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• The constancy of light speed c allows us to interpret geometrically the
relativistic invariant interval s as a length in the 4D manifold, called
Minkowski spacetime, with a metric equal to diag(-1,1,1,1).

• The physics of SR, such as time dilation and length contraction, fol-
lows directly from the Lorentz transformation, which is a rotation in
Minkowski spacetime.

• We introduce 4-vectors as the simplest example of tensors in
Minkowski space, and construct their scalar products. Besides the
4-position vector xμ, we also introduce the 4-velocity Uμ and 4-
momentum pμ, with components that transform into each other under
a Lorentz transformation.

• The principal features of a spacetime diagram and its representation of
Lorentz transformations are presented. In particular, the causal structure
of SR is clarified in terms of lightcones in a spacetime diagram.

The new kinematics of special relativity discussed in the previous chapter
can be expressed elegantly in the geometric formalism of a four-dimensional
manifold, known as spacetime, as first formulated by Herman Minkowski.
The following are the opening words of an address he delivered at the 1908
Assembly of German National Scientists and Physicians held in Cologne,
Germany.

The views of space and time which I wish to lay before you have sprung from the soil
of experimental physics, and therein lies their strength. They are radical. Henceforth
space by itself, and time by itself, are doomed to fade away into mere shadows, and
only a kind of union of the two will preserve an independent reality.

In this geometric formulation, the stage on which physics takes place is
Minkowski spacetime with the time coordinate being on an equal footing with
the spatial coordinates. Here we introduce flat spacetime, which is the space-
time that is appropriate for the physics of special relativity. This prepares us
for the study of the larger framework of curved spacetime in general relativity.
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3.1 Minkowski spacetime

The fact that measurement results for time, as well as space, may be different
for different observers means that time must be treated as a coordinate in much
the same way as the spatial coordinates. The unification of space and time can
be made explicit when space and time coordinates appear in the same position
vector. A coordinate transformation may be regarded as a rotation in this 4D
space, with the possibility of changing space and time coordinates (t, x, y, z)
into each other—in much the same way the (x, y, z) coordinates change into
each other under an ordinary 3D rotation. The 4D Minkowski spacetime has
coordinates {xμ}. Henceforth, all Greek indices1 such as μ will have the range1Superscripts rather than subscripts are being

used because this is the customary mathe-
matical notation for coordinates in relativity,
and it is used because relativity is expressed
in tensor notation, which uses superscript
indices for “contravariant components” of
vectors and subscript indices for “covariant
components” of vectors. Tensor notation will
be explained in detail in Chapter 12. Until
then, we shall always denote components of a
4D vector by using a superscript index. That
is, we only need to work with contravariant
components.

0, 1, 2, 3. Namely,

xμ =
(

x0, x1, x2, x3
)

= (ct, x, y, z) . (3.1)

We have already shown in Section 2.4.2 that the interval between the coordi-
nate origin and the position coordinate xμ,

s2 = −c2t2 + x2 + y2 + z2, (3.2)

is a relativistic invariant. Namely, if we were to make a coordinate transforma-
tion, with the new coordinates being x ′μ = (ct ′, x ′, y′, z′), the corresponding
spacetime interval s′2 = −c2t ′2 + x ′2 + y′2 + z′2 would have the same value
s′2 = s2. In Section 2.4.2 we demonstrated this invariance by a calculation
using the explicit form of the Lorentz transformation. In Box 3.1, we present
another derivation, showing that this result follows directly from the basic
postulate that the speed of light, c, is the same in every reference frame: s
is absolute because c is absolute.

This interval �s has the physical significance of being directly related to the
proper time: �s2 = −c2�τ 2. Furthermore, we recall that this rest-frame time
τ is related to the coordinate time t by the relativistic time-dilation formula
of t = γ τ . As discussed in Box 3.1, for a light ray, this interval vanishes;
therefore, the concept of proper time is not applicable for a light ray. This is
entirely consistent with the fact that there does not exist a coordinate frame
in which the light velocity vanishes—that is, a frame in which light is at
rest.

In 4D Euclidean space with Cartesian coordinates (w, x, y, z), the invariant
length2 is given as s2 = w2 + x2 + y2 + z2. The minus sign in front of the2We are familiar with the idea that in 3D

Euclidean space the relation between coordi-
nates and squared length is l2 = x2 + y2 +
z2; hence, this straightforward generalization
to 4D Euclidean space. However, in the fol-
lowing presentation, we shall refer to any
such (quadratic in coordinates) invariant as
a squared “length,” regardless of whether we
can actually visualize it as a quantity that can
be measured by a yardstick or not.

c2t2 term in (3.2) means that if we regard ct as the fourth dimension, the
relationship between coordinate and length measurements differs from that in
Euclidean space. We say that Minkowski space is pseudo-Euclidean. In Section
3.1.1, we shall introduce generalized coordinates and distance measurements
(via the metric) in Minkowski spacetime. In subsequent chapters, the same for-
malism will be shown to be applicable to coordinates in the warped spacetime
of general relativity.

Box 3.1 � s is absolute because c is absolute

In the geometric formulation of special relativity, the spacetime interval

�s2 = �x2 + �y2 + �z2 − c2�t2, (3.3)
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where �x = x2 − x1, etc. plays a central role. Here we show that the
invariance under a Lorentz transformation of this interval follows directly
from the basic postulate of special relativity: the speed of light, c, is the
same in every inertial reference frame. The interval �s is absolute because
c is absolute (Landau and Lifshitz, 1975).

First consider the special case in which the two events, (�x1, t1) and
(�x2, t2), are connected by a light signal. The interval �s2 must vanish
because in this case |��x |/�t = c. When observed in another frame O ′,
this interval also has a vanishing value �s′2 = 0, because the velocity of
light remains the same in the new frame O ′. From this, we infer that for
any interval �s connecting two events (not necessarily by a light signal),
�s and �s′ must always be proportional to each other (because, if �s2

vanishes, so must �s′2):

�s′2 = F �s2. (3.4)

The proportionality factor F can in principle depend on the coordinates
and the relative velocity of these two frames: F = F(�x, t, �v). However
the requirement that space and time be homogeneous (i.e. there is no
privileged point in space and time) implies that there cannot be any depen-
dence on �x and t . That space is isotropic means that the proportionality
factor cannot depend on the direction of the relative velocity �v of the two
frames. Thus, we can at most have it be dependent on the magnitude of
the relative velocity, F = F (v). We are now ready to show that, in fact,
F (v) = 1.

Besides the system O ′, which is moving with velocity �v with respect to
system O , let us consider yet another inertial system O ′′, which is moving
with a relative velocity of −�v with respect to the O ′ system:

O
�v−→ O ′ −�v−→ O ′′. (3.5)

From the above consideration, and applying (3.4) to these frames:

�s′2 = F (v) � s2,

�s′′2 = F (v) �s′2 = [F (v)]2 � s2. (3.6)

However, it is clear that the O ′′ system is in fact just the O system. This
requires that F(v)2 = 1. The solution F(v) = −1 being nonsensical, we
conclude that this interval �s is indeed an invariant: �s′′ = �s′ = � s.
Every inertial observer will see the same light velocity, and will therefore
obtain the same value for this particular combination of space and time
intervals.

e2

e1

Fig. 3.1 Basis vectors for a 2D surface.

3.1.1 Basis vectors, the metric and scalar product

To set up a coordinate system for the 4D Minkowski space means to choose
a set of four basis vectors {eμ}, where μ = 0, 1, 2, 3. Each eμ, for a definite
index value, is a 4D vector. (Figure 3.1 illustrates a case for a 2D space.) In
contrast to the Cartesian coordinate system in Euclidean space (see Box 2.1),
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this in general is not an orthonormal set, eμ · eν �= δμν ,3 Nevertheless, we can3δμν is the Kronecker delta:

δμν =
{

1;
0,

μ = ν

μ �= ν.

We can interpret its values as the elements of
an identity matrix: [1]μν = δμν .

represent such a collection of scalar products among the basis vectors as a
symmetric matrix, called the metric, or the metric tensor:

eμ · eν ≡ gμν. (3.7)

We can display the metric as a 4 × 4 matrix with elements being dot products
of basis vectors:

[g] =
⎛
⎝

g00 g01 ..

g10 g11 ..

⎞
⎠ =

⎛
⎝

e0 · e0 e0 · e1 ..

e1 · e0 e1 · e1 ..

⎞
⎠ . (3.8)

Thus, the diagonal elements are the (squared) lengths of the basis vectors,
|e0|2, |e1|2, etc. while the off-diagonal elements represent their deviations
from orthogonality. Any set of mutually perpendicular bases would be rep-
resented by a diagonal metric matrix, with diagonal entries of 1 if the basis
vectors were of unit length (which is not required). For a Euclidean space with
Cartesian coordinates, we have gμν = δμν .

We can expand any 4D vector4 in terms of the basis vectors,4We denote 4D vectors with boldfaced let-
ters, such as “A”, and 3D vectors with an
arrow on the top, such as “ �A”. A =

∑
μ

Aμeμ ≡ Aμeμ, (3.9)

where the coefficients of expansion {Aμ} are labeled with superscript indices.
From this point on, we shall adopt the Einstein summation convention of omit-
ting the explicit display of the summation sign (

∑
) whenever we have a pair

of repeated indices5 in one term of an expression, such as μ in (3.9). Con-5Such repeated indices are called
“dummy indices” and we are free
to change their names, for example,
Aμeμ = Aνeν = Aλeλ, etc. Also, note that
although we apply this rule to any pair of
repeated indices, strictly speaking it should
always be a pair of repeated indices with
one superscript index and the other subscript
index. See Chapter 12 for further details.

sider the scalar product of two vectors and make their respective expansions,
A · B = (Aμeμ) · (Bνeν) = (eμ · eν)Aμ Bν , which can be written as

A · B = gμν AμBν, (3.10)

or displayed in matrix form as

A · B = (
A0 A1 ..

)
⎛
⎝

g00 g01 ..

g10 g11 ..

⎞
⎠

⎛
⎝

B0

B1

⎞
⎠ . (3.11)

The metric allows us to express the scalar product in terms of the vector
components. A key feature is that all the indices are summed over (said to
be “contracted”) and the result has no free index left over. A scalar means
that it is the same in all coordinates; it is unchanged under a transformation.
In particular for the case A = B = x, the position vector, then the invariant
squared length s2 = x · x can be written by (3.10) as

s2 = gμνxμxν . (3.12)

We refer to this equation as the metric equation; it plays a central role
in the geometric formulation of relativity. The coordinate-dependent metric
turns the coordinate-dependent position components6 {xμ} into a coordinate-

6Here xμ are understood to be the interval
�xμ between the position point at xμ and the
origin of the coordinate system. independent length s2.
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3.1.2 The Minkowski metric and Lorentz transformation

In Minkowski space we have the position 4-vector xμ = (x0, x1, x2, x3) =
(ct, x, y, z); the invariant length s2 = −c2t2 + x2 + y2 + z2 can be identi-
fied with the scalar product formula of (3.10) and (3.11):

s2 = x · x = (
x0 x1 x2 x3

)
⎛
⎜⎜⎝

−1
1

1
1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x0

x1

x2

x3

⎞
⎟⎟⎠ (3.13)

= ημνxμxν . (3.14)

Thus, the Minkowski space, with a pseudo-Cartesian coordinate system, has
the metric

gμν = ημν = diag (−1, 1, 1, 1) . (3.15)

Because the metric ημν is constant (independent of position and time),
Minkowski spacetime is a flat space,7 as opposed to a curved space. It differs 7In Chapter 5 we shall present a brief intro-

duction to the geometric description of a
curved space. We start with the familiar 2D
space. Thus, say, a horizontal sheet of paper
is “flat” and a spherical surface is “curved.”
This constant metric is a sufficient but not
a necessary condition for a flat space. A flat
plane can still have a position-dependent met-
ric if we adopt a system such as the polar
coordinate system.

from the familiar Euclidean space by having a negative η00 = −1. We can
think of x0 as having an imaginary length. As we shall discuss in subsequent
chapters, the spacetime manifold is warped in the presence of matter and
energy. In Einstein’s general theory of relativity, curved spacetime is the gravi-
tational field and the metric gμν(x) for such a warped spacetime is necessarily
position-dependent. The pseudo-Euclidean flat spacetime is obtained only in
the absence of gravity. This is the limit of special relativity.

Lorentz transformations are the coordinate transformations between two
frames moving with a constant velocity with respect to each other in
Minkowski spacetime.8 For example a boost with velocity v in the x1 direction 8In our presentation, we shall restrict our-

selves to coordinate transformations under
which the coordinate origin (t, x) = (0, 0)

is fixed. These are Lorentz transforma-
tions. The combined transformations of a
Lorentz and a coordinate translation (xμ →
xμ + aμ with aμ being a constant) is called
a Poincaré transformation.

changes the vector components xμ → x ′μ as shown in (2.11) of the previous
chapter. We can write this transformation in matrix-component form as

⎛
⎜⎜⎝

x ′0
x ′1
x ′2
x ′3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x0

x1

x2

x3

⎞
⎟⎟⎠ , (3.16)

where β and γ are defined in (2.12). We shall demonstrate in Box 3.2 that this
explicit form of the Lorentz transformation follows directly from the require-
ment that the transformation leaves the length (in fact, any scalar product) and
the metric of the space invariant. The Lorentz coordinate transformation of
(3.16) may be written in matrix-component form as

x ′μ = Lμ
νxν . (3.17)

L denotes the 4 × 4 Lorentz transformation matrix, with the left index (μ)

being the row index and the right index (ν) the column index.9 The components 9We follow this convention regardless of
whether the index is a superscript or
subscript.

xμ being those of a prototype 4-vector, any 4-vector A must have compo-
nents Aμ that transform into components A′μ of the same vector in another
coordinate system, under a boost in the x1 direction, in exactly the same
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way as given in (3.16):

A′μ = Lμ
ν Aν . (3.18)

Box 3.2 Lorentz transformation as a rotation in 4D spacetime

The key feature of Minkowski spacetime is that it has the pseudo-Euclidean
metric of (3.15). A (squared) length in this space is given by s2 = −c2t2 +
x2 + y2 + z2. We can make this identification even more obvious by work-
ing with an imaginary coordinate w = ict so that s2 = w2 + x2 + y2 + z2.
The coordinate transformation L can be thought of as a “rotation” of the
4D spacetime coordinates.10Any rotational transformation (by definition)

10For an introductory discussion of rotation,
see Box 2.1.

preserves the length of vectors. This condition that a rotational transfor-
mation be length preserving is enough to fix the explicit form of the
Lorentz transformation.11 Consider the relation between two inertial frames

11A more formal proof can be found in
Chapter 12. The components of a vector Aμ

change under a coordinate transformation as
in (3.18) with its length being an invari-
ant, g′

μυ A′μ A′υ = gμυ Aμ Aυ . If L does not
change the metric g′ = g, the correspond-
ing symmetry is called an isometry. Such a
transformation must satisfy the “generalized
orthogonality condition,” LgLᵀ = LᵀgL =
g. In Euclidean space with g = 1, this
reduces to the familiar statement (Problem
3.3) that the transformation matrix must be an
orthogonal matrix (i.e. the transposed matrix
is the inverse matrix: Lᵀ = L−1). Further
details will be provided in Chapter 12. In
Problems 3.4 and Problem 12.7, the reader
will be asked to show that the explicit form of
L can be determined from such conditions.

connected by a boost (with velocity v) in the +x direction. Since the
(y, z) coordinates are not affected, we have effectively a two-dimensional
problem. The rotation relations are just like (2.3):

w′ = cos φ w + sin φ x,

x ′ = − sin φ w + cos φ x . (3.19)

Plugging in w = ict , we have

ct ′ = cos φ ct − i sin φ x,

x ′ = −i sin φ ct + cos φ x . (3.20)

Reparametrizing the rotation angle as φ = iψ and using −i sin(iψ) =
sinh ψ and cos(iψ) = cosh ψ ,12 we get

12Recall the identities sinh ψ = (eψ −
e−ψ)/2 and sin φ = (eiφ − e−iφ)/2i;
also, cosh ψ = (eψ + e−ψ)/2 and cos φ =
(eiφ + e−iφ)/2.

ct ′ = cosh ψ ct + sinh ψ x,

x ′ = sinh ψ ct + cosh ψ x . (3.21)

Thus, in the (ct, x) space a Lorentz boost transformation has the matrix
form of

[L (ψ)] =
(

cosh ψ sinh ψ

sinh ψ cosh ψ

)
. (3.22)

To relate the parameter ψ , called the rapidity parameter,13 to the boost13The rapidity parameter ψ has the property
that, while the addition of relative velocities
is complicated as in (2.22), relative rapidity
is additive because the hyperbolic tangent,
which is the velocity, satisfies the trigonome-
try identity

tanh (ψ1 ± ψ2) = tanh ψ1 ± tanh ψ2

1 ± tanh ψ1 tanh ψ2
.

velocity v, we concentrate on the coordinate origin x ′ = 0 of the O ′ system.
Plugging x ′ = 0 into (3.21):

x ′ = 0 = ct sinh ψ + x cosh ψ or
x

ct
= − sinh ψ

cosh ψ
. (3.23)

The coordinate origin x ′ = 0 moves with velocity v = x/t along the x axis
of the O system:

v = x

t
= −c

sinh ψ

cosh ψ
or

sinh ψ

cosh ψ
= −v

c
= −β. (3.24)
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From the identity cosh2 ψ − sinh2 ψ = 1, which may be written as

cosh ψ

√
1 − (sinh2 ψ/ cosh2 ψ) = 1, we find

cosh ψ = γ and sinh ψ = −β cosh ψ = −βγ, (3.25)

where β = v/c and γ = (1 − β2)−1/2. The coordinate transformation in
matrix form (3.22) is found to be

(
ct ′
x ′

)
= γ

(
1 −β

−β 1

) (
ct
x

)
, (3.26)

which is just the Lorentz transformation stated in (3.16).

3.2 Four-vectors for particle dynamics

As a further application of Minkowski 4-vectors, we consider some of the basic
quantities involved in the description of particle dynamic: velocity, energy
and momentum, as well as acceleration. We shall see that many interesting
relativistic features can already be deduced by the proper construction of
quantities (vectors, scalars, etc.) that have definite transformation properties
under 4D rotation (Lorentz transformation) in Minkowski spacetime.

3.2.1 The velocity 4-vector

We have already shown in Chapter 2 [see Eqs. (2.19)–(2.22)] that the velocity
components have rather complicated Lorentz transformation properties. This
is because ordinary velocity dxμ/dt is not a proper 4-vector; namely

dx ′μ

dt ′
�= Lμ

ν

dxν

dt
as t ′ �= t. (3.27)

While dxμ is a 4-vector
(
dx ′μ = Lμ

ν dxν
)
, the ordinary time coordinate t is

not a Lorentz scalar—it is a component of a 4-vector: xμ = (
ct, x1, x2, x3

)
.

Consequently, the quotient dxμ/dt cannot be a 4-vector. This suggests that, in
order to construct a velocity 4-vector, we should differentiate the displacement
with respect to the proper time τ , which is a Lorentz scalar (recall that s2 =
−c2τ 2 is invariant under a Lorentz transformation):

Uμ = dxμ

dτ
, (3.28)

and we have, as in (3.18),

U ′μ = Lμ
ν U ν . (3.29)

The relation between the 4-velocity Uμ and dxμ/dt can be readily deduced,
as coordinate time and proper time are related by the time dilation relation of
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t = γ τ , with

γ =
(

1 − v2

c2

)− 1
2

and v =
∣∣∣vi

∣∣∣ with vi = dxi

dt
. (3.30)

We have the components of 4-velocity related to the ordinary velocity compo-
nents vi with (i = 1, 2, 3) as

Uμ = dxμ

dτ
= γ

dxμ

dt
= γ

(
c, v1, v2, v3

)
. (3.31)

As an instructive exercise (Problem 3.7), the reader is invited to deduce the
velocity transformation rule (2.22) from the fact that Uμ is a 4-vector as
in (3.29). It is easy to check that the “4-velocity length squared” |U|2 ≡
ημνUμU ν is a Lorentz scalar, see Eq. (3.10), with the same value in every
coordinate frame:

|U|2 = γ 2(−c2 + v2) = −c2, (3.32)

where we have used the definition of γ as given in (3.30). For any material
particle (v < c), we have |U|2 = −c2. For photons (and any other particles
with zero rest mass14), which can only travel at v = c, Eq. (3.32) would have14For massless particles in general, see the

discussion below as well as that at the end
of Section 3.2.2.

a vanishing RHS:

|U|2 = γ 2(−c2 + c2) = 0. (3.33)

Thus Uμ is a null 4-vector. We note that because there is no rest frame for a
photon, the concept of “the proper time of the photon” does not exist. In that
case, one must replace τ by some curve parameter (say, λ) of the photon’s
trajectory, xμ (λ); and the 4-velocity invariant becomes

|U|2 = ημνUμU ν = ημν

dxμ

dλ

dxν

dλ
, (3.34)

which vanishes because the invariant spacetime separation for light is
ημνdxμdxν = 0. That is, the 4-velocity for a light ray has zero length in
spacetime (a null 4-vector).

3.2.2 Relativistic energy and momentum

For momentum, we naturally consider the product of the invariant mass m with
the 4-velocity of (3.31):

pμ ≡ mUμ = γ
(
mc, mvi

)
, (3.35)

with mvi being the components of the nonrelativistic 3-momentum �p = m�v.
The spatial components of the relativistic 4-momentum pμ are the components
of the relativistic 3-momentum, pi = γ mvi , which reduces to mvi in the
nonrelativistic limit of γ = 1. What then is the zeroth component of the 4-
momentum? Let’s take its nonrelativistic limit (v � c):

p0 = mcγ = mc

(
1 − v2

c2

)− 1
2
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NR−→ mc

(
1 + 1

2

v2

c2
+ · · ·

)
= 1

c

(
mc2 + 1

2
mv2 + · · ·

)
. (3.36)

The presence of the kinetic energy term 1
2 mv2 in the nonrelativistic limit natu-

rally suggests that we interpret cp0 as the relativistic energy E = cp0 = γ mc2,
which has a nonvanishing value mc2 even when the particle is at rest

pμ = (
E/c, pi

)
. (3.37)

According to (3.32) and (3.35), the invariant square of the 4-momentum
ημν pμ pν must be − (mc)2. Plugging in (3.37), we obtain the important rel-
ativistic energy–momentum relation:

E2 =
(

mc2
)2 + ( �pc)2 = m2c4 + �p2c2. (3.38)

Once again, for a particle with mass,15 we have the components of the rela- 15The concept of a velocity-dependent mass
m∗ ≡ γ m is sometimes used in the literature,
so that pi =m∗vi and E = m∗c2. In our dis-
cussion we will avoid such usage and restrict
ourselves only to the Lorentz scalar mass m,
which equals m∗ in the rest frame of the par-
ticle

(
m∗∣∣

v=0 = m
)
, hence, m is called the

rest mass

tivistic 3-momentum and the relativistic energy as

pi = γ mvi and E = γ mc2. (3.39)

Thus the ratio of a particle’s momentum to its energy can be expressed as that
of velocity over c2

pi

E
= vi

c2
. (3.40)

Massless particles always travel at speed c
With m = 0, we can no longer define the 4-momentum as pμ = mUμ; nev-
ertheless, since a massless particle has energy and momentum, we can still
assign a 4-momentum to such a particle, with components just as in (3.37).
When m = 0, the relation (3.38) with p ≡ | �p| becomes

E = pc. (3.41)

Plugging this into the ratio of (3.40), we obtain the well-known result that
massless particles such as photons and gravitons16 always travel at the speed

16Gravitons are the quanta of the gravita-
tional field, just as photons are the quanta of
the electromagnetic field.

of v = c. Another way of saying the same thing: with this energy momentum
relation (3.40), the 4-momentum of a massless particle17 must have compo- 17While we do not have pμ = mUμ, we still

have the proportionality of the 4-momentum
to its 4-velocity, pμ ∝ Uμ, with the 4-
velocity defined as Uμ = dxμ/dλ. In fact
one can choose the curve parameter λ in such
a way that pμ = dxμ/dλ.

nents pμ = (
p, pi

)
which, just like its 4-velocity, is manifestly a null 4-vector.

Box 3.3 The wavevector

Here we discuss the wave 4-vector, which is closely related to the photon
4-momentum. Recall that for a dynamic quantity A (�x, t) to be a solution
to the wave equation, its dependence on the space and time coordinates
must be in the combination of (�x − �v t), where �v is the wave velocity. A
harmonic electromagnetic wave is then proportional to exp i(�k · �x − ωt),
with k = |�k| = 2π/λ being the wavenumber, and ω = 2π/T being the

(cont.)
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Box 3.3 (Continued)

angular frequency corresponding to a wave period of T , and their being
related to the velocity of light by ω/k = c. The phase factor (�k · �x − ωt),
which basically counts the number of peaks and troughs of the wave,
must be a frame-independent quantity (i.e. a Lorentz scalar). To make this
scalar nature explicit, we write this phase in terms of the 4-vector xμ =
(ct, �x) as

�k · �x − ωt = (
ct, �x ) (

−1

1

) (
ω/c

�k

)
≡ ημνxμkν .

From our knowledge that xμ is a 4-vector and ημνxμkν a scalar, we
conclude18 that ω and �k must also form a 4-vector, the “wavevector:”18This follows from the quotient theorem,

which is described in Problem 12.6. kμ = (
ω/c, ki

)
. Under the Lorentz transformation, the components of the

wavevector transform, according to (3.18), as

kμ −→ k′μ = [L]μν kν . (3.42)

Specifically under a Lorentz boost in the +x direction, we have from
(3.16):

k′
x = γ

(
kx − β

ω

c

)
(3.43)

ω′ = γ (ω − cβkx ) = γ (ω − cβk cos θ) (3.44)

where θ is the angle between the boost direction x̂ and the direction of wave
propagation k̂. Since ck = ω, we obtain in this way the relativistic Doppler
formula,

ω′ = (1 − β cos θ)√
1 − β2

ω (3.45)

which is to be compared to the nonrelativistic Doppler relation ω′ =
(1 − β cos θ) ω. We note that in the nonrelativistic limit there is no Doppler
shift in the transverse direction, θ = π/2, as compared to the relativistic
“transverse Doppler effect” of ω′ = γω. (One can trace the origin of this
new effect back to SR time dilation.) In the longitudinal direction, θ = 0,
we have the familiar relation of

ω′

ω
=

√
1 − β

1 + β
, (3.46)

which has the low-velocity (v) approximation of (v � c)

ω′

ω
≈ (1 − β) or

�ω

ω
≈ −v

c
. (3.47)

Because of the ω = ck relation, the wave 4-vector kμ = (
k, ki

)
has a null

invariant length ημνkμkν = 0, compatible19 with the property of the 4-

19This is expected from the quantum
mechanical relation of pμ = h̄kμ, which
has the zeroth component corresponding to
E = h̄ω and the spatial components, the de
Broglie relation of p = h̄k = h/λ. momentum for a photon as shown in (3.33).
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Box 3.4 Covariant force

Just as the ordinary velocity �v has a complicated Lorentz property—and so
we introduced the object of 4-velocity—it is also not easy to relate differ-
ent components of the usual force vector Fi=dpi/dt in different moving
frames. However, the notions of 4-velocity and 4-momentum naturally lead
us to the definition of 4-force, or the covariant force, as

K μ ≡ dpμ

dτ
= m

dUμ

dτ
, (3.48)

which, using (3.37), has components20 20One must keep in mind that the 3-force
vector Fi = dpi /dt here is a differential of
the relativistic momenum; hence it is related
to the nonrelativistic force by Fi = γ Fi

NR.
K μ = dpμ

dτ
= γ

d

dt

(
E/c, pi

) = γ
(
Ė/c, Fi

)
. (3.49)

Next we show that the rate of energy change Ė is given, just as in nonrel-
ativistic physics, by the dot product �F · �v. Because |U|2 is a constant, its
derivative vanishes.

0 = m
d

dτ

(
ημνUμU ν

) = 2ημνm
dUμ

dτ
U ν = 2ημν K μU ν, (3.50)

where we have used (3.48) to reach the last equality. Substituting in the
components of K μ and U ν from (3.49) and (3.31), we have

0 = ημν K μU ν = γ 2(−Ė + �F · �v), (3.51)

thus Ė = �F · �v. With this expression for Ė , we can display the components
of the covariant force (3.49) as

K μ = γ
( �F · �v/c, Fi

)
. (3.52)

3.3 The spacetime diagram

Space and time coordinates are labels of physical processes taking place, one
“event” following another, in the world. Any two given events may or may
not be causally connected. Relativity brings about a profound change in this
causal structure of space and time, which can be nicely visualized in terms of
the spacetime diagram.21 For a given event P at a particular point in space 21To have the same length dimension for all

coordinates, the temporal axis is represented
by x0 = ct.

and particular instant of time, all the events that could in principle be reached
by a particle starting from P one collectively labeled as the future of P, while
all the events from which a particle can arrive at P form the past of point P.
In order to appreciate the nontrivial causal structure brought about by the new
relativistic conception of space and time, let us first recall the corresponding
structure that one had assumed in pre-relativity physics. Here the notion of
simultaneous events is of key importance. Those events that are neither the
future nor the past of the event P form a 3D set of events simultaneous with
P. This notion of simultaneous events allows one to discuss, in pre-relativity
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physics, all of space at a given instant of time, and as a corollary, allows one
to study space and time separately. In relativistic physics, the events that fail to
be causally connected to event P are much larger than a 3D space. As we shall
see, all events outside the future and past lightcones are causally disconnected
from the event P, which lies at the tip of the lightcones in the spacetime
diagram.

3.3.1 Basic features and invariant regions

An event with coordinates (t, x, y, z) is represented by a worldpoint in the
spacetime diagram. The history of events becomes a line of worldpoints,
called a worldline. In Fig. 3.2, the 3D space is represented by a 1D x axis. In
particular, a light signal �s2 = 0 passing through the origin is represented by
a straight worldline at a 45◦ angle with respect to the axes: �x2 − c2�t2 = 0,
thus c�t = ±�x . Any line with constant velocity v = |�x/�t | would be a
straightline passing through the origin. We can clearly see that those worldlines
with v < c, corresponding to �s2 < 0, would make an angle greater than 45◦
with respect to the spatial axis (i.e. above the worldlines for a light ray).
According to relativity, no worldline can have v > c. If there had been such
a line, it would correspond to �s2 > 0, and would make an angle less than
45◦ (i.e. below the light worldline). Since �s2 = �x2 + �y2 + �z2 − c2�t2

is invariant, it is meaningful to divide the spacetime diagram into regions, as
in Fig. 3.3, corresponding to

45°

( (

Fig. 3.2 Basic elements of a spacetime dia-
gram, with two spatial coordinates (y, z)
suppressed.

Fig. 3.3 Invariant regions in the spacetime
diagram, with two of the spatial coordinates
suppressed.

�s2 < 0 timelike
�s2 = 0 lightlike
�s2 > 0 spacelike

where the names of the region are listed on the right-hand column. The
coordinate intervals being c�t = ct2 − ct1, �x = x2 − x1, etc. consider the
separation of two events: one at the origin (ct1, �x1) = (0, �0), the other at a
point in one of the regions (ct2, �x2) = (ct, �x):

• The light-like region has all the events which are connected to the origin
with a separation of �s2 = 0. This corresponds to events that are con-
nected by light signals. The 45◦ incline in Fig. 3.3, in which two spatial
dimensions are displayed, forms a lightcone. It has a slope of unity, which
reflects the fact that the speed of light is c. A vector that connects an event
in this region to the origin, called a light-like vector, is a non-zero 4-vector
having zero length, a null vector. The lightcone surface is a null 3-surface.

• The space-like region has all the events which are connected to the origin
with a separation of �s2 > 0. (The 4-vector from the origin in this region
is a space-like vector, having a positive squared length.) In the spacelike
region, it takes a signal traveling at a speed greater than c in order to
connect an event to the origin. Thus, an event taking place at any point
in this region cannot be influenced causally (in the sense of cause-and-
effect) by an event at the origin. We can alternatively explain it by going
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to another frame O ′ resulting in different spatial and time intervals �x ′ �=
�x and �t ′ �= �t . However the spacetime interval is unchanged, �s′2 =
�s2 > 0. The form of (3.3), with the spatial terms being positive and the
time term negative, suggests that we can always find an O ′ frame such
that this event would be viewed as taking place at the same time �t ′ = 0
as the event at the origin but at different locations �x ′ �= 0. This makes
it clear that such a worldpoint (an event) cannot be causally connected to
an event at the origin because the two events would have to be connected
by an instantaneous signal, which is not possible, as no signal can travel
faster than c. Thus the causally disconnected 3D space (represented by
a horizontal plane) in pre-relativity physics is now enlarged to a much
large region—all of the 4D subspace outside the lightcone.

• The time-like region has all the events which are connected to the origin
with a separation of �s2 < 0. (The 4-vector from the origin in this region
is a time-like vector, having a negative squared length.) One can always
find a frame O ′ such that such an event takes place at the same locations,
x ′ = 0, but at different time, t ′ �= 0. This makes it clear that events in this
region can be causally connected with the origin. In fact, all the world-
lines passing through the origin will be confined to this region, inside
the lightcone.22 In Fig. 3.3, we have displayed the lightcone structure 22The worldline of an inertial observer (i.e.

moving with constant velocity) must be
a straight line inside the lightcone. This
straight line is just the time axis of the coor-
dinate system in which the inertial observer
is at rest.

with respect to the origin of the spacetime coordinates (t = 0, �x = 0).
It should be emphasized that each point in a spacetime diagram has a
lightcone. The time-like regions with respect to several worldpoints are
represented by the lightcones shown in Fig. 3.4. If we consider a series
of lightcones having their vertices located along a given worldline, each
subsequent segment must lie within the lightcone of that point (at the
beginning of that segment). It is clear from Fig. 3.4 that any particle can
only proceed in the direction of ever-increasing time. We cannot stop our
biological clocks! 3

2

1

Fig. 3.4 Lightcones with respect to different
worldpoints, P1, P2, . . ., etc. along a time-
like worldline, which can only proceed in
the direction of ever-increasing time as each
segment emanating from a given worldpoint
must be contained within the lightcone with
that point as its vertex.

3.3.2 Lorentz transformation in the spacetime diagram

The nontrivial parts of the Lorentz transformation (3.16) of intervals (taken,
for example, with respect to the origin) are

�x ′ = γ (�x − βc�t) , c�t ′ = γ (c�t − β�x) . (3.53)

We can represent these transformed axes in the spacetime diagram:

• The x ′ axis corresponds to the c�t ′ = 0 line. This corresponds, accord-
ing the second equation above, to a line satisfying the relationship c�t =
β�x . Hence, the x ′ axis is a straight line in the (x, ct) plane with a slope
of c�t/�x = β.

• The ct ′ axis corresponds to the �x ′ = 0 line. This corresponds, accord-
ing the first equation above, to a line satisfying the relationship �x =
βc�t . Hence, the ct ′ axis is a straight line with a slope of c�t/�x =
1/β.
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Depending on whether β is positive or negative, the new axes either
“close in” or “open up” from the original perpendicular axes. Thus we have
the opposite-angle rule: the two axes make opposite-signed rotations of ±θ

(Fig. 3.5). The x axis rotates by +θ relative to the x′ axis; the ct axis, by
−θ relative to the ct ′ axis. The physical basis for this rule is the need to
maintain the same slope (= 1; i.e. equal angles with respect to the two axes)
for the lightcone in every inertial frame so that light speed is the same in every
frame. Another important feature of the diagrammatic representation of the
Lorentz transformation is that the new axes will have a scale different from the
original one. Namely, the unit-lengths along the axes of the two systems are
different. Let us illustrate this by an example. Consider the separation (from
the origin O) of an event A on the ct ′ axis, which has O ′ system coordinates(
ct ′ = 1, x ′ = 0

)
, see Fig. 3.6. What O system coordinates (ct, x) does the

worldpoint have?

Fig. 3.5 Lorentz rotation in the spacetime
diagram. The space and time axes rotate by
the same amount but in opposite directions so
that the lightcone (the dashed line) remains
unchanged. The shaded grid represents lines
of fixed x ′ and t ′.

1

1

Fig. 3.6 Scale change in a Lorentz rotation.
A unit length on the ct ′ axis has a longer
projection, γ , onto the ct axis. The event A(
ct ′ = 1, x ′ = 0

)
in the O ′ frame is seen by

an observer in the O frame to have coordi-
nates (ct = γ, x = βγ ). Similarly, the event
B, with coordinates (ct = 0, x = 1) in the O
frame, has coordinates

(
ct ′ = γβ, x ′ = γ

)
in

the O ′ frame. The two sets of dotted lines
passing through worldpoints A and B are par-
allel lines to the axes of (ct, x) and

(
ct ′, x ′),

respectively.

x ′ = γ (x − βct) = 0 ⇒ x = βct,

ct ′ = γ (ct − βx) = ctγ
(

1 − β2
)

= ct/γ = 1.

Hence this event has (ct = γ, x = γβ) coordinates in the O system. Evi-
dently, as γ > 1, a unit vector along the ct ′ direction has “projection” on the
ct axis that is longer than unit length. This is possible only if there is a scale
change when transforming from on reference system to another.

Consider another separation of an event B on the x axis, which has O
coordinates (ct = 0, x = 1). It is straightforward to check that it has O ′ system
coordinates

(
ct ′ = −γβ, x ′ = γ

)
, again showing a difference in scales of the

two systems.

Box 3.5 Time dilation and length contraction in the spacetime diagram

The physics behind the scale changes discussed above is time dilation and
length contraction. While the algebra involved in deriving these results
from the Lorentz transformation (3.53) is simple, in order to obtain the
correct result, one has to be very clear as to exactly what is being measured
(spatial length or time), and which frame is being chosen as the rest frame
for the appropriate object (in the derivation of time dilation, the object is
a clock; in the derivation of length contraction, the object is any object
whose spatial length is being measured). Knowing which frame has been
chosen as the rest frame for the appropriate object, one must then have a
mathematical way to express the fact that the clock is not moving or the
object is not moving; one must have a mathematical condition or input
to apply to the Lorentz transformation equations. The conventional way
of doing this is to set �x ′ = 0 for time dilation, and �t = 0 for length
contraction. For time dilation, we pick the O ′ frame to be the rest frame
of the clock; since the clock is at rest in this frame, �x ′ = 0. This is
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the crucial input into the Lorentz transformation equations in the derivation
of time dilation. For length contraction, we also consider the O ′ frame to
be the rest frame, but now it is the rest frame for an object whose length is
being measured. The crucial input for this derivation is �t = 0, reflecting
the fact that the observer in the O frame must measure the ends of the object
simultaneously.

Fig. 3.7 Worldline of a clock, ticking at
equal intervals: viewed in the rest frame of
the clock, the O ′ system, and viewed in the
moving frame, the O coordinate system.

–1

Fig. 3.8 Scale changes associated with the
Lorentz rotation, reflecting the physics phe-
nomena of time dilation and length contrac-
tion. The clock and object are moving with
respect to the O system, but are at rest with
respect to the O ′ system.

Time dilation A clock, ticking away in its own rest frame O ′ (also
called the comoving frame), is represented by a series of worldpoints (the
ticks of the clock) equally spaced on a vertical worldline (�x ′ = 0) in
the

(
ct ′, x ′) spacetime diagram. These same worldpoints when viewed in

another inertial frame O , in which the O ′ system moves with +v along
the x axis, will appear as lying on an inclined worldline (Fig. 3.7). From
the Lorentz transformation (2.40), as well as our previous discussion of the
scale change under Lorentz rotation (also see Fig. 3.8), it is clear that the
relationship between the time intervals in the two frames is

�t = γ�t ′ γ > 1. (3.54)

Thus we say that a moving clock (i.e. moving with respect to the O
system) appears (�t) to run slow. NB: keep in mind �x ′ = 0; that is,
there is no spatial displacement in the clock’s rest frame, the comoving
frame. However, there is a spatial displacement in the other, moving frame:
�x �= 0.

Length contraction To obtain a length �x = x1 − x2 in the O system
of an object at rest in the O ′ system (and, therefore, moving with respect
to the O system), we need to measure two events (t1, x1) and (t2, x2)

simultaneously �t = t1 − t2 = 0. (If you want to measure the length of
a moving car, you certainly would not want to measure its front and back
locations at different times!) The same two events,23 when viewed in the

23While we have simultaneous measure-
ments in the moving frame, �t = 0, these
two events would be viewed as taking place
at different times in the rest frame, �t ′ =
γ

(
�t − v

C2 �x

)
�= 0. Of course, in the rest

frame of the object, there is no need to per-
form the measurements simultaneously: in
order to measure the front and back ends of a
parked car, it is perfectly all right to make one
measurement, take a lunch break, and then
come back to measure the other end.

rest frame of the object �x ′ = x ′
1 − x ′

2, will be measured according to
(3.53) to have a greater separation (cf. Fig. 3.8):

�x ′ = γ�x > �x . (3.55)
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Fig. 3.9 (a) Relativity of simultaneity: tA =
tB but t ′A > t ′B . (b) Relativity of event order:
tA < tB but t ′A > t ′B . However, there is no
change of event order with respect to A for
all events located above the x ′ axis, such as
event C . This certainly includes the situation
in which C is located in the forward lightcone
of A (above the dashed line).

Relativity of simultaneity, event-order and causality
It is instructive to use the spacetime diagram to demonstrate some of the
physical phenomena we have discussed previously. In Fig. 3.9, we have two
events A and B, with A being the origin of the coordinate system O and O ′:(
xA = tA = 0, x ′

A = t ′A = 0
)
. In Fig. 3.9(a), the events A and B are simul-

taneous, tA = tB , with respect to the O system. But in the O ′ system, we
clearly have t ′A > t ′B . This shows the relativity of simultaneity. In Fig. 3.9(b),
we have tA < tB in the O frame, but we have t ′A > t ′B in the O ′ frame. Thus,
the temporal order of events can be changed by a change of reference frames.
However, this change of event order can take place only if event B is located
in the region below the x ′ axis.24 This means that if we increase the relative24The x ′ axis having a 1/β slope means

that the region below it corresponds to
(�x/�t) > c/β. This is clearly in agreement
with the Lorentz transformation of �t ′ =
γ (�t − β�x/c) to have opposite sign to �t .

speed between these two frames O and O ′ (with the x ′ axis moving ever closer
to the lightcone) more and more events can have their temporal order (with
respect to A at the origin) reversed as seen from the perspective of the moving
observer. On the other hand, for all events above the x ′axis, the temporal order
is preserved. For example, with respect to event C, we have both tA < tC and
t ′A < t ′C . Now, of course, the region above this x ′ axis includes the forward
lightcone of event A. This means that for two events that are causally connected
(between A and any worldpoint in its forward lightcone), their temporal order
cannot be changed by a Lorentz transformation. The principle of causality is
safe under special relativity.

3.4 The geometric formulation of SR:
A summary

Let us summarize the principal lessons we have learnt from this geometric
formulation of special relativity:

• The stage on which physics takes place is Minkowski spacetime with the
time coordinate being on an equal footing with spatial ones. “Space and
time are treated symmetrically.” A spacetime diagram is often useful in
clarifying ideas in relativity, especially its causal structure.

• Minkowski spacetime has a pseudo-Euclidean length (squared) of
�s2 = −c2�t2 + �x2 + �y2 + �z2. This relation between length
and coordinate

[
�s2 = gμν�xμ�xν

]
can be stated by saying that
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Minkowski space has a flat-space metric of gμν = diag (−1, 1, 1, 1) ≡
ημν .

• �s is invariant under transformations among inertial frames of reference.
Such length-preserving transformations in a space with the metric ημν

are just the Lorentz transformations, from which we can derive all the
physical consequences of time dilation, length contraction, relativity of
simultaneity, etc. Thus, in this geometric formulation, we can think of the
metric as embodying all of special relativity.

• That one can understand special relativity as a theory of flat geometry
in Minkowski spacetime is the crucial step in the progression towards
general relativity. In GR, as we shall see, this geometric formulation
is generalized into a warped spacetime. The corresponding metric must
be position-dependent, gμν (x), and this metric acts as the generalized
gravitational potential.

• In our historical introduction, SR seems to be all about light; the speed c
actually plays a much broader role in relativity:

• c is the universal maximal and absolute speed of signal transmission:
massless particles (e.g. photons and gravitons) travel at the speed c,
while all other (m �= 0) particles move at a slower speed.

• c is the universal conversion factor between space and time coordi-
nates25 that allows space and time to be treated symmetrically (i.e. on 25Since space and time have different units,

we must have a conversion factor connecting
the space and time coordinates. We mention
two other fundamental physics conversion
factors: Newton’s constant GN and Planck’s
constant h (see Section 6.3.2).

an equal footing) in relativity.
• c is absolute and is just the speed so that �s2 = −c2�t2 + ��x2 is an

invariant interval under coordinate transformations. This allows �s to
be viewed as the length in spacetime. Thus, constancy of c underlies
the entire geometric formulation of relativity.

Review questions

1. (a) Give the definition of the metric tensor in terms of the
basis vectors.

(b) What is the invariant interval (the “length”) �s2

between two neighboring events with coordinate sep-
aration (c�t, �x,�y, �z) in Minkowski spacetime?

(c) When the metric is displayed as a square matrix, what
is the interpretation of its respective diagonal and off-
diagonal elements?

(d) What is the metric for an n-dimensional Euclidean
space, in Cartesian coordinates, with a (squared)
length given by �s2 = �x2

1 + �x2
2 + · · · + �x2

n ?

2. (a) What is the essential input needed for the proof that
�s2 = −c2�t2 + ��x2 has the same value in every
inertial frame of reference?

(b) What is the physical meaning of s that every observer
can agree on its value?

3. What are the components of the position 4-vector in
Minkowski spacetime?

4. If Aμ is a 4-vector (e.g. it is the 4-velocity or 4-
momentum, etc.), how do these components trans-
form under a coordinate transformation Aμ → A′μ
if the position 4-vector changes as xμ → x ′μ =
[L]μν xν?

5. Under a coordinate change O → O ′, how is ημν AμBν

related to ημν A′μB′ν?

6. From the condition �s′2 = �s2, derive the explicit form
of the Lorentz transformation for a boost �v= + v x̂ .
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7. Why is dxμ/dt not a 4-vector? How is it related to
the velocity 4-vector Uμ? The squared length of the 4-
velocity ημνUμUν should be a Lorentz invariant; what is
this invariant?

8. What are the definitions (in terms of particle mass and
velocity) of relativistic energy E and momentum �p of a
particle? Display their non-relativistic limits. What com-
ponents of momentum 4-vector pμ are E and �p? How are
they related to each other?

9. In the spacetime diagram, display the time-like, space-
like, and light-like regions. Also, draw in a worldline for
some inertial observer.

10. The coordinate frame O ′ is moving at a constant veloc-
ity v in the +x direction with respect to the coordinate
frame O . Display the transformed axes

(
x ′, ct ′

)
in a two-

dimensional spacetime diagram with axes (x, ct). You are
not asked to solve the Lorentz transformation equations;
but only to justify the directions of the new axes.

11. Two events A and B are simultaneous (tA = tB), but
not equilocal (xA �= xB), in coordinate frame O . Use a
spacetime diagram to show that these same two events are

viewed as taking place at different times, t ′A �= t ′B , by an
observer in the O ′ frame (in motion with respect to the O
frame).

12. In a spacetime diagram, display two events with a tem-
poral order of tA > tB in the O frame such that they can
possibly appear to have a reversed order t ′A < t ′B in the O ′
frame. What is the condition that �x,�t and v (relative
speed between the O and O ′ frames) must satisfy in order
to have this reversal of temporal order? Explain why event
A cannot possibly be caused by event B.

13. Length contraction means that the measured length interval
of �x = x1 − x2 is less than the corresponding rest-frame
length �x ′ = x ′

1 − x ′
2. What is the condition on the time

coordinates of these two events, (t1, t2) and
(
t ′1, t ′2

)
, and

why is this a necessary condition? Time dilation means
that the measured time interval of �t = t1 − t2 is longer
than the corresponding rest-frame interval �t ′ = t ′1 − t ′2.
What is the condition on the spatial coordinates, (x1, x2)

and
(
x ′

1, x ′
2

)
, of these two events? Why is this a necessary

condition? Use these conditions and the Lorentz transfor-
mation to derive the result of length contraction and time
dilation, respectively.

Problems

3.1 Inverse basis We can introduce a set of “inverse basis
vectors,” denoted by an upper index,

{
eμ

}
which when

multiplied with the basis vectors yield the identity: eμ ·
eν = δ

μ
ν and the products among the inverse bases form

the “inverse metric” gμν = eμ · eν .

(a) Show that one can use the inverse bases to project
out the components Aμ from the vector A.

(b) Prove that gμν is the inverse to the metric gμν .

3.2 Contraction and dummy indices A scalar product
A · B =gμν AμBν can be written as a “contraction” of
two vectors with upper and lower indices A · B =AμBμ

where Bμ = gμν Bν . We have used the Einstein sum-
mation convention and summed over repeated indices.
As a practice of “contraction over repeated (dummy)
indices,” prove that the scalar product of symmetric and
antisymmetric tensors will always vanish: Tμν Sμν = 0
where Tμν = −Tνμ and Sμν = +Sνμ.

3.3 Rotation matrix is orthogonal Explicitly demonstrate
that the rotation matrix in Eq. (2.4) satisfies the

relation

[
R−1 (θ)

]
= [R (−θ)] = [

Rᵀ (θ)
]

hence the orthogonality condition RRᵀ = 1.
3.4 Orthogonality fixes the rotation matrix In Problem 3.3,

you have been asked to show from the explicit form of
a rotational matrix that it is an orthogonal matrix. Here
you are asked to prove the converse: the orthogonality
condition can fix the rotation matrix explicitly. Consider
a rotation around the z axis:

(
x ′
y′

)
=

(
a b
c d

) (
x
y

)
,

where the effective 2 × 2 rotation matrix [R] with real
elements (a, b, c, d) must satisfy the orthogonal con-
dition [R] [R]ᵀ = [1] so that the length x2 + y2 is an
invariant. Show that this condition fixes the explicit form
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of the rotation matrix to be

[R] =
(

cos θ sin θ

− sin θ cos θ

)
.

3.5 Group property of Lorentz transformations Use simple
trigonometry to show that the rotation and boost opera-
tors given in (2.4) and (3.22) satisfy the group property:

R (θ1)R (θ2) = R (θ1 + θ2)
[
L (ψ1)

] [
L (ψ2)

] = [
L (ψ1 + ψ2)

]
. (3.57)

The expression of “group” used above is in the sense of
a mathematical group, which is composed of elements
satisfying multiplication rules such as the ones discussed
here.

3.6 Group multiplication leads to velocity addition rule
Use (3.57) of Problem 3.5 to prove the velocity addition
rule (2.22).

3.7 Lorentz transform and velocity addition rule The veloc-
ity 4-vector Uμ being a 4-vector has the Lorentz boost
transformation as in Eq. (3.16). From this, derive the
velocity addition rule (2.22).

3.8 Antiproton production threshold Because of baryon
number conservation, the simplest reaction to produce an
antiproton p̄ in proton–proton scattering is pp → ppp p̄.
Knowing that the rest energy of a proton is m pc2 =
0.94 GeV, use the invariant ημν pμ pν to find the min-
imum kinetic energy a (projectile) proton must have
in order to produce an antiproton after colliding with
another (target) proton at rest.

3.9 A more conventional derivation of the Doppler effect A
light signal of frequency ω sent from (x, t) is received
at

(
x ′, t ′

)
with frequency ω′. The receiver is moving in

the +x direction with velocity v. One can derive the
(longitudinal) Doppler formula (3.46) by the observation
that the phase of a light wave (essentially the counting
of peaks) remains the same for the sender and receiver:
dφ = ωdτ = ω′dτ ′ (where τ and τ ′ are the proper times
of the sender and receiver, respectively). From this, using
the time dilation formula, one can relate the ratio ω′/ω
to the coordinate time ratio dt ′/dt , and finally to the
relative velocity β = v/c.

3.10 Twin paradox measurements and the Doppler effect
In presenting the twin paradox (Box 2.5) we used the
traveling Al’s observation of Bill’s annual (birthday) fire-
works to determine their respective ages. In the outward

bound part of the journey (β = 4/5) Al sees the firework
every three years, and in the inward bound journey, every
four months. Discuss these time intervals from the view-
point of the Doppler effect and show that the results are
compatible with formula (3.46).

3.11 Spacetime diagram for the twin paradox Provide a
spacetime diagram corresponding to the twin paradox
discussed in Box 2.5. Let Bill’s rest frame O having
coordinates (x, t), the outbound-Al’s rest frame O ′ with(
x ′, t ′

)
, and inbound-Al’s frame O ′′ with

(
x ′′, t ′′

)
. Draw

your diagram so that the perpendicular lines represent the
(x, t) axes.

(a) Mark the event when Al departs in the spaceship by
the worldpoint O; the event when Al returns and is
reunited with Bill by the worldpoint Q; and the event
corresponding to the event when Al turns around
(from outward bound to inward bound) by the point
P . Thus, the stay-at-home Bill has worldline O Q,
and Al’s worldline has two segments: O P for the
outward bound and P Q for the inward bound parts
of his journey.

(b) On the t axis, which should coincide with the world-
line O Q, also mark the points M, P ′ and P ′′ which
should be simultaneous with the turning point P as
viewed in the coordinate frames of O, O ′ and O ′′,
respectively.

(c) Indicate the time values of tM , tP ′ and tP ′′ (i.e. the
elapsed times since Al’s departure at point O in the
(x, t) coordinate system. In particular, show how
changing the inertial frame from O ′ and O ′′ brings
about a time change of 32 years in the O frame.

3.12 The twin paradox—the missing 32 years In Problem
3.11, the event P ′ on Bill’s worldline is viewed by the
outward-bound Al to be simultaneous to the turning-
point P just before Al turns around, and the event P ′′
simultaneous to P just after. They are viewed to have dif-
ferent time by the stay-at-home Bill, tP ′ �= tP ′′ . This just
emphasizes again the point that time is just another coor-
dinate label. When we change the frame of reference,
all coordinates make their corresponding changes. Two
different points P ′ and P ′′ in Bill’s rest frame (the O sys-
tem) are simultaneous to P when viewed from two differ-
ent inertial frames, the O ′ and O ′′ systems, respectively.
Thus a difference tP ′ �= tP ′′ is brought about simply by
a change of coordinate: O ′ −→ O ′′. Our discussion
just below (2.41) and (2.45) suggests that tP ′′ − tP ′ =
32 years. We have already calculated tP ′ = 9 years by
the relative motion between the O and O ′ frames. Let
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us verify the expected result of tP ′′ = 41 years in two
ways.

(a) Calculate tP ′′ = tQ − tQ P ′′ , where tQ P ′′ is the time
interval measured in Bill’s rest frame of the second
15 year of Al’s journey (for the worldline P Q).

(b) The turning point P is seen in the outward-bound
O ′ frame to have the time t ′O P = 15 year; from the
perspective of the inward-bound Al (O ′′ frame) how
long an interval t ′′O P does this first half of the journey
appear to be? tP ′′ can then be obtained by noting that

tP ′′ is the O frame measurement of this t ′′O P time
interval.

3.13 Spacetime diagram for the pole-and-barn paradox
Draw a spacetime diagram for the pole-and-barn paradox
as discussed in Box 2.4. Let (x, t) be the coordinates for
the ground (barn) observer, with (x ′, t ′) the rest frame
of the runner (pole). Show the worldlines for the front
door (F), rear door (R) of the barn, and front end (A),
back end (B) of the pole. Your diagram should display
the order reversal phenomenon discussed in Box 2.4:
tAR > tB F and t ′AR < t ′B F .


