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• In the weak-field limit Einstein’s equation can be linearized and it takes
on form of the familiar wave equation.

• Gravitational waves may be viewed as ripples of curvature propagating
in a background of flat spacetime.

• The strategy of detecting such tidal forces by a gravitational wave
interferometer is outlined.

• The rate of energy loss due to the quadrupole radiation by a circulating
binary system is calculated, and found to be in excellent agreement with
the observed orbit decay rate of the Hulse–Taylor binary pulsar.

Newton’s theory of gravitation is a static theory. The Newtonian field due to
a source is established instantaneously. Thus, while the field has nontrivial
dependence on the spatial coordinates, it does not depend on time. Einstein’s
theory, being relativistic, treats space and time on an equal footing. Just like
Maxwell’s theory, it has the feature that a field propagates outward from
the source with a finite speed. In this chapter we study the case of a weak
gravitational field. This approximation linearizes the Einstein theory. In this
limit, a gravitational waves may be viewed as small curvature ripples (the
metric field) propagating in a background of flat spacetime. It is a transverse
wave, having two independent polarization states, traveling at the speed of
light.

Because gravitational interaction is so weak, any significant emission of
gravitational radiation can come only from a strong field region involving
dynamics that directly reflects GR physics. Once gravitational waves are emit-
ted, they will not scatter and they propagate out undisturbed from the inner core
of an imploding star, from the arena of black hole formation, and from the ear-
liest moments of the universe, etc. That is, they come from regions which are
usually obscured in electromagnetic, even neutrino astronomy: gravitational
waves can provide us with a new window into astrophysical phenomena.

These ripples of curvature can be detected as tidal forces. We provide an out-
line of the detection strategy using gravitational wave interferometers, which
can measure the minute compression and elongation of orthogonal lengths that
are caused by the passage of such a wave. In the final section, we present the
indirect, but convincing, evidence for the existence of gravitational waves as
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predicted by general relativity (GR). This came from the observation, spanning
more than 25 years, of orbital motion of the relativistic Hulse–Taylor binary
pulsar system (PSR 1913+16). Even though the binary pair is 5 kpc away from
us, the basic parameters of the system can be deduced by carefully monitoring
the radio pulses emitted by the pulsar, which effectively acted as an accurate
and stable clock. From this record we can verify a number of GR effects. In
particular the orbital period is observed to decrease. According to GR, this is
brought about by the gravitational wave quadrupole radiation from the system.
The observed orbital rate decrease is in splendid agreement with the prediction
by Einstein’s theory.

15.1 Linearized theory of a metric field

Even though the production of gravitational waves usually involves strong field
situations, but, because of the weakness of the gravitational interaction, the
produced gravitational waves are only tiny displacements of the flat spacetime
metric. Thus it is entirely adequate for the description of a gravity wave to
restrict ourselves to the situation of a weak gravitation field. In this limit,1 the1Contrasting this to the Newtonian limit of

nonrelativistic motion in a weak static field,
here we remove the restriction of slow motion
and allow for a time-dependent field.

metric is almost Minkowskian ημν = diag(−1, 1, 1, 1):

gμν = ημν + hμν ≡ g(1)
μν (15.1)

where the metric perturbation |hμν | � 1 everywhere in spacetime. Thus we
will keep only first-order terms in hμν , and denote the relevant quantities with
a superscript (1). The idea is that slightly curved coordinate systems exist
and they are suitable coordinates to use in the weak field situation. We can
still make coordinate transformations among such systems—from one slightly
curved one to another. In particular we can make a “background Lorentz
transformation.” Distinguishing the indices, {μ} vs. {μ′}, to indicate the pre-
transformed and transformed coordinates, we have

xμ → xμ′ = [L]μ
′
ν xν (15.2)

where L is the position-independent Lorentz transformation of special relativ-
ity, see (12.13) and (12.17). The key property of such transformations is that
they keep the Minkowski metric invariant, see (12.19),

[
L−1

]μ

α′

[
L−1

]ν

β ′ ημν = ηα′β ′ (15.3)

This leads to the transformation of the full metric as
[
L−1

]μ

α′

[
L−1

]ν

β ′ g(1)
μν = ηα′β ′ +

[
L−1

]μ

α′

[
L−1

]ν

β ′ hμν = g(1)

α′β ′ . (15.4)

Thus

hα′β ′ =
[
L−1

]μ

α′

[
L−1

]ν

β ′ hμν. (15.5)

Namely, hμν is just a Lorentz tensor. Thus this part of the metric can be taken
as a tensor defined on a flat Minkowski spacetime. Since the nontrivial physics
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is contained in hμν , we can have the convenient picture of a weak gravitational
field as being described by this symmetric field hμν in a flat spacetime.2 2Eventually in a quantum description, hμν is

a field for the spin-2 gravitons, and the per-
turbative description of gravitational interac-
tions as due to the exchanges of massless
gravitons.

Dropping higher order terms of hμν , we have the Riemann curvature tensor

R(1)
αμβν = 1

2

(
∂α∂νhμβ + ∂μ∂βhαν − ∂α∂βhμν − ∂μ∂νhαβ

)
, (15.6)

the Ricci tensor

R(1)
μν = ηαβ R(1)

αμβν

= 1

2

(
∂α∂νhα

μ + ∂μ∂αhα
ν − �hμν − ∂μ∂νh

)
, (15.7)

and the Ricci scalar

R(1) = ∂μ∂νhμν − �h, (15.8)

where � = ∂μ∂μ and h = hμ
μ is the trace. Clearly the resultant Einstein tensor

G(1)
μν = R(1)

μν − 1

2
R(1)ημν (15.9)

is also linear in hμν , and so is the Einstein equation:

G(1)
μν = −8πG N

c4
T (0)

μν . (15.10)

For a spacetime being slightly curved the left hand side (LHS) is of order
hμν ; this means that the energy–momentum tensor must also be small, T (0)

μν =
O(hμν).Thus, its conservation condition DμTμν = 0 can be simply expressed
in terms of ordinary derivatives

∂μT (0)
μν = 0 (15.11)

as the difference between Dμ and ∂μ is of the order of hμν .

15.1.1 The coordinate change called a gauge
transformation

In the following, we shall make coordinate transformations so that the lin-
earized Einstein equation (15.10) can be written more compactly in terms
of hμν . This class of coordinate transformations (within the slightly curved
spacetime) is called, collectively, gauge transformations because of their close
resemblance to the electromagnetic gauge transformations. Consider a small
shift of the position vector:

xμ′ = xμ + χμ (x) (15.12)

where χμ(x) are four arbitrary small functions. Collectively they are called
the “vector gauge function” (as opposed to the scalar gauge function in
electromagnetic gauge transformations see Box 12.3). Clearly this is not a
tensor equation, as indices do not match on the two sides. (Our notation
indicates the relation of the position vector as labeled by the transformed
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and pre-transformed coordinates.) The transformation matrix elements (for the
contravariant components) can be obtained by differentiating (15.12):

∂xμ′

∂xα
= δμ

α + ∂αχμ. (15.13)

The smallness of the shift χ � x means
∣∣∂μχν

∣∣ � 1. (15.14)

This implies an inverse transformation of

∂xμ

∂xα′ = δμ
α − ∂αχμ + O

(
|∂χ |2

)
. (15.15)

Apply it to the metric tensor:33We note the index structure of this equation.
While the first equality in (15.16) represents
the standard general coordinate transforma-
tion (with primed indices on both sides of
the equation), the primed indices disappear
in the subsequent right-hand-sides because of
the gauge transformation of (15.12).

g(1)

α′β ′ = ∂xμ

∂xα′
∂xν

∂xβ ′ g(1)
μν

= δμ
α δν

βg(1)
μν − ∂αχμημβ − ∂βχνηνα (15.16)

= g(1)
αβ − ∂αχβ − ∂βχα

where χα = χμημα . Expressing both sides in term of hαβ , we have the gauge
transformation of the perturbation field

hα′β ′ = hαβ − ∂αχβ − ∂βχα (15.17)

which closely resembles the transformation (12.53) for the electromagnetic 4-
vector potential Aα(x).

15.1.2 The wave equation in the Lorentz gauge

Just as in electromagnetism, one can streamline some calculations by an appro-
priate choice of gauge conditions. Here this means that a particular choice of
coordinates can simplify the field equation formalism for gravitational waves.
We are interested in the coordinate system (Problem 15.1) for which the
Lorentz gauge (also known as the harmonic gauge) condition holds:

∂μh̄μν = 0 (15.18)

where h̄μν is the trace reversed perturbation:

h̄μν = hμν − h

2
ημν (15.19)

with a trace of opposite sign, h̄μ
μ ≡ h̄ = −h. From (15.18) and (15.19), we

have the Lorentz gauge relation ∂μhμν = 1
2∂νh, which implies, in (15.7) and

(15.8), a simplified Ricci tensor R(1)
μν = − 1

2�hμν , and Ricci scalar R(1) =
− 1

2�h. This turns the linearized Einstein equation (15.10) into the form of
a standard wave equation:44For a discussion of the Schwarzschild exte-

rior solution for this linearized GR field equa-
tion, see Problem 15.2. �h̄μν = 16πGN

c4
T (0)

μν . (15.20)
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Table 15.1 Analog between the electromagnetic and linearized gravitational field theory.

Electromagnetism Linearized gravity

Source jμ T μν

Conservation law ∂μ jμ = 0 ∂μT μν = 0

Field Aμ hμν

Gauge transformation Aμ → Aμ − ∂μχ hμν → hμν − ∂μχν − ∂νχμ

Preferred gauge
(Lorentz gauge)

∂μ Aμ = 0 ∂μh̄μν = 0

h̄μν = hμν − 1
2 hημν

Field equation in the
preferred gauge

�Aμ = 4π
c jμ �h̄μν = 16πG N

c4 Tμν

One can also view this as the equation for the metric field with the energy–
momentum tensor being the source of the field. Its retarded solution, expressed
as a spatial integral over the source, is

h̄μν(x, t) = 4GN

c4

∫
d3x′ T (0)

μν

(
x′, t − ∣∣x − x′∣∣ /c

)

|x − x′| , (15.21)

which is certainly compatible with the gauge condition ∂μh̄μν = 0 because of
the energy momentum conservation (15.11).

To reiterate, in this linear approximation of the Einstein theory, the metric
perturbation hμν may be regarded as the symmetric field of gravity waves prop-
agating in the background of a flat spacetime. A comparison of the linearized
Einstein theory with the familiar electromagnetic equations can be instructive.
Such an analog is presented in Table 15.1.

15.2 Plane waves and the polarization tensor

We shall first consider the propagation of a gravitational wave in vacuum. Such
ripples in the metric can always be regarded as a superposition of plane waves.
A gravity wave has two independent polarization states. Their explicit form
will be displayed in a particular coordinate system, the transverse-traceless
(T T) gauge.

Plane waves
The linearized Einstein equation in vacuum, (15.20) with T (0)

μν = 0, is �h̄μν =
0. Because the trace h̄ = −h satisfies the same wave equation, we also have,
from applying the � operator to (15.19),

�hμν = 0. (15.22)

Consider the plane wave solution in the form of

hμν (x) = εμνeikαxα

(15.23)
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where εμν , the polarization tensor of the gravitational wave, is a set of
constants forming a symmetric tensor, εμν = ενμ, and kα is the 4-wavevector
kα = (ω/c, �k). Substituting (15.23) into (15.22), we obtain k2εμνeikx = 0;
thus the wavevector must be a null-vector

k2 = kαkα = −ω2

c2
+ �k2 = 0. (15.24)

Gravitational waves propagate at the same speed ω/|�k| = c as electromagnetic
waves. Furthermore, because the wave equation (15.22) is valid only in the
coordinates satisfying the Lorentz gauge condition (15.18), the polarization
tensor must be “transverse”

kμεμν = 0. (15.25)

The transverse-traceless gauge
There is still some residual gauge freedom left: one can make further coor-
dinate gauge transformations as long as the transverse condition (15.25) is
not violated. This requires that the associated gauge vector function χμ be
constrained by the condition:

�χμ = 0. (15.26)

Such coordinate freedom can be used to simplify the polarization tensor (see
Problem 15.1): one can pick εμν to be traceless

ε μ
μ = 0, (15.27)

as well as

εμ0 = ε0μ = 0. (15.28)

This particular choice of coordinates is called the “transverse-traceless gauge,”
which is a subset of the coordinates satisfying the Lorentz gauge condition.

The 4 × 4 symmetric polarization matrix εμν has 10 independent elements.
Equations (15.25), (15.27), and (15.28) which superficially represent nine
conditions actually fix only eight parameters because part of the transversality
condition (15.25), kμεμ0 = 0, is trivially satisfied by (15.28). Thus εμν has
only two independent elements. Namely, the gravitational wave has two inde-
pendent polarization states. Let us display them. Consider a wave propagating
in the z direction kα = (ω, 0, 0, ω)/c, the transversality condition (15.25),
together with (15.28), implies that ωε3ν = 0, or ε3ν = εν3 = 0. Together with
the conditions (15.27) and (15.28), the metric perturbation has the form

hμν (z, t) =

⎛
⎜⎜⎝

0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

⎞
⎟⎟⎠ eiω(z−ct)/c. (15.29)
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The two polarization states can be taken to be

ε
μν

(+) = h+

⎛
⎜⎜⎝

0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

⎞
⎟⎟⎠ and ε

μν

(×) = h×

⎛
⎜⎜⎝

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎞
⎟⎟⎠

with h+ and h× being the respective “plus” and “cross” amplitudes.

15.3 Detection of gravitational waves

The coordinate-independent feature of any gravitational field is its tidal effect.
Thus, the detection of gravitational waves involves the recording of minute
changes in the relative positions of a set of test particles. In this section, we
shall first deduce the oscillatory pattern of such displacements, then briefly
describe the principle underlying the gravitational wave interferometer as a
detector of such ripples in spacetime.

15.3.1 Effect of gravitational waves on test particles

Consider a free particle before its encounter with a gravitational wave. It
is at rest with a 4-velocity Uμ = (c, 0, 0, 0). The effect of the gravitational
wave on this test particle is determined by the geodesic equation dUμ/dτ +


μ
νλU νUλ = 0. Since only U 0 is non-vanishing at the beginning, it reduces

to an expression for the initial acceleration of (dUμ/dτ)0 = −c2
μ
00, which

vanishes because the Christoffel symbols are 
μ
00 = 0 in the TT gauge.5 The

5The connection 
μ
00 = ημν(∂0hν0 +

∂0h0ν − ∂νh00)/2 = 0 because the metric
perturbation hμν has, in the TT gauge,
polarization components of εν0 = ε0ν =
ε00 = 0. The vanishing of the initial
acceleration means that the particle will be
at rest a moment later. Repeating the same
argument for later moments, we find the
particle at rest for all times. In this way we
conclude dUμ/dτ = 0.

particle is stationary with respect to the chosen coordinate system—the TT
gauge coordinate labels stay attached to the particle. Thus one cannot discover
any gravitational field effect on a single particle. This is compatible with our
expectation, based on the equivalence principle (EP), that gravity can always
be transformed away at a point by an appropriate choice of coordinates. We
need to examine the relative motion of at least two particles in order to detect
the oncoming change in the curvature of spacetime.

Consider the effect of a gravitational wave with “plus-polarization” ε
μν

(+) on
two test particles at rest: one at the origin and other located at an infinitesimal
distance ξ away on the x axis, hence at an infinitesimally small separation
dxμ = (0, ξ, 0, 0). Using the expression in (15.29), this translates into a proper
separation of

ds = √
gμνdxμdxν = √

g11ξ �
[
η11 + 1

2
h11

]
ξ

=
[

1 + 1

2
h + sin ω (t − z/c)

]
ξ (15.30)

showing that the proper distance does change with time. Similarly for two
particles separated along the y axis, dxμ = (0, 0, ξ, 0), the effect of the
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gravitational wave is to alter the separation according to

ds =
[

1 − 1

2
h+ sin ω (t − z/c)

]
ξ. (15.31)

Thus, the separation along the x direction is elongated while along the y direc-
tion it is compressed. There is no change in the longitudinal separation along
the z direction. Just like the electromagnetic waves, gravitational radiation is
a transverse field. To better exhibit this pattern of relative displacement we
illustrate in Fig. 15.1(a) the effect of a plus-polarized wave, but instead of
impinging on two particles as discussed above, acting on a set of test particles
when the second particle is replaced by a circle of particles with the first
test particle at the center. The outcome that generalizes (15.30) and (15.31)
is shown through the wave’s one cycle of oscillation.

Fig. 15.1 Tidal force effects on a circle of
test particles due to gravitational waves in
(a) the plus-polarization, and (b) the cross-
polarization states.

The effect of a wave with cross-polarization ε
μν

(×) on two particles with

differential intervals of dxμ = (0, 1,±1, 0)ξ/
√

2 alters the proper separation
as ds = 1 ± 1

2 h × sin ω(t − z/c)ξ . The generalization to a circle of particles
through one cycle of oscillation is shown in Fig. 15.1(b), which is just a
45◦ rotation of the plus-polarized wave result of Fig. 15.1(a). While the two
independent polarization directions of an electromagnetic wave are at 90◦ from
each other, those of a gravity wave are at 45◦. This is related to the feature
that, in the dual description of the wave as streaming particles, the associated
particles of these waves have different intrinsic angular momenta: the photon
has spin 1 while the graviton has spin 2. It is also instructive to compare the
tidal force effects on such test-particles’ relative displacement in response to
an oncoming oscillatory gravitational field to that of a static gravitational field
as discussed in Section 6.3.1.

15.3.2 Gravitational wave interferometers

A gravitational wave can be thought of as a propagating metric, affecting
distance measurements. Thus, as a wave passes through, the separation s
between two test masses changes with time. Gravitational interaction is very
weak. The longitudinal and transverse separation of test particles discussed
above is expected to be tiny. Before any detailed calculation (such as the one
given in Section 15.4), it is useful to have some idea of the size of the expected
gravitational wave signal. Here we give an estimate of the fractional change of
separation, called the strain σ = (δs)/s, by a “hand-waving” argument.

The separation between two test masses are is by the equation of geodesic
deviation (Problems 14.4 and 14.5), but we shall estimate it by using the sim-
pler Newtonian deviation equation of (6.32), which expresses the acceleration
per unit separation by the second derivative of the gravitational potential.
We assume that the relativistic effect can be included by a multiplicative
factor. The Newtonian potential for a spherical source is � = −GN Mr−1.
A gravitational wave propagating in the z direction is a disturbance in the
gravitational field:

δ� = −ψ
GN M

r
sin(kz − ωt), (15.32)
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where k = ω/c. A dimensionless factor of ψ has been inserted to represent the
relativistic correction. The second derivative can be approximated by

∂2

∂z2
δ� = ψ

GN M

rc2
ω2 sin(kz − ωt), (15.33)

where we have dropped subleading terms coming from differentiation of the
r−1 factor. This being the acceleration as given in (6.32), the strain ampli-
tude (for the time interval ω−1) is then given by

σ = δs

s
= ψ

GN M

rc2
. (15.34)

A similar approximation of the radiation formula (15.61) to be derived below
suggests the relativistic correction factor ψ as being the nonrelativistic veloc-
ity squared (v/c)2 of the source. The first generation of gravitational wave
interferometers have been set up with the aim of detecting gravitational wave
emission by neutron stars from the richest source of galaxies in our neigh-
boring part of the universe, the Virgo Cluster, at r ≈ 15 Mpc distance away.
Thus, even for a sizable ψ = O(10−1) from a solar mass source M = M�
the expected strain is only σ = O(10−21). For two test masses separated by a
distance of 10 km the gravity wave induced separation is still one hundredth
of a nuclear size dimension. This shows that spacetime is a very stiff medium,
as a large amount of energy can still bring about a tiny disturbance in the
spacetime metric. This fact poses great challenges to experimental observation
of gravitational waves.

The above discussion makes it clear that one needs to design sensitive
detectors to measure the minute length changes between test masses over long
distances. Several detectors have been constructed based on the Michelson
interferometer configuration (Fig. 15.2). The test masses are mirrors suspended
to isolate them from external perturbation forces. Light from a laser source
is divided into the two arms by a beam splitter. The light entering into an
arm of length L is reflected back and forth in a Fabry–Perot cavity for n
times so that the optical length is greatly increased and the storage time is
n(L/c) = �tn . The return light beams from the two arms are combined after
they pass through the beam splitter again. By choosing the path length properly,
the optical electric field can be made to vanish (destructive interference) at the
photodetector. Once adjusted this way, a stretch in one arm and a compression

M1

M1

M2 M2

Fig. 15.2 Schematic diagram for gravita-
tional wave Michelson interferometer. The
four mirrors M1,2, M ′

1,2 and the beam split-
ter mirror are freely suspended. The two arms
are optical cavities that increase the opti-
cal paths by many factors. A minute length
change of the two arms, one expands and the
other contracts, will show up as changes in
fringe pattern of the detected light.
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in the other, when induced by the polarization of a passing gravitational wave,
will change the optical field at the photodetector in proportion to the product of
the field times the wave amplitude. Such an interferometer should be uniformly
sensitive to wave frequencies less than 1

4�t−1
n (and a loss of sensitivity to

higher frequencies). The basic principle to achieve high sensitivity is based
on the idea that most of the perturbing noise forces are independent of the
baseline lengths while the gravitational-wave displacement grows with the
baseline.

Fig. 15.3 LIGO Hanford Observatory in
Washington state.

The Laser Interferometer Gravitational Observatory (LIGO) comprises of
two sites: one at the Hanford Reservation in Central Washington (Fig. 15.3)
housing two interferometer one 2 km- and another 4 km-long arms, while
the other site is at Livingston Parish, Louisiana. The three interferometers
are being operated in coincidence so that the signal can be confirmed by data
from all three sites. Other gravitational wave interferometers in operation are
the French/Italian VIRGO project, the German/Scottish GEO project, and the
Japanese TAMA project. Furthermore, study is underway both at the European
Space Agency and NASA for the launching of three spacecraft placed in solar
orbit with one AU radius, trailing the earth by 20◦. The spacecraft are located
at the corners of an equilateral triangle with sides 5 × 106 km long. The Laser
Interferometer Space Antenna (LISA) consists of single-pass interferometers,
set up to observe a gravitational wave at low frequencies (from 10−5 to 1 Hz).
This spectrum range is expected to include signals from several interesting
interactions of black holes at cosmological distances.66Besides planning and building ever large-

scale gravitational wave detectors, a major
effort by the theoretical community in
relativity is involved in the difficult task of
calculating wave shapes in various strong
gravity situations (e.g. neutron-star/neutron-
star collision, black hole mergers, etc.) to
guide the detection and comparison of theory
with experimental observations.

15.4 Emission of gravitational waves

Although, as of this writing, there has not been any generally accepted proof
for a direct detection of gravitational wave, there is nevertheless convincing,
albeit indirect, evidence for the existence of such waves as predicted by
Einstein’s theory. Just as any shaking of electric charges produces electromag-
netic waves, a shaking of masses will result in the generation of gravitational
wave, which carries away energy. In this section we present the relativistic
binary pulsar system showing that the decrease of its orbital period due to
gravitational wave radiation is in excellent agreement with what is predicted
by general relativity. Since such a calculation is somewhat lengthy, we provide
an outline of the steps required for its derivation in Box 15.1.

Box 15.1 The steps for calculating the energy loss by a radiating source

• The rate of energy loss dE/dt due to gravitational radiation is the area
integral over the radiation flux. This flux (energy per unit area and per
unit time) should be the energy density (energy per unit volume) of
the radiation gravitational field times the radiation velocity, f = ct00,
where t00 is the (0, 0) component of the energy–momentum tensor tμν

of the radiation field.
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• Just as the energy–momentum tensor of an electromagnetic field can
be expressed directly in terms of the field itself (as in Box 12.5),
tμν can be expressed in terms of the gravitational (perturbation) field
hμν . In particular, the energy density term will be shown in (15.50)
as relating to the time derivative of the spatial components of the
perturbation in the TT gauge as

t00 = c2

32πGN

〈(
∂t h

TT
i j

) (
∂t h

TT
i j

)〉
, (15.35)

where 〈...〉 represents the averaging over many wavelengths.
• The gravitational field is related to the energy–momentum tensor Tμν

of the source through the Einstein field equation. In our case we can
find the metric perturbation hμν by solving the wave equation in terms
of the source distribution. The leading term for hi j is given in (15.53):

hi j = 2GN

c4r

(
∂2

t Ii j

)
(15.36)

where Ii j = ∫
d3xρ(x)xi x j , with ρ(x) being the mass density of the

source. Namely, it is quadrupole radiation.
• After averaging over all directions, one finds in (15.61) that the radi-

ation power is related to the “reduced quadrupole moments Ĩi j ” of
(15.57) as

d E

dt
= GN

5c5

〈(
∂3

t Ĩ TT
i j

) (
∂3

t Ĩ TT
i j

)〉
. (15.37)

Thus, one can start the calculation of the gravitational radiation loss
due to orbiting binary stars by computing, from its equation of motion,
the quadrupole moments of such a system. This will be carried out in
Section 15.4.3.

15.4.1 Energy flux in linearized gravitational waves

In the linearized Einstein theory, gravitational waves are regarded as small
curvature ripples propagating in a background of flat spacetime. But gravity
waves, just like electromagnetic waves, carry energy and momentum; they will
in turn produce additional curvature in the background spacetime. Thus we
should have a slightly curved background and (15.1) should be generalized to

gμν = g(b)
μν + hμν (15.38)

where g(b)
μν = ημν + O(h2) is the background metric. The Ricci tensor can

similarly be decomposed as

Rμν = R(b)
μν + R(1)

μν + R(2)
μν + · · ·

where R(n)
μν = O(hn) with n = 1, 2, ... Thus, the background curvature R(b)

μν

should be of the same order as R(2)
μν . In free space the Einstein equation being
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Rμν = 0, terms corresponding to different orders of metric perturbation on the

RHS must vanish separately: R(1)
μν = 0 as well as

R(b)
μν + R(2)

μν = 0. (15.39)

The energy–momentum tensor tμν carried by the gravity wave provides the
slight curvature of the background spacetime. It must therefore be related, at
this order, to the background Ricci tensor by way of the Einstein equation
(14.26):

R(b)
μν − 1

2
ημν R(b) = −8πGN

c4
tμν.

That is, tμν is fixed by R(b)
μν , which in turn is related to R(2)

μν by way of (15.39).
This allows us to calculate tμν through the second-order Ricci tensor and scalar

tμν = c4

8πGN

(
R(2)

μν − 1

2
ημν R(2)

)
. (15.40)

Before carrying out the calculation of tμν , we should clarify one point: the
concept of local energy of a gravitational field does not exist. Namely, one
cannot specify the gravitational energy at any single point in space. This is
so because the energy, being a coordinate-independent function of field, one
can always, according to the EP, find a coordinate (the local inertial frame)
where the gravity field vanishes locally. Saying it in another way, just as
in electromagnetism, we expect the energy density to be proportional to the
square of the potential’s first derivative. But, according to the flatness theorem,
the first derivative of the metric vanishes in the local inertial frame. Thus
we cannot speak of gravity’s local energy. Nevertheless, one can associate
an effective energy–momentum tensor with the gravitational field of finite
volume. Specifically, we can average over a spatial volume that is much larger
than the wavelength of the relevant gravitational waves to obtain

tμν = c4

8πG N

[〈
R(2)

μν

〉
− 1

2
ημν

〈
R(2)

〉]
(15.41)

where 〈. . .〉 stands for the average over many wave cycles.
Let us calculate the energy flux carried by a linearly polarized plane wave,

say the h+ state, propagating in the z direction. The metric and its inverse,
accurate up to first order in the perturbation, in the TT gauge can be written as

gμν =

⎛
⎜⎜⎝

−1 0 0 0
0 1 + h̃+ 0 0
0 0 1 − h̃+ 0
0 0 0 1

⎞
⎟⎟⎠ and gμν =

⎛
⎜⎜⎝

−1 0 0 0
0 1 − h̃+ 0 0
0 0 1 + h̃+ 0
0 0 0 1

⎞
⎟⎟⎠

(15.42)

where

h̃+ = h+ cos [ω (t − z/c)] . (15.43)

To obtain the energy–momentum tensor of the gravity wave by way of R(2)
μν as

in (15.40), we need first to calculate the Christoffel symbols by differentiating
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the metric of (15.42). It can be shown (Problem 15.4-a) that the nonvanishing
elements are

1
10 = 1

01 = 0
11 = 1

2

(
∂0h̃+ − h̃+∂0h̃+

)
(15.44)

and, similarly,

1
13 = 1

31 = −3
11 = −1

2
(∂0h̃+ − h̃+∂0h̃+). (15.45)

The Riemann tensor has the structure of (∂ + ). Since we are only inter-
ested in an O(h2) calculation, the above h̃+∂0h̃+ factor in the Christoffel
symbols can only enter in the ∂ terms, leading to the time-averaged term
of 〈h̃+∂0h̃+〉 ∝ 〈sin2ω(t − z/c)〉 = 0. Hence we will drop the h̃+∂0h̃+ terms
in (15.44) and (15.45), and calculate the (averaged) curvature tensor in (13.58)
by dropping the 〈∂〉 factors,

〈
R(2)

μν

〉
=

〈
α

αλ
λ
μν − α

μλ
λ
αν

〉
. (15.46)

A straightforward calculation (Problem 15.4-b) shows that

R(2)
11 = R(2)

22 = 0 and R(2)
00 = R(2)

33 = 1

2

(
∂0h̃+

)2
(15.47)

leading to a vanishing Ricci scalar

R(2) = ημν R(2)
μν = −R(2)

00 + R(2)
11 + R(2)

22 + R(2)
33 = 0. (15.48)

In particular, the effective energy density of the gravitational plane wave in
the plus polarization state, as given by (15.41) and (15.47), yields the first term
on the RHS of the following relation:

t00 = c4

16πGN

〈(
∂0h̃+

)2 +
(
∂0h̃×

)2
〉

(15.49)

where we have also added, the second term on the RHS, the corresponding con-
tribution from the cross-polarization state. If we choose to write the transverse
traceless metric perturbation as h̃+ ≡ hTT

11 = −hTT
22 and h̃× ≡ hTT

12 = hTT
21 and

hTT
3i = 0 (with i = 1, 2, 3), we then have

〈(
∂0h̃+

)2 +
(
∂0h̃×

)2
〉

=
〈(

∂t h
TT
i j

) (
∂t h

TT
i j

)〉
/
(

2c2
)

.

For a wave travelling at the speed c the energy flux being related to the density
by f = ct00, hence can be expressed it in terms of the metric perturbation as

f = c3

32πGN

〈(
∂t h

TT
i j

) (
∂t h

TT
i j

)〉
(15.50)

with repeated indices summed over. It is useful to recall the counterpart in
the more familiar electromagnetism. The EM flux is given by the field energy
density (multiplied by c) which is proportional to the square of the field, or the
square of the time derivatives of the (vector) potential. Equation (15.50) shows
that a gravitational wave is just the same, with the proportionality constant
built out of c and GN. One can easily check that c3/GN has just the right units



978–0–19–957364–6 15-Cheng-c15 Cheng (Typeset by SPi, Chennai) 350 of 358 September 24, 2009 17:51

350 Linearized theory and gravitational waves

(energy times time per unit area). It is a large quantity, again reflecting the
stiffness of spacetime—a tiny disturbance in the metric corresponds to a large
energy flux.

15.4.2 Energy loss due to gravitational radiation emission

In the previous subsection we have expressed the energy flux of a gravitational
wave in terms of the metric perturbation hi j = gi j − g(b)

i j . Here we will relate
hi j to the source of a gravitational wave by way of the linearized Einstein
equation (15.21).

Calculate the wave amplitude due to quadrupole moments
We shall be working in the long-wavelength limit for a field-point far away
from the source. Let D be the dimension of the source. This limit corresponds
to

r � D large distance from source

λ � D long wavelength.

In such a limit we can approximate the integral over the energy–momentum
source in (15.21) as
∫

d3x′ Tμν

(
x′, t − ∣∣x − x′∣∣ /c

)

|x − x′| −→ 1

r

∫
d3x′Tμν

(
x′, t − r

c

)
(15.51)

because in the long wave limit7 the harmonic source Tμν ∝ cos
7The long-wavelength approximation means
small (D/λ) and small ωt as t ∼ D/c and
ω ∼ c/λ. ωt − 2π |x − x′|/λ will not change much when integrated over the source. To

calculate the energy flux through (15.50) we have, from (15.21) and (15.51),

hi j (x, t) = 4GN

c4r

∫
d3x′Ti j

(
x′, t − r

c

)
, (15.52)

where we have not distinguished between hi j and h̄i j as they are the same in
the TT gauge.

To calculate
∫

d3x′Ti j (x′) we find it convenient to convert it into a sec-
ond mass moment8 by way of the energy–momentum conservation relation

8Differentiating the conservation conditions
∂0∂μT μ0 = 0 leads to

∂2T 00

c2∂t2
= − ∂2T i0

c∂t∂xi
= − ∂

∂xi

∂T 0i

c∂t
.

We can apply the conservation relation
∂0T 0i + ∂ j T i j = 0 one more time to get

∂2T 00

c2∂t2
= + ∂2T i j

∂xi ∂x j
.

Multiply both sides by xk xl and integrate
over the source volume

∂2

c2∂t2

∫
d3xT 00xk xl =

∫
d3x

∂2T i j

∂xi ∂x j
xk xl

= 2
∫

d3xT kl .

To reach the last equality we have performed
two integrations-by-parts and discarded the
surface terms because the source dimension
is finite.

∂μT μν = 0, and express the integral as the time derivative of the moment
integral of the (0, 0) component of the energy–momentum tensor:

hi j (x, t) = 2GN

c4r

∂2

∂t2
Ii j

(
t − r

c

)
(15.53)

where Ii j is the second mass moment, after making the Newtonian approxi-
mation of the energy density as T00 = ρc2 with ρ(x) being the mass density,
given by

Ii j =
∫

d3xρ (x) xi x j . (15.54)

We have already explained that, just as in the electromagnetic case, there
is no monopole radiation (Birkhoff’s theorem). But unlike electromagnetism,
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there is also no gravitational dipole radiation because the second-order time
derivative of the dipole moment

∂2
t d =

∫
d3xρ (x) v̇ = 0 (15.55)

is the total force on the system. It vanishes for an isolated system (reflecting
momentum conservation). Thus the leading gravitational radiation must be
quadrupole radiation, as shown in (15.53) and (15.54).

Summing over the flux in all directions in the TT gauge
The energy flux we need to calculate is, according to (15.50), directly related
to the metric perturbation hi j in the traceless-transverse gauge, while the result
(15.53) shows that hi j is given by the quadrupole moment Ii j . To have the
mass moment with the same traceless and transverse structure as the metric
perturbation, hTT

i j , we must apply the traceless-transverse projection operator
onto the mass moment of (15.54). Consider a plane wave propagating in
an arbitrary direction, specified by the unit vector �n = �r/r . The projection
operator that imposes the transversality condition is

�i j = δi j − ni n j , (15.56)

clearly satisfying the condition ni�i j = 0. As it turns out, the algebra will be
simplified if we work with the “reduced mass moment” by subtracting out a
term proportional to the trace I = δi j Ii j :

Ĩi j = Ii j − 1

3
δi j I, (15.57)

which is traceless, δi j Ĩi j = 0. However, one finds that the resultant projection
�il� jl Ĩkl is still not traceless. It is not too difficult to find (Problem 15.5) the
traceless-transverse reduced mass moment to be

Ĩ TT
i j = �ik� jl Ĩkl − 1

2
�i j�kl Ĩkl . (15.58)

It is then straightforward to find (Problem 15.6) that

Ĩ TT
i j Ĩ TT

i j = 1

2

[
2 Ĩi j Ĩi j − 4 Ĩik Ĩilnknl + Ĩi j Ĩklni n j nknl

]
. (15.59)

To calculate the total power emitted by the source, we need to integrate over
the flux for a wave propagating out in all directions. We obtain9

9For this we need to use the formulas
∫

d� = 4π

∫
nknl d� = 4π

3
δkl

∫
ni n j nknl d� = 4π

15

(
δi j δkl

+δk j δil + δikδ jl
)
.

These integration results are easy to under-
stand: the only available symmetric tensor
that is invariant under rotation is the Kro-
necker delta δi j . After fixing the tensor struc-
ture of the integrals, the coefficients in front,
4π/3 and 4π/15, can be obtained by con-
tracting the indices on both sides and using
the relation δi j δi j = 3.

∫
1

2

[
2 Ĩi j Ĩi j − 4 Ĩik Ĩilnknl + Ĩi j Ĩklni n j nknl

]
d�

= 2π

(
2 − 4

3
+ 2

15

)
Ĩi j Ĩi j = 8π

5
Ĩi j Ĩi j . (15.60)

Integrating the flux (15.50), with the wave amplitude hi j given by (15.53), over
all directions by using the result of (15.60) we arrive at the expression for the
total luminosity

d E

dt
=

∫
f · r2d� = GN

5c5

〈(
∂3

t Ĩ TT
i j

) (
∂3

t Ĩ TT
i j

)〉
. (15.61)
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Fig. 15.4 The Arecibo Radio telescope.
(Courtesy of the NAIC–Arecibo Observatory,
a facility of the NSF.)

Let us recapitulate: the energy carried away by a gravitational wave must
be proportional to the square of the time-derivative of the wave amplitude
(recall the Poynting vector), which is the second derivative of the quadrupole
moment, cf. (15.53). The energy flux falls off like r−2. To get the total
luminosity by integrating over a sphere of radius r , the dependence of radial
distance disappears. The factor of GNc−5 must be present on dimensional
grounds. The detailed calculation fixes the proportional constant of 1/5 and
we have the gravitational wave luminosity in the quadrupole approximation
displayed above.

15.4.3 Hulse–Taylor binary pulsar

A radio survey, using the Arecibo Radio Telescope in Puerto Rico (Fig. 15.4),
for pulsars in our galaxy made by Russel Hulse and Joseph Taylor discovered
the unusual system PSR 1913 + 16. Observations made since 1974 allowed
them to check GR to great precision including the verification of the existence
of gravitational waves as predicted in Einstein’s theory.

From the small changes in the arrival times of the pulses recorded in the past
decades a wealth of properties of this binary system can be extracted. This is
achieved by modeling the orbit dynamics and expressing these in terms of the
arrival time of the pulse. Different physical phenomena (such as bending of the
light, periastron advance, etc.) are related to the pulse time through different
combinations of system parameters. In this way the masses and separation of
the stars and the inclination and eccentricity of their orbit can all be deduced
(see Table 15.2). It is interesting to note that these two neutron star have just the
masses 1.4M� of the Chandrasekhar limit (first mentioned in Section 8.3.1).

In this section we shall demonstrate that from these numbers, without any
adjustable parameters, we can compute the decrease (decay) of the orbital
period due to gravitational radiation by the orbiting binary system. Instead of
a full-scale GR calculation, we shall consider the simplified case of two equal
mass stars in a circular orbit (Fig. 15.5), as all essential features of gravitational
radiation and orbit decay can be easily computed. At the end we then quote the
exact GR expression for the pulsar and its companion Mp �= Mc in an orbit
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Table 15.2 Parameters of the Hulse–Taylor binary pulsar system
as compiled by Weisberg and Taylor (2003).

Pulsar mass Mp = 1.4408 ± 0.0003 M�
Companion mass Mc = 1.3873 ± 0.0003 M�
Eccentricity e = 0.6171338 ± 0.000004
Binary orbit period Pb = 0.322997462727 d
Orbit decay rate Ṗb = (−2.4211 ± 0.0014) × 10−12 s/s

with high eccentricity as a straightforward modification of the result obtained
by our simplified calculation.

Fig. 15.5 A binary of two equal masses cir-
culating each other in a circular orbit with
angular frequency ωb .

Energy loss due to gravitational radiation
Let us first concentrate on the instantaneous position of one of the binary stars
as shown in Fig. 15.5:

x1 (t) = R cos ωbt, x2 (t) = R sin ωbt, x3 (t) = 0.

From this we can calculate the second mass moment according to (15.54),

I11 = 2MR2 cos2 ωbt

I22 = 2MR2 sin2 ωbt

I12 = 2MR2 sin ωbt cos ωbt

leading to the traceless reduced moment as defined in (15.57),

Ĩab = Iab − 1

2
δab I = Iab − MR2δab

so that

Ĩ11 = MR2 cos 2ωbt

Ĩ22 = −MR2 cos 2ωbt

Ĩ12 = MR2 sin 2ωbt.

The quadrupole formula (15.61) for luminosity involves time derivatives. For
the simple sinusoidal dependence given above, each derivative just brings
down a factor of 2ωb; together with the averages 〈sin2〉 = 〈cos2〉 = 1/2, we
obtain the rate of energy loss due to gravitational radiation:

d E

dt
= GN

5c5 (2ωb)
6
〈

Ĩ11
2 + Ĩ22

2 + 2 Ĩ12
2
〉
= 128GN

5c5
ω6

b M2 R4. (15.62)

From energy loss to orbital decay
Energy loss leads to orbital decay, namely the decrease in orbital period Pb of
the binary system. We start the calculation of this orbital period change through
the relation (d Pb)/Pb ∝ −(d E)/E . Again we shall only work out the simpler
situation of a binary pair of equal mass M separated by 2R in circular motion.
The total energy being

E = MV 2 − GN M2

2R
(15.63)
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with velocity determined by the Newtonian equation of motion MV 2/R =
GN M2/(2R)2 satisfies

V 2 = GN M

4R
(15.64)

so that the total energy of the binary system (15.63) comes out to be

E = −GN M2

4R
. (15.65)

We wish to have an expression of the energy in terms of the orbital period by
replacing R using (15.64)

R = GN M

4V 2
= GN M

4

(
2π R

Pb

)−2

or R3 = GN M

16π2
P2

b . (15.66)

Plugging this back into (15.65), we have

E = −M

(
π MGN

2

)2/3

P−2/3
b . (15.67)

Through the relation, d E/E = − 2
3 d Pb/Pb, the rate of period decrease Ṗb ≡

d Pb/dt can be related to the energy loss rate

Ṗb = −3Pb

2E

(
d E

dt

)
. (15.68)

Substituting in the expression (15.67) for E in the denominator, (15.62) for
(d E/dt) where the wave frequency is given by the orbit frequency ωb =
2π/Pb and where R is given by (15.66), we obtain the expression for orbital
decay rate in this simplified case of two equal masses in circular orbit:

Ṗb = −48π

5c5

(
4πGN M

Pb

)5/3

. (15.69)

That the orbit for the Hulse–Taylor binary, rather than circular, is elliptical
with high eccentricity can be taken into account (Peters and Mathews 1963)
with the result involving a multiplicative factor of

1 + (73/24)e2 + (37/96)e4

(1 − e2)7/2
= 11.85681, (15.70)

where we have use the observed binary orbit eccentricity as given in Table 15.2.
That the pulsar and its companion have slightly different masses, Mp �=
Mc, means we need to make the replacement (2M)5/3 −→ 4Mp Mc(Mp +
Mc)

−1/3. The exact GR prediction is found to be

Ṗb GR = −192π

5c5

1 + (73/24)e2 + (37/96)e4

(1 − e2)7/2

(
2πGN

Pb

)5/3 Mp Mc

(Mp + Mc)1/3

= − (2.40247 ± 0.00002) × 10−12 s/s. (15.71)

This is to be compared to the observed value corrected for the galactic accel-
eration of the binary system and the sun, which also cause a change of orbit
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Fig. 15.6 Gravitational radiation damping
causes orbital decay of the Hulse–Taylor
binary pulsar. Plotted here is the accumulat-
ing shift in the epoch of periastron (Weis-
berg and Taylor, 2003). The parabola is the
GR prediction, and observations are depicted
by data points. In most cases the measure-
ment uncertainties are smaller than the line
widths. The data gap in the 1990s reflects the
downtime when the Arecibo Observatory was
being upgraded.

period Ṗb gal = −(0.0125 ± 0.0050) × 10−12 s/s. From the measured values
given in Table 15.2, we then have

Ṗb corrected = Ṗb observed − Ṗb gal

= − (2.4086 ± 0.0052) × 10−12 s/s, (15.72)

in excellent agreement with the theoretical prediction shown in (15.71). This
result (Fig. 15.6) provides strong confirmation of the existence of gravitational
radiation as predicted by Einstein’s theory of general relativity.

With the confirmation of the existence of gravitational radiation according
to Einstein’s general theory of relativity. The next stage will be the detec-
tion of gravitational waves through interferometer observations to confirm
the expected wave kinematics, and tests of various strong field situations.
But just like all pioneering efforts of fresh ways to observe the universe,
gravitational wave observatories will surely discover new phenomena that
will deepen and challenge our understanding of astronomy, gravitation and
cosmology.

Review questions

1. Give a qualitative discussion showing why one would
expect gravitational waves from Einstein’s GR theory of
gravitation but not from Newton’s theory.

2. Why is it important to have a gravitational wave
observatory?

3. What approximation is made to have the linearized theory
of general relativity? In this framework, how should we
view the propagation of gravitational waves?

4. What are the differences and similarities between electro-
magnetic and gravitational waves?
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5. What is a gauge transformation in the linearized theory?
What is the Lorentz gauge? Can we make further gauge
transformations within the Lorentz gauge?

6. Consider a set of test particles, all of them lying in
a circle except one at the center. When a gravitational
wave with the + polarization passes through them what
will be the relative displacements of these particle going
through one period of the wave? How would the rela-
tive displacement be different if the polarization is of ×
type?

7. Give a qualitative argument showing that the wave strain
is of the order ψGN M/rc2 where ψε is a relativistic
correction factor typically less than unity. Such a strain
would be O(10−21) when the wave is generated by a

solar mass source in the Virgo Cluster (r ≈ 15 Mpc)
from us.

8. Using what you know of the Poynting vector as the energy
flux of an EM wave, guess the form of energy flux in terms
of the gravitational wave amplitude. What should be the
proportionality constant (up to some numerical constant
that can only derived by detailed calculation)?

9. The leading term in gravitational radiation is quadrupole.
Why is there no monopole and dipole radiation?

10. Evidence for gravitational waves is obtained by the study
of the Hulse–Taylor binary pulsar system. What is being
observed? Which results show strong evidence for the
existence of gravitation waves as predicted by GR?

Problems

15.1 Gauge transformations

(a) Show that the gauge transformation for the trace-
reversed perturbation h̄μν

h̄′
αβ = h̄αβ − ∂αχβ − ∂βχα + ηαβ(∂χ)

follows from (15.17) and (15.19).

(b) Demonstrate the existence of the Lorentz gauge by
showing that, starting with an arbitrary coordinate
system where ∂μh̄μν �= 0, one can always find a
new system such that ∂μh̄′

μν = 0 with a gauge vec-
tor function χμ being the solution to the inhomoge-
neous wave equation �χν = ∂μh̄μν . This also means
that one can make further coordinate transformations
within the Lorentz gauge, as long as the associated
gauge vector function satisfies the wave equation

�χν = 0. (15.73)

(c) The solution to Eq (15.73) may be written as
χν = Xνeikx where kα is a null-vector. Show that the
four constants Xν can be chosen so that the polar-
ization tensor in the metric perturbation hμν(x) is
traceless ε

μ
μ = 0 and every zeroth component van-

ishes εμ0 = 0.

(d) From the results discussed above, show that there
are two independent elements in the polarization
tensor εμν .

15.2 The Schwarzschild solution Obtain the exterior solu-
tion to the linearized Einstein equation (15.20) for a
spherical source. Since it is of the form of a stan-
dard wave equation, the spherically symmetric solu-
tion should have the same form as the 1/r potential:

h̄μν = Cμν

r
, (15.74)

where Cμν is a constant tensor. Show that the Lorentz
gauge condition (15.18) implies that every element
of this tensor vanishes except C00, which is fixed
by its Newtonian limit to be C00 = 2r∗, twice the
Schwarzschild radius. From this you are asked to
show that the resultant metric may be written in a
spherical coordinate system as

gμν = diag

[(
−1 + r∗

r

)
,

(
1 + r∗

r

)
, r2, r2 sin2 θ

]
,

(15.75)
which approximates the Schwarzschild metric of
(14.54) up to a correction O(r∗2). Beware of the fact
that the linearized theory developed in this chapter,
hence Eq. (15.20), assumes a flat space metric in the
Cartesian coordinate ημν = diag(−1, 1, 1, 1). This is
the coordinate system you should use to start your
discussion; only at later stage should you change it to
a spherical one—in order to compare your result with
(14.54).

15.3 Wave effect via the deviation equation As we have
shown in Section 15.3.1, a gravitational wave can only
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be detected through the tidal effect. Since the equation
of geodesic deviation (Problem 14.4) is an efficient
description of the tidal force, show that the results
of (15.30) and (15.31) can be obtained by using this
equation.

15.4 
μ
νλ and R(2)

μν in the TT gauge Show that the
Christoffel symbols of (15.44) and (15.45), as well as
the second-order Ricci tensor (15.47), are obtained in
the TT gauge with the metric given in (15.42).

15.5 Trace calculation of Ĩ TT
i j We claimed that Ĩ TT

i j , as
defined by (15.58), is traceless. Prove this by explicit
calculation.

15.6 Derive the relation (15.59) Carry out the contraction
of the two Ĩ TT

i j , defined by (15.58), to show

Ĩ TT
i j Ĩ TT

i j = 1

2
2 Ĩi j Ĩi j − 4 Ĩik Ĩil nknl + Ĩi j Ĩkl ni n j nknl .

(15.76)
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