signal

(ds2 = 0) would have traveled since the
beginning of the universe (t = 0). λ1 =

∫ tγ

0

csdt

a(t)
≈ cs

∫ tγ

0

dt

a(t)
. (11.27)

Now such a wavelength on the surface of last scattering would appear as
angular anisotropy of scale

α1 � λ1/d(tγ ), (11.28)

where d(tγ ) is the (proper) radial distance between us now (t0) and the photon
decoupling time (tγ ). Namely, it is the comoving distance a photon would
have traveled to reach us (t0) from the surface of last scattering (also called the
angular diameter distance)

d
(
tγ

) = c
∫ t0

tγ

dt

a(t)
. (11.29)

When evaluating the integrals in (11.27) and (11.29), we shall assume a matter-
dominated flat universe with time dependence of the scale factor a(t) ∝ t2/3

as given by (10.30),
∫

dt

a(t)
∝

∫
a−1/2da ∝ a1/2 = (1 + z)−1/2. (11.30)

Matter-domination is plausible because the radiation–matter equality time
is almost an order of magnitude smaller than the photon decoupling time,
that is, according to (10.68) the redshift is zRM � zγ . Thus the fundamental
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Fig. 11.5 A comparison of subtended
lengths in a flat (shaded) vs. positively curved
surface. For the same angular diameter
distance d, the same angle α subtends a
smaller wavelength λ+ in a closed universe
when compared to the corresponding

λ = λ+
[
(R0/d) sin (R0/d)

]−1
> λ+ in a

flat universe.

wavelength corresponds to an angular separation of

α1 ≈ λ1

d(tγ )
= cs(1 + zγ )−1/2

c(1 + z0)−1/2 − (1 + zγ )−1/2

� (1 + zγ )−1/2

√
3

� 0.017 rad � 1◦, (11.31)

where we have used z0 = 0, zγ � 1100 and, as discussed in (11.23), a sound
speed cs � c/

√
3. This fundamental wave angular separation in turn translates

into the multipole number

l1 � π

α1
� π

√
3(1 + zγ ) ≈ 200. (11.32)

Thus, in a flat universe we expect the first peak of the power spectrum to be
located at this multipole number.

The above calculation was performed for a flat universe. What would be
the result for a spatially curved universe? We will simplify our discussion
by the suppression of one dimension and consider a 2D curved surface. In
a positive curved closed universe (k = +1), light travels along longitudes
(Fig. 11.5). A physical separation λ1 at a fixed latitude, with polar angle θ

and a coordinate distance d = R0θ , subtends an angle

α1+ = λ1

R0 sin θ
= λ1

R0 sin(d/R0)
= λ1

d

(
1 + d2

3R2
0

+ · · ·
)

>
λ1

d
.

Namely, at a given scale (λ1) at a fixed distance (d) the separation angle (α1+)

would appear to be larger (than the case of a flat universe). For a negatively
curved open universe (k = −1), one simply replaces the sine by the hyperbolic
sine:

α1− = λ1

R0 sinh(d/R0)
= λ1

d

(
1 − d2

3R2
0

+ · · ·
)

<
λ1

d
.

At a given scale at a fixed distance, the separation angle would appear to
be smaller. With the multipole number being inversely proportional to the
separation angular scale, in a universe with spatial curvature the first peak
would be shifted away from l1 ≈ 200, to a smaller (larger) multipole number
for a closed (open) universe.
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Fig. 11.6 Image of the complex temperature
structure of CMB over 2.5% of the sky as
captured by the Boomerang balloon-borne
detector. It is interpreted as a freeze-frame
picture of the sound wave patterns in the
universe at the photon decoupling time. The
black dot at the lower right-hand corner rep-
resents the size of a full moon subtending an
angle of about half-a-degree.

Although the COBE satellite mapped the entire sky with high sensitivity dis-
covering the CMB anisotropy at δT/T = O(10−5), its relatively coarse angu-
lar resolution of O(7◦) was not able to deduce the geometry of our universe. In
the late 1990s a number of high altitude observations, e.g. MAT/TOCO (Miller
et al., 1999), and balloon-borne telescopes, Boomerang (de Bernardis et al.,
2000), and Maxima-1 (Hanany et al., 2000), had detected CMB fluctuations
on smaller sizes. These observations (see Fig. 11.6) produced evidence for a
flat universe by finding the characteristic size of the structure to be about a
degree wide and a power spectrum peaked at l ≈ 200, see Fig. 11.4. The k = 0
statement is of course equivalent, via the Friedmann equation, to a total density
�0 = 1. A careful matching of the power spectrum led to

�0 = 1.03 ± 0.03. (11.33)

In the meantime, another dedicated satellite endeavor, WMAP (Wilkinson
Microwave Anisotropy Probe), had reported their results in a series of pub-
lications (Bennett, 2003; Hinshaw, 2009). Another influential cosmological
project has been the survey of galaxy distributions by SDSS (Sloan Digital Sky
Survey). Their high resolution result allowed them to extract many important
cosmological parameters: H0,�0,�M,0,�B, and the deceleration parameter
q0, etc. (to be discussed in Section 11.5).

11.4 The accelerating universe in the
present epoch

Thus by mid/late-1990s there was definitive evidence that the geometry of the
universe is flat as predicted by inflation. Nevertheless, there were several pieces
of phenomenology that appeared in direct contradiction to such a picture.
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A missing energy problem The Friedmann equation (10.7) requires a flat
universe to have a mass/energy density exactly equal to the critical density,
�0 = 1. Yet observationally, including both the baryonic and dark matter, we
can only find less than a third of this value (radiation energy is negligibly small
in the present epoch):

�M = �B + �DM � 0.25. (11.34)

Thus, it appears that to have a flat universe we would have to solve a “missing
energy problem.”

A cosmic age problem From our discussion of the time evolution of the
universe, we learned that the age of a flat universe should be two-third of the
Hubble time, see (10.70),

(t0)flat = 2

3
tH � 9 Gyr, (11.35)

which is shorter than the estimated age of old stars. Notably the globular
clusters have been deduced to be older than 12 Gyr (cf. Section 9.1.3). Thus, it
appears that to have a flat universe we would also have to solve a “cosmic age
problem.”

Possible resolution with a dark energy A possible resolution of these
phenomenological difficulties of a flat universe (hence inflationary cosmology)
would be to assume the presence of a dark energy. A dark energy is defined as
the “negative equation-of-state energy,” w < −1/3 in Eq. (10.4). It gives rise to
a gravitational repulsion, cf. Eq. (11.4). The simplest example of dark energy22

22One should not confuse dark energy with
the energies of neutrinos, WIMPs, etc., which
are also “dark,” but are counted as parts of
the “dark matter” (cf. Section 9.2), as the
associated pressure is not negative.

is Einstein’s cosmological constant, with w = −1. Such a cosmological con-
stant assumed to be present even after inflation cannot have the immense size
as the one it had during the inflation epoch. Rather, the constant dark energy
density ρ� should now be about three-quarters of the critical density to provide
the required missing energy.

� = �M + ��
?= 1, (11.36)

where �� ≡ ρ�/ρc. A nonvanishing � would also provide the repulsion to
accelerate the expansion of the universe. In such an accelerating universe the
expansion rate in the past must be smaller than the current rate H0. This means
that it would take a longer period (as compared to a decelerating or empty
universe) to reach the present era, leading to a longer age t0 > 2tH/3 even
though the geometry is flat. This just might possibly solve the cosmic age
problem as well.

11.4.1 Distant supernovae and the 1998 discovery

In order to obtain observational evidence for any changing expansion rate of
the universe (i.e. to measure the curvature of the Hubble curve), one would
have to measure great cosmic distances. One needed a distance method that
works to over 5 billion light years. Clearly some very bright light sources are
required. Since this also means that we must measure objects back in a time
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interval that is a significant fraction of the age of the universe, the method
must be applicable to objects present at the early cosmic era. As it turns out,
supernovae are ideally suited for this purpose.

SNe as standard candles and their systematic search
After the suggestion made in the 1970s that type Ia supernovae (SNe Ia)
could possibly serve as standard candles, the first SN Ia was discovered in
1988 by a Danish group at redshift z = 0.3. At their peaks SNe Ia produce
a million times more light than Cepheid variables, the standard candle most
commonly used in cosmology (cf. Section 9.4.2). SNe Ia begin as white dwarfs
(collapsed old stars sustained by degenerate pressure of their electrons) with
mass comparable to the sun. If the white dwarf has a large companion star,
which is not uncommon, the dwarf’s powerful gravitational attraction will
draw matter from its companion. Its mass increases until the “Chandrasekhar
limit” � 1.4 M�. As it can no longer be countered by the electron pressure,
the gravitational contraction develops and the resultant heating of the interior
core triggers the thermonuclear blast that rips it apart, resulting in an SN
explosion. The supernova eventually collapses into a neutron star. Because
they start with masses in a narrow range, such supernovae have comparable
intrinsic brightness. Furthermore, their brightness has a characteristic decline
from the maximum which can be used to improve on the calibration of their
luminosity (the light-curve shape-analysis), making SNe Ia standardizable
candles (Phillips 1993). Supernovae are rare events in a galaxy. The last time
a supernova explosion occurred in our Milky Way was about 400 years ago.
However, using new technology (large mosaic CCD cameras), astronomers
overcame this problem by simultaneously monitoring thousands of galaxies23

23Two images of the sky containing thou-
sands of galaxies were taken weeks apart and
digitally subtracted; the supernova locations
leaped out.

so that on the average some 10–20 supernovae can be observed in a year.

The discovery of an accelerating universe
Because light from distant galaxies was emitted long ago, to measure a star
(or a supernova) farther out in distance is to probe the cosmos further back in
time. An accelerating expansion means that the expansion rate was smaller in
the past. Thus to reach a given redshift (i.e. recession speed) it must be located
farther away24 than expected, see Fig. 11.7. Observationally, the light source

24A Hubble curve (as in Fig. 11.7) is a plot
of the luminosity distance versus the redshift
(measuring recession velocity). A straight
Hubble curve means a cosmic expansion that
is coasting. This can only happen in an empty
universe (cf. Section 9.1.3 and Fig. 10.2). If
the expansion is accelerating, the expansion
rate H must be smaller in the past (H < H0).
From Eq. (9.5): H�r = z, we see that, for a
given redshift z, the distance �r to the light-
emitting supernova must be larger than that
for an empty or decelerating universe.

Fig. 11.7 Hubble diagram: the Hubble curve
for an accelerating universe bends upwards.
A supernova on this curve at a given redshift
would be further out in distance than antici-
pated.
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Fig. 11.8 Discovery of an accelerating uni-
verse. The Hubble plot showing the data
points from Riess et al. (1998) and Perlmutter
(1999). The horizontal axis is the redshift z;
the vertical axes are the luminosity distance
expressed in terms of distance modulus (i.e.
logarithmic luminosity distance, cf. Box 9.1).
In the lower panel � (m − M) is the differ-
ence after subtracting out the then expected
value for a decelerating universe with �M =
0.3 and �� = 0. Three curves correspond to
models with different matter/energy contents
(�M, ��) of the universe. The solid curve
for nonvanishing cosmological constant has
the best fit of the observational data.

in an accelerating universe would be measured to be dimmer than expected.

• By 1998 two collaborations: the Supernova Cosmological Project, led
by Saul Perlmutter of the Lawrence Berkeley National Laboratory (Perl-
mutter et al., 1999) and the High-z Supernova Search Team, led by
Adam Riess of the Astronomy Department at UC Berkeley and Brian
Schmidt of the Mount Stromlo and Siding Spring Observatories (Riess
et al., 1998), each had accumulated some 50 SNe Ia at high redshifts—z:
0.4–0.7 corresponding to SNe occurring five to eight billion years ago.
They made the astonishing discovery that the expansion of the universe
was actually accelerating, as indicated by the fact that the measured
luminosities were on the average 25% less than anticipated, and the
Hubble curve bent upward, Fig. 11.8.

Extracting �M and �� from the measured Hubble curve From the
Hubble curve plotted in the space of redshift and luminosity distance, one
can then extract the mass and dark energy content of the universe. The
proper distance dp from a supernova with a redshift z in the present epoch
a(t0) = 1 has been worked out in (9.51). Combined with the result in (9.57),
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this yields an expression for the luminosity distance:

dL(z) = c(1 + z)
∫ z

0

dz′

H(z′)
, (11.37)

where, using the Friedmann equation (10.1), we can express the epoch-
dependent Hubble constant in terms of the scale factor and the density ratios
in the present epoch (Problem 11.2), including in particular the cosmological
constant density term:

H(t) = H0

(
�R,0

a4
+ �M,0

a3
+ �� + 1 − �0

a2

)1/2

, (11.38)

where a(t) can in turn be replaced by the redshift according to (9.50),

H(z) = H0�R,0(1 + z)4 + �M,0(1 + z)3 + �� + (1 − �0)(1 + z)21/2

� H0�M,0(1 + z)3 + �� + (1 − �M,0 − ��)(1 + z)21/2.

(11.39)

The resultant Hubble curves dL(z) in (11.37) with H(z) in the form of (11.39)
that best fitted the observation data yields values of �M,0 and �� as shown
in Fig. 11.9. If we further impose the requirement of a flat geometry, �M,0 +
�� = 1 as suggested by the CMB data, the favored values from Fig. 11.9 as
well as from other supporting evidence obtained later on are

�M,0 = 0.246 and �� = 0.757 (11.40)

suggesting that most of the energy in our universe resides in this mysterious
dark energy.25

25In the present discussion we shall for def-
initeness assume the dark energy as being
the cosmological constant with an equation
of state parameter w = −1.

The age of universe calculated These observed values for �M,0 and �� can
also be translated into an age for the flat universe. The Hubble constant being
the rate of expansion H = ȧ/a, we can relate dt to the differential of the scale
factor,

t0 =
∫ t0

0
dt =

∫ 1

0

da

aH
. (11.41)

From (11.38) for the scale-dependent Hubble constant, this yields an expres-
sion of the age26 in terms of the density parameters26We can check the limit of (11.42) for

a matter-dominated flat universe (��,0 =
�R,0 = 0 with �0 = �M,0 = 1) which

yields an age t0 = tH
∫ 1

0 a1/2da = 2
3 tH , in

agreement with the result obtained in (10.30).

t0 = tH

∫ 1

0

da

�R,0a−2 + �M,0a−1 + ��a2 + (1 − �0)1/2
. (11.42)

The spatially flat universe with negligible amount of radiation energy, �0 =
�M,0 + �� = 1, leads to a simple expression of the age of the universe in
terms of the densities

t0
tH

=
∫ 1

0

(
�M,0a−1 + ��a2

)−1/2

da = 2

3
√

��

ln

√
�� + √

�M,0 + ��√
�M,0

= 1.02. (11.43)
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Fig. 11.9 Fitting �� and �M to the discov-
ery data as obtained by the High-z SN Search
Team and Supernova Cosmology Project.
The favored values of �� and �M follow
from the central values of CMB anisotropy
�� + �M � 1 (the straight line) and those
of the SNe data represented by confidence
contours (ellipses) around �� − �M � 0.5.

For the density values given in (11.40), the RHS comes very close to unity.
Thus the deceleration effect of �M,0 and the accelerating effect of ��

coincidentally cancel each other. The age is very close to that of an empty
universe.

t0 = 1.02 tH = 13.9 Gyr. (11.44)

11.4.2 Transition from deceleration to acceleration

Since the immediate observational evidence from these far away supernovae
is a smaller-than-anticipated luminosity, one wonders whether there is a more
mundane astrophysical explanation. There may be one or a combination of
several mundane causes that can mimic the observational effects of an acceler-
ating universe. Maybe this luminosity diminution is brought about not because
the supernovae were further away than expected, but due to the absorption by
yet-unknown27 interstellar dust, and/or due to some yet-unknown evolution of 27The absorption and scattering by ordinary

dust shows a characteristic frequency depen-
dence that can in principle be subtracted out.
By the unknown dust we refer to any possi-
ble “gray dust” that could absorb light in a
frequency-independent manner.

supernovae themselves (i.e. supernovae’s intrinsic luminosity were smaller in
the cosmic past). However, all such scenarios would lead us to expect that the
supernovae, at even greater distances (and even further back in time), should
have their brightness continue to diminish.
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Fig. 11.10 Time evolution of an accelerating
universe. It started out in a decelerating phase
before taking on the form of an exponential
expansion. The transition to an accelerating
phase shows up as a “bulge;” this way it has
an age longer than the � = 0 flat universe age
of 2tH /3.

For the accelerating universe, on the other hand, this diminution of lumi-
nosity would stop, and the brightness would increase at even larger distances.
This is so because we expect the accelerating epoch be proceeded by a decel-
erating phase. The dark energy should be relatively insensitive to scale change
ρ� ∼ a0(t) (the true cosmological constant is a constant density, independent
of scale change), while the matter or radiation energy densities, ρ ∼ a−3(t) or
a−4(t), should be more and more important in earlier times. Thus, the early
universe could not be dark energy dominated, and it must be decelerating. This
transition from a decelerating to an accelerating phase would show up as a
bulge in the Hubble curve, see Fig. 11.10.

The cosmic age at transition Let us estimate the redshift when the universe
made this transition. We define an epoch-dependent deceleration parameter
which generalizes the q0 parameter of Problem 9.10,

q(t) ≡ −ä(t)

a(t)H2(t)
, (11.45)

which, through the Friedmann equation, can be related to the density ratios
(Problem 10.10)

q(t) = �R(t) + 1

2
�M(t) − ��

= �R,0

a(t)4
+ �M,0

2a(t)3
− ��. (11.46)

After dropping the unimportant �R,0 and replacing the scale factor by z,
we have

q(z) � 1

2
�M,0(1 + z)3 − ��. (11.47)

The transition from decelerating (q > 0) to the accelerating (q < 0) phase
occurred at redshift ztr when the deceleration parameter vanished q(ztr) ≡ 0,
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or

1 + ztr =
(

2��

�M,0

)1/3

. (11.48)

The supernovae data translate into a transition redshift of ztr � 0.8, cor-
responding to a scale factor of atr � 0.56 and a cosmic time, calculated
similarly28 as in (11.42) and (11.43), of ttr = t (a = 0.56) � 7 Gyr—in cosmic 28The relation between cosmic time and scale

factor of a given epoch is

t (a) = tH

∫ a

0
�M,0/a′ + ��a′ 2−1/2da′

= 2tH
3
√

��

ln

(√
��

�M,0
a3 +

√
1 + ��

�M,0
a3

)
.

terms, the transition took place only recently (“just yesterday” )! This reflects
the fact that the matter density in the present epoch �M,0 happens to be
comparable to the dark energy density ��.

Discovery of SNe prior to the accelerating phase Thus, the conclusive
evidence for the accelerating universe interpretation of the supernovae data
is to observe this bulge structure, which cannot be mimicked by any known
astrophysical causes. The 1998 discovery data (z: 0.4–0.7) showed the rise
of this bulge, but we need to see the falling part of the Hubble curve. SNe
further out (z > 0.8) should be still in the decelerating phase; they should
be brighter than what is expected of the continuing dimming scenario that a
mundane interpretation would have us anticipate. Reassuringly, just such an
early decelerating phase had been detected.

After the original discovery of an accelerating universe, researchers had
searched for other supernovae at high z. The supernova labeled SN1997ff had
been serendipitously recorded by the Hubble Space Telescope, and by other
observational means (some intentionally, and some unpremeditated). Through
a major effort at data analysis, its properties were deduced in 2001, showing
that it is a type Ia SN having a redshift of z � 1.7 and, thus an explosion
occurring 10 billion years ago, making it by far most distant supernova ever
detected. Remarkably, it is brighter by almost a factor of two (see Fig. 11.11)
compared to the expectation of continual dimming as a mundane astrophysical
explanation would require. This is the bulge feature unique to a Hubble curve
for an accelerating universe—the light was emitted so long ago when the
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Fig. 11.11 Location of SN1997ff (because of measurement uncertainties, shown as a patch on the right side of the diagram) and other high z SNe
are plotted with respect to those for an empty universe (the horizontal line) in a Hubble diagram. The black spots follow an up-turning curve which
represents the luminosity and redshift relation showing continuing dimming.
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expansion of the universe was still decelerating. Since this first confirmation
finding, many more high-z SNe had been observed both from ground-based
surveys and with Hubble Space Telescope. These data had provided conclusive
evidence for cosmic deceleration that preceded the present epoch of cosmic
acceleration (Riess et al., 2004).

11.4.3 Dark energy: Further evidence and the mystery
of its origin

After the supernovae discovery, the presence of dark energy �� = 0.75 was
further confirmed by the analysis of the CMB anisotropy power spectrum, as
well as of the distribution of galaxies. In the following paragraph we shall
discuss the recent result showing that such a dark energy is just the agent
needed to explain the observed slow down of galaxies’ growth. On the other
hand, even though the observational evidence for dark energy is strong, its
physical origin remains mysterious. The quantum vacuum energy does have
precisely the property of a density being constant with respect to volume
changes and hence being a negative pressure, the estimated magnitude of
such a vacuum quantum energy is something like 120 orders of magnitude
too large. In this section we give a brief summary of these developments;
more details can be found in a recent review (Frieman, Turner and Huterer,
2008).

Dark energy stunts the growth of galaxies We have calculated the cosmic
time ttr � 7 Gyr when the deceleration phase begin to be replaced by the accel-
eration phase, and the cosmic time tM� � 9.5 Gyr when the energy content of
the universe was just balanced between matter and dark energy (see Problem
11.5). Namely, only in the last 5–7 Gyr or so has the dark energy become the
dominant force in the universe that turned the (decelerating) expansion of the
universe into an accelerated expansion. Such an effect of having the repulsive
gravity of dark energy overcoming the more familiar gravitational attraction
also shows up in the slowing down of the growth of the largest conglomeration
of matter in the universe, the galaxy clusters. They are relatively easy to find as
clusters are filled with hot gas that emits X-rays. A group researcher (Vikhlinin
et al., 2009) used the Chandra X-ray satellite telescope to study the intensity
and spectra of 86 clusters that had previously been found by the ROSAT (X-
ray) All-Sky Survey. A set of 37 clusters at more than 5 gigalight-years away
was compared with another set of 49 that are closer than half a gigalight-
year. Theoretical models were used to calculate how the numbers of clusters
with different masses would change during this span of �t � 5 Gyr under
different conditions: with different amounts, and values of the equation of state
parameter w, and with or without a dark energy. A good fit to the observation
data29 clearly required the presence of dark energy with w � −1.29For example, Vikhlinin et al. (2009) found

only a fifth of the number of the most massive
clusters that a universe without dark energy
would have.

The problem of interpreting � as quantum vacuum energy The intro-
duction of the cosmological constant in the GR field equation does not
explain its physical origin. In the inflation model one postulates that it is
the false vacuum energy of an inflation/Higgs field that acts like an effective
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Table 11.1 Cosmological parameters deduced from an analysis (Tegmark 2006) based on data
collected by WMAP and SDSS. The first column displays the parameter result from an analysis
that assumes the cosmological constant as being the dark energy; the second column for a universe
assumed to be flat. The equation numbers in the third column refer to part of the text, where such
parameters were discussed. The parameter h0 is the Hubble constant H0 measured in units of
100 (km/s) /Mpc.

(
DE=�
w=−1

) (
FlatU
�0=1

)
Parameter description (equation number)

�0 1.003 ± 0.010 1 (fixed) density parameter (11.33)
�� 0.757 ± 0.021 0.757 ± 0.020 dark energy density (11.40)
�M 0.246 ± 0.028 0.243 ± 0.020 matter density (9.23, 11.40)
�B 0.042 ± 0.002 0.042 ± 0.002 baryon density (10.58)
h0 0.72 ± 0.05 0.72 ± 0.03 present expansion rate (9.7)
t0 13.9 ± 0.6 Gyr 13.8 ± 0.2 Gyr age of the universe (11.44)
T0 2.725 ± 0.001 K 2.725 ± 0.001 K CMB temperature (10.64)
q0 −0.63 ± 0.03 −0.57 ± 0.1 deceleration parameter (11.45)
w −1 (fixed) −0.94 ± 0.1 dark energy equation of state (10.4)

cosmological constant driving the inflationary expansion. What is the physical
origin of the dark energy that brings about the accelerating expansion of the
present epoch? A natural candidate is the quantum vacuum energy. The zero
point energy of a quantized field automatically has the property of having an
energy density that is constant, giving rise to a negative pressure. However as
explained in Appendix D (Section 11.7) such a vacuum energy while having
the correct property is expected to be way too large to account for the observed
�� =O(1). What are the other possibilities? One chance is that the dark
energy is associated with some yet-unknown scalar field (sometimes referred
to as the “quintessence” ), somewhat akin to the association of the inflationary
expansion to the inflation/Higgs field. Such theories often have an equation-of-
state parameter w 	= w� = −1. However, observational data do not support a
dark energy w significantly different from the value of −1 (see Table 11.1).

11.5 The concordant picture

An overall coherent and self-consistent picture of the cosmos has emerged
that can account for the geometry and structure of the universe, as well as its
evolution onward from a fraction of a second after the big bang. In this section,
we first summarize the cosmological parameters and discuss the concordant
cosmological model that has emerged. Even though we have a consistent
picture, there are still many unsolved problems; we shall mention some of
them at the end of this chapter.

Cosmological parameters from CMB and the galaxy distribution
Our previous discussion has concentrated on conceptually and technically sim-
pler approaches in obtaining cosmological parameters—counting and weigh-
ing methods, plotting the Hubble curve (including data from high-redshift
supernovae), and light nuclear element abundance, etc. These measurements
have now been confirmed and hugely improved by the analysis of very different
physical phenomena: the CMB temperature anisotropy (in particular as mea-
sured by WMAP) in combination with analysis of large-scale structure survey
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Fig. 11.12 The temperature fluctuation of
the CMB is a snap-shot of the baby universe
at the photon decoupling time. A compar-
ison of the results by COBE vs. WMAP1
shows the marked improvement in resolution
by WMAP. This allowed us to extract many
more cosmological parameters from the lat-
est observations.

data (obtained in particular by 2dF and SDSS). We have briefly discussed the
CMB anisotropy (cf. Sections 10.5.4 and 11.3): a detailed study of the power
spectrum through a spherical harmonics decomposition can be displayed as
a curve (relative amplitude vs. angular momentum number) with a series of
peaks. The primary peak (i.e. the dominant structure) is at the one degree scale
showing that the spatial geometry is flat; the secondary peaks are sensitive to
other cosmological parameters such as the baryon contents of the universe,
�B � 0.04, etc. WMAP has a much improved angular resolution compared to
COBE, Fig. 11.12, The study of the large-scale cosmic distribution of galaxies
is beyond the scope of this book, the underlying physics also reflects the relic
imprints of primordial acoustic waves as in the case of CMB. The combined
results of this array of observations allowed us to extract a large number of
cosmological parameters at high accuracy (Table 11.1).

The standard model of cosmology
Cosmology has seen a set of major achievements over the past decade, to
the extent that something like a standard model for the origin and develop-
ment of the universe is now in place: the FLRW cosmology proceeded by
an inflationary epoch. Many of the basic cosmological parameters have been
deduced in several independent ways, arriving at a consistent set of results.
These data are compatible with our universe being infinite and spatially flat,
having matter/energy density equal to the critical density, �0 = 1. The largest
energy component is consistent with it having Einstein’s cosmological constant
�� � 0.75. In the present epoch this dark energy content is comparable in
size to the matter density �M � 0.25, which is made up mostly of cold dark
matter. Thus this standard model is often call the �CDM cosmology model.
The expansion of the universe will never stop—in fact having entered the
accelerating phase, the expansion will be getting faster and faster.

Still many unsolved problems
Although we have a self-consistent cosmological description, many myster-
ies remain. We do not really know what makes up the bulk of the dark
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matter, even though there are plausible candidates as predicted by some
yet-to-be-proven particle physics theories. The most important energy com-
ponent is the mysterious “dark energy,” although a natural candidate is the
quantum vacuum energy. Such an identification leads to an estimate of its size
that is completely off the mark (cf. Section 11.7). If one can show that the
quantum vacuum energy must somehow vanish due to some yet-to-be-found
symmetry principle, a particular pressing problem is to find out whether this
dark energy is time-independent, as is the case of the cosmological constant
�, or is it more like a �eff coming from some quintessence scalar field as in
the case of inflation? Despite our lack of understanding of this dark energy, in
recent discoveries constitute a remarkable affirmation of the inflationary theory
of the big bang. Still, even here question remains as to the true identity of the
inflation/Higgs field. We need to find ways to test the existence of such a field
in some noncosmological settings.

Besides the basic mystery of dark energy (“the cosmological constant prob-
lem”) there are other associated puzzles, one of them being the “cosmic coinci-
dence problem:” we have the observational result that in the present epoch the
dark energy density is comparable to the matter density, �� � �M. Since they
scale so differently (�M ∼ a−3 vs. �� ∼ a0) we have �M � 1 in the cosmic
past, and �� � 1 in the future. Thus, the present epoch is very special—the
only period when they are comparable.30 Then the question is why? How do 30Closely related to this is the puzzle of

the respective amounts of decelerating matter
and the accelerating dark energy so that their
effects cancel each other, leaving the age of
the universe very close to that of an empty
universe (the Hubble time).

we understand this requirement of fine tuning the initial values in order to have
�M � �� now?

A finite dodecahedral universe: A cautionary tale
It cannot be emphasized too much that the recent spectacular advances in
cosmology have their foundation in the ever-increasing amount of high pre-
cision observational data. Ultimately any cosmological theory will stand or
fall, depending on its success in confronting experimental data. In this context
we offer the following cautionary tale.

An inspection of the CMB power spectrum in Fig. 11.13 shows that a
few data points in the large angle (low l) region tend to be lower than the
theoretical curve based on the standard cosmological model outlined above.
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Fig. 11.13 The angular power spectrum of
CMB temperature anisotropy. The dots are
the first-year data-points from WMAP. The
theoretical curve follows from inflationary
model (having cold dark matter) with param-
eters given in Table 11.1. The fan-shaped
shaded area at low multiple moments reflects
the uncertainty due to cosmic variance, cf.
(10.89).
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This does not concern most cosmologists because they are still in the shaded
area corresponding to the statistical uncertainty called cosmic variance cf.
(10.89). Nevertheless, it is possible to interpret these low data points as poten-
tial signature of a finite universe. The weakness of the quadrupole (l = 2)

and octupole term (l = 3) can be taken as a lack of temperature correlation
on scales greater than 60◦. Maybe the space is not infinite and the broadest
waves are missing because space is not big enough to accommodate them. Our
discussion above has shown the evidence for the space being locally homoge-
nous and isotropic. However, local geometry constrains, but does not dictate,
the shape of the space. Thus, it is possible that the topology of the universe
is nontrivial. Luminet et al. (2003) constructed just such a model universe
based on a finite space with a nontrivial topology (the Poincaré dodecahedral
space). It has a positive curvature (closed universe) with �0 = 1.013, which
is compatible with observation as of 2003. One of the ways to study the
shape, or topology, of the universe is based on the idea that if the universe is
finite, light from a distant source will be able to reach us along more than one
path. This will produce matching images (e.g. circles) in the CMB anisotropy.
A search for such matching circles failed to find such features (Cornish
et al., 2004). Thus, this finite universe model may, in the end, be ruled out by
observation.

Our purpose in reporting this particular episode in the cosmological study
is to remind ourselves of the importance of keeping an open mind of alter-
native cosmologies. This example showed vividly how drastically different
cosmological pictures can be based on cosmological parameters that are not
that different from each other. Thus, when looking at a result such as �0 =
1.03 ± 0.03, as known then in 2003, we should refrain from jumping to the
conclusion that data has already shown a �0 = 1 flat universe. This shows
the importance of acquiring high precision data, which will ultimately decide
which model gives us the true cosmology. On the other hand, while a slight
change of one or two parameters may favor different cosmological models, it
is the overall theoretical consistency, the ability to account for a whole array
of data in cosmology and robust in its cross-checks that ultimately allows us to
believe that the current concordant picture has a good chance to survive future
experimental tests.

11.6 Appendix C: False vacuum and
hidden symmetry

In Section 11.2.2 we discussed the theoretical suggestion that the cosmological
inflationary epoch is associated with a “false vacuum” of an inflation/Higgs
field. This involves the concept of a “spontaneous breakdown of a symmetry,”
also described as a “hidden symmetry”—even though a theory is symmetric,
its familiar symmetry properties are hidden. Namely, a symmetric theory
somehow ends up having asymmetrical solutions. This can happen, as we shall
see, when there are “degenerate ground states” —an infinite number of theo-
retically possible states (related to each other by symmetry transformations)
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(b)

Fig. 11.14 (a) Ground state with zero mag-
netization �M0 = 0 for randomly oriented
dipoles, (b) asymmetric ground state with
�M0 	= 0.

all having the same lowest energy. But the physical vacuum is one of this set,
and, by itself, it is not symmetric because it singles out a particular direction
in the symmetry space. In this Appendix, we illustrate this phenomenon by the
example of the breakdown of rotational symmetry in a ferromagnet near the
Curie temperature.

Hidden rotational symmetry in a ferromagnet A ferromagnet can be
thought of as a collection of magnetic dipoles. When it is cooled below a
certain critical temperature, the Curie temperature Tc, it undergoes sponta-
neous magnetization: all its dipoles are aligned in one particular direction
(a direction determined not by dipole interactions, but by external boundary
conditions). Namely, when T > Tc the ground state has zero magnetization
�M0 = 0 because the dipoles are randomly oriented; but below the critical tem-

perature T < Tc, all the dipoles line up, giving arise to a nonzero magnetization
�M0 	= 0 (Fig. 11.14). This can happen even though the underlying dynamics

of dipole–dipole interaction is rotationally symmetric—no preferred direction
is built into the dynamics, that is, the theory has rotation symmetry.

Ginzburg and Landau description of spontaneous symmetry breaking
For a mathematical description we shall follow the phenomenological theory
of Ginzburg and Landau. When T ≈ Tc, the rotationally symmetric free energy
F( �M) of the system can be expanded in a power series of the magnetiza-
tion �M:

F( �M) =
(
∇i �M

)2 + a(T )( �M · �M) + b( �M · �M)2
︸ ︷︷ ︸

V ( �M)

. (11.49)

In the potential energy function V ( �M) we have kept the higher order ( �M ·
�M)2 term, with a coefficient b > 0 (as required by the positivity of energy

at large M), because the coefficient a in front of the leading ( �M · �M) term
can vanish: a(T ) = γ (T − Tc). With γ being some positive constant, the
temperature-dependent coefficient a is positive when T > Tc, negative when
T < Tc. Since the kinetic energy term (∇i �M)2 is nonnegative, to obtain the
ground state, we need only to minimize the potential energy:

dV

d �M ∝ �M
[
a + 2b

(
�M · �M

)]
= 0. (11.50)

The solution of this equation gives us the ground state magnetization �M0. For
T > Tc, hence a positive a, we get the usual solution of a zero magnetization
�M0 = 0 (i.e. randomly oriented dipoles). This situation is shown in the plot of
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Fig. 11.15 Symmetric potential energy sur-
faces in the field space: (a) the normal solu-
tion, when the ground state is at a symmetric
point with M0 = 0, and (b) the broken sym-
metry solution, when the energy surface has
the shape of a “Mexican hat” with M = 0
being a local maxinum and the true ground
state being one point in the trough (thus sin-
gling out one direction and breaking the rota-
tional symmetry).

V ( �M) of Fig. 11.15(a), where the potential energy surface is clearly symmetric
with any rotation (in the 2D plane31) around the central axis. However, for31We have simplified the display to the case

when �M is a 2D vector in a plane having two
components M1 and M2.

subcritical temperature T < Tc, the sign change of a brings about a change
in the shape of the potential energy surface as in Fig. 11.15(b). The surface
remains symmetric with respect to rotation, but the zero magnetization point
M = 0 is now a local maximum. There is an infinite number of theoretically
possible ground states at the bottom ring of the wine-bottle shaped surface—
all having nonzero magnetization M0 = √−a/2b, but pointing in different
directions in the 2D field space. These possible ground states are related to
each other by rotations. The physical ground state, picked to be one of them
by external conditions, singles out one specific direction, and hence is not
rotationally symmetric. Below the Curie temperature, rotational symmetry in
the ferromagnet is spontaneously broken and the usual symmetry properties of
the underlying dynamics (in this case, rotational symmetry) are not apparent.
We say spontaneous symmetry breaking corresponds to a situation of hidden
symmetry.

Higgs/inflation field In particle physics we have a system of fields. In
particular it is postulated that there are scalar fields (for particles with zero
spin) which have potential energy terms displaying the same spontaneous
symmetry properties as ferromagnetism near Tc. The magnetization �M in
(11.49) is replaced, in the case of particle physics, by a scalar field φ(x).
Thus at high energy (i.e. high temperature) the system is in a symmetric phase
(normal solution with a(T ) > 0) and the unification of particle interactions
is manifest (cf. Section 11.2.2, see in particular sidenote 6); at lower energy
(low temperature) the system enters a broken symmetry phase because of
a(T ) < 0. The ground state of a field system is, by definition, the vacuum.
In this hidden symmetry phase we have a nonvanishing scalar field φ0(x) 	= 0.
The relevance to cosmology is as follows: at higher temperature we have a
symmetric vacuum. When the universe cools below the critical value, the same
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state becomes a local maximum and is at a higher energy than, and begins to
roll toward, the true vacuum. We say the system (the universe) is temporarily,
during the rollover period, in a false vacuum (cf. Fig. 11.3). This semiclassical
description indicates the existence of a constant field φ0(x) 	= 0 permeating
everywhere in the universe.

11.7 Appendix D: Quantum vacuum energy as
the cosmological constant

We associate the quantum vacuum energy with the dark energy that drives the
accelerating universe, while it is the false vacuum energy of a Higgs field that
supposedly brings about the primordial inflation. While these two mechanisms
may well be related, our presentation assumes that they are separate. In the
previous section we discussed the scalar field that can give rise to an infla-
tionary exponential expansion; here we shall concentrate our discussion of the
dark energy associated with the accelerating universe. As we shall explain,
the zero-point energy of the quantum fields is a natural candidate for such
a cosmological constant �. However the difficulty of such an association is
that the natural size of such a quantum vacuum energy is much too large
to account for the observed value of �� � 0.75. We also briefly note that
quantum vacuum energies of boson and fermion fields have opposite signs.
Had our universe obeyed supersymmetry exactly with a strict degeneracy of
bosonic and fermionic degrees of freedom, their respective contributions to the
vacuum energy would exactly cancel, leading to a vanishing vacuum energy
and cosmological constant.

Quantum vacuum energy gives rise to a cosmological constant
From the view point of quantum field theory, a vacuum state is not simply
“nothingness.” The uncertainty principle informs us that the vacuum has an
energy because any localization has an associated spread in the momentum
value. In fact, quantum field theory pictures the vacuum (defined as the state
of lowest energy) as a sea of sizzling activities with constant creation and
annihilation of particles. Thus, the cosmological constant �, as the energy
density of the vacuum, naturally has a non-zero value (Zel’dovich 1968).

The simplest way to see that a quantum vacuum state has energy is to
start with the observation that the normal modes of a field are simply a set
of harmonic oscillators.32 Summing over the quantized oscillator energies 32We recall that the Fourier coefficients of,

say, an electromagnetic field obey the simple
harmonic oscillator equations.

of all the modes, we have33 (with the occupation number of the ith state

33The subscript b stands for “boson;” this
bosonic contribution will be compared to that
by a fermion field in the last subsection.

denoted by ni )

Eb =
∑

i

(
1

2
+ ni

)
h̄ωi , with ni = 0, 1, 2, 3, . . . (11.51)

From this we can identify the vacuum energy (also called the zero-point
energy) as

E� =
∑

i

1

2
h̄ωi . (11.52)
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At the atomic and subatomic levels, there is abundant empirical evidence for
the reality of such a zero-point energy. For macroscopic physics, a notable
manifestation of the vacuum energy is the Casimir effect, which has been
verified experimentally.

The zero-point energy has the key property of having a density that is
unchanged with respect to any volume changes, i.e. an energy density that
is constant. The summation of the mode degrees of freedom in Eq. (11.52)
involves the enumeration of the phase space volume in units of Planck’s
constant �i = ∫

d3xd3 p (2π h̄)−3, cf. Eq. (11.53). Since the zero-point energy
h̄ωi = E (p) has no dependence on position, one obtains a simple volume
factor

∫
d3x = V so that the corresponding energy per unit volume E�V −1

is a constant with respect to changes in volume. As explained in Section 11.1,
this constant energy density corresponds to a negative pressure (p = −E/V )

and implies a −∂ E/∂x force that is attractive, pulling-in the piston in Fig. 11.1.
This is the key property of the cosmological constant and is the origin of the
Casimir effect—an attractive force between two parallel conducting plates.

Quantum vacuum energy is 10120-fold too large as dark energy
Nevertheless, a fundamental problem exists because the natural size of a
quantum vacuum energy is enormous. Here is a simple estimate of the
sum in (11.52). The energy of a particle with momentum p is E (p) =√

p2c2 + m2c4, see (3.37). From this we can calculate the sum by integrating
over the momentum states to obtain the vacuum energy/mass density,

ρ�c2 = E�

V
=

∫ EPl/c

0

4πp2dp

(2π h̄)3

(
1

2

√
p2c2 + m2c4

)
, (11.53)

where 4πp2dp is the usual momentum phase space volume factor. The integral
in (11.53) would be a divergent quantity had we carried the integration to
its infinity limit. Infinite momentum means zero distance; infinite momentum
physics means zero distance scale physics. Since we expect spacetime to
be quantized at the Planck scale (cf. quantum gravity in Section 8.5.1), it
seems natural that we should cut off the integral at the Planck momentum
pPl = EPl/c as any GR singularities are expected to be modified at the short
distance of the Planck length. The Planck momentum being given in Eq. (8.75),

pPl = EPl

c
=

√
h̄c3

GN
� 1019 GeV/c. (11.54)

the integral (11.53) yields

ρ�c2 ∼= 1

16π2

E4
Pl

(h̄c)3
�

(
3 × 1027 eV

)4

(h̄c)3
(11.55)

Since the critical density of (9.17) may be written in such natural units34 as:34Since the natural “conversion constant” h̄c
has the unit of length times energy, the com-
bination (energy)4/(h̄c)3 has the correct unit
of energy per volume. ρcc2 ∼=

(
2.5 × 10−3 eV

)4

(h̄c)3
,
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we have a quantum vacuum energy density ratio �� ≡ ρ�/ρc that is more
than a factor of 10120 larger than the observed value of dark energy density,

(��)qv � 10120 vs. (��)obs � 0.75.

Thus if the observed dark energy originates from quantum vacuum energy,
it must involve some mechanism to reduce its enormous natural size down
to the critical density size. This “cosmological constant problem,” in this
context, is the puzzle why and how such a fantastic cancellation takes place
—a cancellation of the first 120 significant figures (yet stops at the 121st
place)!

Partial cancellation of boson and fermion vacuum energies
We should note that in the above calculation, we have assumed that the field
is a boson field (such as the photon and graviton fields), having integer spin
and obeying Bose–Einstein statistics. The oscillator’s creation and annihilation
operators obey commutation relations, leading to symmetric wavefunctions.
On the other hand, fermions (such as electrons, quarks, etc.) have half-integer
spins, and obey Fermi–Dirac statistics. Their fields have normal modes behav-
ing like Fermi oscillators. The corresponding creation and annihilation opera-
tors obey anticommutation relations, leading to antisymmetric wavefunctions.
Such oscillators have a quantized energy spectrum as (see, for example, Das,
1993)

Ef =
∑

i

(
−1

2
+ ni

)
h̄ωi , with ni = 0 or 1 only. (11.56)

For a fermion field, the zero point energy is negative! Therefore, there will
be a cancellation in the contributions by bosons and fermions.35 Many of the 35The vacuum energy is, of course, the sum

totaling up the contributions from all quan-
tum fields (gravitons, gauge bosons, leptons,
and quarks, etc.).

favored theories to extend the Standard Model of particle physics to the Planck
scale incorporate the idea of supersymmetry. In such theories the bosonic and
fermionic degrees of freedom are equal. In fact, the vacuum energy of systems
with exact supersymmetry must vanish (i.e. an exact cancellation). However,
we know that in reality supersymmetry cannot be exact36 because its impli- 36For example, we do not see a spin-zero

particle, a “ selectron,” having the same
properties, and degenerate in mass, as the
electron; similarly we have not detected the
photon’s superpartner, a massless spin- 1

2 par-
ticle called the “photino,” etc. A plausible
interpretation is that supersymmetry is bro-
ken, and the superpartners (selectrons, photi-
nos, etc.) of the known particles (electron,
photons, etc.) are much more massive and are
yet to be produced and detected in our high
energy laboratories.

cation of equal boson and fermion masses mf = mb in any supersymmetric
multiplet is not observed in nature. If the supersymmetry is broken, we expect
only a partial cancellation between bosons and fermions, even though there
are equal numbers of bosonic and fermionic degrees of freedom. The first-
order fermion and boson contributions in Eq. (11.53) would lead to a result
that modifies the boson Eq. (11.55) as

(
ρ�c2

)
susy

∼= 1

16π2

E4
Pl

(h̄c)3

(
�m2c4

E2
Pl

)
, (11.57)

where �m2 is the fermion and boson mass difference m2
f − m2

b. The fact
we have so far not observed any superparticles means that such particles
must at least be heavier by �m2 � (102 GeV/c)2, which can only produce
a suppression factor (�m2c4/E2

Pl) = 10−36 at the most—thus still some 80 to
90 orders short of the required O(10−120). Clearly, something fundamental is
missing in our understanding of the physics behind the dark energy.
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Review questions

1. Use the first law of thermodynamics to show that the con-
stancy of a system’s energy density (even as its volume
changes) requires this density to be equal to the negative
of its pressure.

2. A vacuum energy dominated system obeys Newton’s equa-
tion �2� = −�c2, where � is a positive constant. What
is the gravitational potential �(r) satisfying this equation?
From this find the corresponding gravitational field g(r) ≡
−∇�(r).

3. From the Friedmann equation 1 − �(t) = −kc2/ȧ(t)R0
2

and the fact that the universe has been matter-dominated
since the radiation–matter equality time with redshift
zRM = O(104), show that the deviation of energy density
ratio � from unity at tRM must be a factor of 10 000 times
smaller than that at the present epoch t0:

[1 − � (tRM)] = [
1 − �(t0)

] × 10−4.

Use this result (and its generalization) to explain the flat-
ness problem.

4. What is the horizon problem? Use the result that the angu-
lar separation corresponding to one horizon length at the
photon decoupling time is about one degree (for a flat
universe) to explain this problem.

5. Use a potential energy function diagram to explain the idea
of a phase transition in which the system is temporarily in
a “false vacuum.” How can such a mechanism be used to
give rise to an effective cosmological constant?

6. Give a simple physical justification of the rate equation
obeyed by the scale factor ȧ(t) ∝ a(t) in a vacuum energy
dominated universe. Explain how the solution a(t) of
such a rate equation can explain the flatness and horizon
problems.

7. How does the inflationary cosmology explain the origin of
mass and energy in the universe as well as the origin of the
cosmic structure we see today?

8. The CMB power spectrum can be divided into three
regions. What physics corresponds to each region?

9. How can the observed temperature anisotropy of the CMB
be used to deduce that the average geometry of the universe
is flat?

10. The age of a flat universe without the cosmological con-
stant is estimated to be 2

3 tH ≈ 9 Gyr. Why can an acceler-
ating universe increase this value?

11. What is dark energy? How is it different from dark matter?
How is Einstein’s cosmological constant related to such
energy/matter contents? Do cosmic neutrinos contribute to
dark energy?

12. Give two reasons to explain why type Ia Supernovae are
ideal “standard candles” for large cosmic scale measure-
ments.

13. Why should the accelerating universe lead us to observe
the galaxies, at a given redshift, to be dimmer than
expected (in an empty or decelerating universe)?

14. Why is the observation of supernovae with the highest
redshifts (> 0.7) to be in the decelerating phase taken
to be convincing evidence that the accelerating universe
interpretation of SNe data (z 0.2 − 0.7) is correct?

15. What is the cosmic coincidence problem?

16. What is the standard � CDM cosmology? What is the
spacetime geometry in this cosmological model? How old
is the universe? What is the energy/matter content of the
universe?

Problems

11.1 Another form of the expansion equation Use either
the Friedmann equation or its quasi-Newtonian analog to
derive (11.25).

11.2 The epoch-dependent Hubble’s constant and a(t)
Use (10.7) to replace the curvature parameter k in the
Friedmann equation (10.1) to show the epoch depen-
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dence of Hubble constant through its relation to the den-
sity parameters as in (11.38).

11.3 Luminosity distance and redshift in a flat universe
Knowing the redshift-dependence of the Hubble’s
constant from Problem 11.2 in a flat universe with neg-
ligible �R,0, show that the Hubble curve dL(z) can be
used to extract the density parameters �M and �� from
the simple relation

dL (z) = c (1 + z)
∫ z

0

cdz′

H0

[
�M,0

(
1 + z′)3 + ��

]1/2
.

11.4 Negative � and the “big crunch” Our universe is
spatially flat with the dominant component being matter
and positive dark energy. Its fate is an unending exponen-

tial expansion. Now consider the same flat universe but
with a negative dark energy �� = 1 − �M,0 < 0, which
provides a gravitational attraction, cf. (11.7). Show that
this will slow the expansion down to a standstill when the
scale factor reaches amax = (−��/�M,0)1/3. The sub-
sequent contraction will reach the big crunch a(t∗) = 0
at the cosmic time t∗ = 2

3π tH(−��)−1/2.

11.5 Estimate of matter and dark energy equality time
Closely related to the deceleration/acceleration transition
(“inflection”) time is the epoch when the matter and
dark energy components are equal. Show that the red-
shift result zM� obtained in this way is comparable to
that of (11.48). Estimate the cosmic time tM� when the
matter-dominated universe changed into our present dark
energy-dominated universe.
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