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• The framework required to study the whole universe as a physical
system is general relativity.

• The universe, when observed on distance scales �100 Mpc, is homo-
geneous and isotropic.

• Hubble’s discovery that the universe is expanding suggests strongly that
it had a beginning when all objects were concentrated in a tiny region
of extremely high density. The estimate of the age of the universe by
astrophysics from observational data is 12 Gyr � t0 � 15 Gyr.

• The mass density of (nonrelativistic) matter in the universe has around
a quarter of the “critical density” �M � 0.25. There is strong evidence
showing that most of the mass in the universe does not shine: while the
luminous mass ratio �lum is only half a percent, the nonluminous matter
consists of ordinary (baryonic) matter �B � 0.04 (mostly as the inter-
galactic medium) and nonrelativistic exotic dark matter �DM � 0.21.

• The spacetime satisfying the cosmological principle (the universe
is homogeneous and isotropic at each epoch) is described by the
Robertson–Walker metric in comoving coordinates (the cosmic rest
frame).

• In an expanding universe with a space that may be curved, any treatment
of distance and time must be carried out with care. We study the
relations between cosmic redshift and proper, as well as luminosity,
distances.

Cosmology is the study of the whole universe as a physical system: What is
its matter–energy content? How is this content organized? What is its history?
How will it evolve in the future? We are interested in a “smeared” description
with the galaxies being the constituent elements of the system. On the cosmic
scale the only relevant interaction among galaxies is gravitation; all galaxies
are accelerating under their mutual gravity. Thus the study of cosmology
depends crucially on our understanding of the gravitational interaction. Conse-
quently, the proper framework for cosmology is general relativity. The solution
of Einstein’s equation describes the whole universe because it describes the
whole of spacetime.
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From Chapter 7 we learnt that, for a given gravitational system (M and R
being the respectively characteristic mass and length dimensions), one could
use the dimensionless parameter

GN M

c2 R
≡ ε (9.1)

to decide whether Einstein’s theory was required, or a Newtonian description
would be adequate. In the context of the spatially isotropic solution, it is just
the relative size of the Schwarzschild radius to the distance scale R. Recall
ε� = O(10−6) for the sun, cf. Eq. (7.22). Typically the GR effects are small
at the level of an ordinary stellar system. On the other hand, we have also
considered the case of stellar objects that were so compact that they became
black holes when the distance scale is comparable to the Schwarzschild radius,
εbh = O(1). For the case of cosmology, the mass density is very low. Never-
theless, the distance involved is so large that the total mass M , which increases
faster than R, is even larger. This also results in a sizable ε (Problem 9.1).
Thus, to describe events on cosmic scales, we must use GR concepts.11Given that the theory had been tested only

within the solar system, applying GR to
cosmology would involve an extraordinary
(something like 15 orders of magnitude)
extrapolation. This is a bold assumption
indeed.

Soon after the completion of his papers on the foundation of GR, Einstein
proceeded to apply his new theory to cosmology. In 1917 he published his
paper, “Cosmological considerations on the general theory of relativity”. Since
then almost all cosmological studies have been carried out in the framework
of GR.

9.1 The cosmos observed

We begin with the observational features of the universe: the organization of
its matter content, the large-scale motion of its components, its age and mass
density.

9.1.1 Matter distribution on the cosmic distance scale

The distance unit traditionally used in astronomy is the parsec (pc). This is
defined, see Fig. 9.1(a), as the distance to a star having a parallax of one arcsec-
ond2 for a base-line equal to the (mean) distance between the earth and the sun

2One arcsec equals 4.85 × 10−6 rad. (called an AU, the astronomical unit). Thus 1pc = (1′′ in radian)−1 × AU =
3.1 × 1016 m = 3.26 light-years. Here we first introduce the organization of
stars on the cosmic scales of kpc, Mpc, and even hundreds of Mpc.

The distance from the solar system to the nearest star is 1.2 pc. Our own
galaxy, the Milky Way, is a typical spiral galaxy. It comprises O (1011) stars
in a disk with a diameter of 30 kpc and a disk thickness of about 2 kpc,
see Fig. 9.1(b). Galaxies in turn organize themselves into bodies of increas-
ingly large sizes—into a series of hierarchical clusters. Our galaxy is part of
a small cluster, called the Local Group, comprising about 30 galaxies in a
volume measuring 1 Mpc across; the distance, for example, to the Andromeda
Galaxy (M31) is 0.7 Mpc. This cluster is part of the Local, or Virgo, Superclus-
ter over a volume measuring 50 Mpc across, with the Virgo Cluster comprising
2000 galaxies over a distance scale of 5 Mpc as its physical center. (The Virgo
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Fig. 9.1 (a) The astronomical distance unit
parsec (parallax second) defined, see text. (b)
Side view of Milky Way as a typical spiral
galaxy.
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Fig. 9.2 Galaxy distribution out to 858 Mpc,
compiled by Gott et al. (2005) based on data
collected by the SDSS and 2dF surveys.

Cluster is about 15 Mpc from us.) This and other clusters of galaxies, such
as the Hydra–Centaurus Supercluster, appear to reside on the edge of great
voids. In short, the distribution of galaxies about us is not random, but rather
clustered together in coherent patterns that can stretch out up to 100 Mpc.
The distribution is characterized by large voids and a network of filamentary
structures (see Fig. 9.2). However, beyond this distance scale the universe does
appear to be fairly uniform. In fact the largest observable item in the universe
is the cosmic microwave background (CMB) radiation which appears to be
remarkably uniform.
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9.1.2 Cosmological redshift: Hubble’s law

Olbers’ paradox: Darkness of the night sky Up until about 100 years ago,
the commonly held view was that we lived in a static universe (comprising
essentially our Milky Way galaxy) that was infinite in age and infinite in size.
However, such a cosmic picture is contradicted by the observation that the
night sky is dark. If the average luminosity (emitted energy per unit time) of a
star is L, then the brightness (i.e. flux) seen at a distance r would be f (r) =
L/4πr2. The resultant flux from integrating over all the stars in the infinite
universe would be unbounded:

B =
∫

n f (r)dV = nL

∫ ∞

rmin

dr = ∞, (9.2)

where n, the number density of stars, has been assumed to be a constant. This
result of infinite brightness is an over-estimate because stars have finite angular
sizes, and the above calculation assumes no obstruction by foreground stars.
The correct conclusion is that the night sky in such a universe would have the
brightness as if the whole sky were covered by shining suns. Because every
line-of-sight has to end at a shining star, although the flux received from a
distant star is reduced by a factor of r−2, for a fixed solid angle, the number of
unobstructed stars increases with r2. Thus, there would be an equal amount
of flux from every direction. It is difficult to find any physical mechanism
that will allow us to evade this result of a night sky ablaze. For example,
one might suggest that interstellar dust would diminish the intensity for light
having traveled a long distance. But this does not help, because over time, the
dust particles would be heated and radiate as much as they absorb. Maybe our
universe is not an infinite and static system?3

3As we shall see, according to modern
cosmology, our universe has a finite age
and all distant stars in an expanding uni-
verse are receding away from us with their
emitted light progressively shifted to lower
frequencies. Cf. Problem 9.5.

Hubble’s discovery
Astronomers have devised a whole series of techniques that can be used to
estimate the distances ever farther into space. Each new one, although less
reliable, can be used to reach out further into the universe. During the period
1910–1930, the “cosmic distance ladder” reached out beyond 100 kpc. The
great discovery was made that our universe was composed of a vast collec-
tion of galaxies, each resembling our own Milky Way. One naturally tried
to study the motions of these newly discovered “island universes” by using
the Doppler effect. When a galaxy is observed at visible wavelengths, its
spectrum typically has absorption lines because of the relatively cool upper
stellar atmosphere. For a particular absorption line measured in the laboratory
as having a wavelength λem, the received wavelength by the observer may,
however, be different. Such a wavelength shift

z ≡ λrec − λem

λem
(9.3)

is related to the emitter motion by the Doppler effect (cf. Box 3.3), which,
for nonrelativistic motion, can be stated as

z = �λ

λ
� v

c
, (9.4)

where v is the recession velocity of the emitter (away from the receiver).
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A priori, for different galaxies one expects a random distribution of wave-
length shifts: some positive (redshift) and some negative (blueshift). This is
more or less true for the Local Group. But beyond the few nearby galaxies,
the measurements by Vesto Slipher of some 40 galaxies, over a 10 year period
at Arizona’s Lowell Observatory, showed that all, except a few in the Local
Group, were redshifted. Edwin Hubble (Mt. Wilson Observatory, California)
then attempted to correlate these redshift results to the more difficult mea-
surements of the distances to these galaxies. He found that the redshift was
proportional to the distance d to the light-emitting galaxy. In 1929, Hubble
announced his result:

z = H0

c
d (9.5)

or, substituting in the Doppler interpretation4 of (9.4), 4A Doppler redshift comes about because
of the increase in the distance between the
emitter and the receiver of a light signal. In
the familiar situation, this is due to the rel-
ative motion of the emitter and the receiver.
This language is being used here in our ini-
tial discussion of Hubble’s law. However, as
we shall show in Section 9.3, especially Eq.
(9.43), the proper description of this enlarge-
ment of the cosmic distance is reflecting the
expansion of the space itself, rather than the
motion of the emitter in a static space.

v = H0d, (9.6)

with a positive H0. Namely, we live in an expanding universe. On distance
scales greater than 10 Mpc, all galaxies obey Hubble’s law: they are receding
from us with speed linearly proportional to the distance. The proportional
constant H0, the Hubble constant, gives the recession speed per unit separation
(between the receiving and emitting galaxies). It is the expansion rate. To
obtain an accurate account of H0 has been a great challenge as it requires
one to ascertain great cosmic distances. Only recently has it become possible
to yield consistent results among several independent methods. We have the
convergent value5

5Throughout Chapters 9–11, we shall quote
the cosmological parameters as presented by
Tegmark et al. (2006), cf. Table 11.1 in
Section 11.5.

H0 = (72 ± 5 km/s) Mpc−1, (9.7)

where the subscript 0 stands for the present epoch H0 ≡ H(t0). An inspection
of Hubble’s law (9.6) shows that H0 has the dimension of inverse time,
the Hubble time tH ≡ H−1

0 . Similarly, we can also define a Hubble length
lH = ctH.

Hubble’s law and the Copernican principle
That all galaxies are receding away from us may lead one to suggest erro-
neously that our location is the center of the universe. The correct interpreta-
tion is in fact just the opposite. The Hubble relation in fact follows naturally
from a straightforward extension of the Copernican principle: our galaxy is
not at a privileged position in the universe. The key observation is that this is a
linear relation between distance and velocity at each cosmic epoch. As a result,
it is compatible with the same law holding for all observers at every galaxy.
Namely, observers on every galaxy would see all the other galaxies receding
away from them according to Hubble’s law.

Let us write Hubble’s law in vector form:

�v = H0�r . (9.8)

That is, a galaxy G, located at position �r , will be seen by us (at the origin O)
to recede at velocity �v proportional to �r . Now consider an observer on another
galaxy O′ located at �r ′ from us as in Fig. 9.3. Then, according to Hubble’s law,
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it must be receding from us according to

�v′ = H0�r ′ (9.9)

Fig. 9.3 Relative positions of a galaxy G
with respect to two observers located at two

other galaxies: O and O
′
.

with the same Hubble constant H0 which is independent of distance and
velocity. The difference of these two equations yields

(�v − �v′) = H0(�r − �r ′). (9.10)

But (�r − �r ′) and (�v − �v′) are the respective location and velocity of G as
viewed from O′. Since �v and �v′ are in the same direction as �r and �r ′, the vectors
(�v − �v′) and (�r − �r ′) must also be parallel. That is, the relation (9.10) is just
Hubble’s law valid for the observer on galaxy O′. Clearly such a deduction
would fail if the velocity and distance relation, at a given cosmic time, were
nonlinear (i.e. if H0 depends either on position and/or on velocity).

Distance measurement by redshift
We can turn the Hubble relation around and use it as a means to find the
distance to a galaxy by its observed redshift. In fact, the development of new
techniques of multi-fiber and multi-slip spectrographs allowed astronomers to
measure redshifts for hundreds of galaxies simultaneously. This made large
surveys of galaxies possible. In the 1980s there was the Harvard–Smithsonian
Center for Astrophysics (CfA) galaxy survey, containing more than 15 000
galaxies. Later, the Las Campanas mapping eventually covered a significantly
larger volume and found the “greatness limit” (i.e. cosmic structures have a
maximum size and on any larger scale the universe would appear to be homo-
geneous). But this was still not definitive. The modern surveys culminated in
two recent parallel surveys: the Anglo-Australian Two-Degree Field Galaxy
Redshift Survey (2dF) and the Sloan Digital Sky Survey (SDSS) collaborations
have measured some quarter of a million galaxies over a significant portion
of the sky, confirming the basic cosmological assumption that the universe
of a large distance � 100 Mpc is homogeneous and isotropic. (For further
discussion see Sections 9.3 and 9.4.) In fact, an important tool for modern
cosmology is just such large-structure study. Detailed analysis of survey data
can help us to answer questions such as whether the cosmic structure observed
today came about in a top–down (i.e. the largest structure formed first, then the
smaller ones by fragmentation) or in a bottom–up process. (The second route
is favored by observational data.) In fact many of the cosmological parameters,
such as Hubble’s constant and the energy density of the universe, etc. can also
be extracted from such analysis.

9.1.3 Age of the universe

If all galaxies are rushing away from each other now presumably they must
have been closer in the past. Unless there was some new physics involved,
extrapolating back in time there would be a moment, “the big bang”, when
all objects were concentrated at one point of infinite density6. This is taken

6See Problem 9.10 for a brief description of
the alternative cosmology called the steady-
state theory which avoids the big bang begin-
ning by having a constant mass density, main-
tained through continuous spontaneous mat-
ter creation as the universe expands.

to be the origin of the universe. How much time has evolved since this fiery
beginning? What is then the age of our universe?
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It is useful to note that the inverse of the Hubble’s constant at the present
epoch, the Hubble time, has the value of

tH ≡ H−1
0 = 13.6 Gyr. (9.11)

By Hubble “constant,” we mean that, at a given cosmic time, H is independent
of the separation distance and the recessional velocity—the Hubble relation is
a linear relation. The proportional coefficient between distance and recessional
speed is not expected to be a constant with respect to time: there is matter and
energy in the universe, and their mutual gravitational attraction will slow down
the expansion, leading to a monotonically decreasing expansion rate H(t)—a
decelerating universe. Only in an “empty universe” do we expect the expansion
rate to be a constant throughout its history, H(t) = H0. In that case, the age t0
of the empty universe is given by the Hubble time

t0empty = d

v
= 1

H0
= tH. (9.12)

For a decelerating universe full of matter and energy, the expansion rate must
be larger in the past: H(t) > H0 for t < t0. Because the universe was expand-
ing faster than the present rate, this would imply that the age of the decelerating
universe must be shorter than the empty universe age: t0 < tH. Nevertheless,
we shall often use the Hubble time as a rough benchmark value for the age of
the universe, which has a current horizon7 of ctH = lH � 4300 Mpc. 7Two objects, separated by a distance of ctH,

would recede from each other, according to
the Hubble relation of (9.6), at the speed of
light c.

Phenomenologically, we can estimate the age of the universe from observa-
tional data. For example, from astrophysical calculation, we know the relative
abundance of nuclear elements when they are produced in a star. Since they
have different decay rates, their present relative abundance will be different
from the initial value. The difference is a function of time. Thus, from the decay
rates, the initial and observed relative abundance, we can estimate the time that
has elapsed since their formation. Typically, such a calculation gives the ages of
stars to be around 13.5 Gyr. This only gives an estimate of time when stars were
first formed, thus only a lower bound for the age of the universe. However, our
current understanding informs us that the formation of stars started a hundred
million years or so after the big bang, thus such a lower limit still serves as a
useful estimate of t0.

An important approach to the study of the universe’s age has been the
research work on systems of 105 or so old stars known as globular clusters.
These stars are located in the halo, rather than the disk, of our Galaxy. It
is known that a halo lacks the interstellar gas for star formation. These stars
must be created in the early epochs after the big bang (as confirmed by their
lack of elements heavier than lithium, cf. Section 10.4). Stars spend most of
their lifetime undergoing nuclear burning. From the observed brightness (flux)
and the distance to the stars, one can deduce their intrinsic luminosity (energy
output per unit time). From such properties, astrophysical calculations based
on established models of stellar evolution, allowed one to deduce their ages
(Krauss and Chaboyer, 2003):

12 Gyr � t0gc � 15 Gyr. (9.13)
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For reference, we note that the age of our earth is estimated to be around
4.6 Gyr.

9.2 Mass density of the universe

It is useful to express the mass density in terms of a benchmark value for a
universe with expansion rate given by the Hubble constant H . One can check
that the ratio, with H2 divided by Newton’s constant GN, has the units of mass
density. With an appropriate choice8 of the coefficient, we have the expression8We can remember ρc as the density of

a universe with its radius R = ctH = c/H
just equal to the Schwarzschild radius: R =
2GN M/c2 where M = (4π R3/3)ρc.

of the critical density

ρc ≡ 3H2

8πGN
. (9.14)

The significance of this quantity will be discussed in Chapter 10 when the Ein-
stein equation for cosmology will be presented. In the meantime, we introduce
the notation for the density ratio

� ≡ ρ

ρc
. (9.15)

Since the Hubble constant is a function of cosmic time, the critical density
also evolves with time. We denote the values for the present epoch with the
subscript 0. For example, ρ(t0) ≡ ρ0, ρc(t0) ≡ ρc,0, and �(t0) ≡ �0, etc. For
the present Hubble constant H0 as given in (9.7), the critical density has the
value

ρc,0 = (0.97 ± 0.08) × 10−29 g/cm3 (9.16)

or, equivalently, a critical energy density9 of9In the natural unit system of quantum field
theory, this critical density is approximately
ρcc2 ≈ (2.5 × 10−3eV )4/(h̄c)3, where h̄ is
Planck’s constant (over 2π ) with h̄c ≈ 1.9 ×
10−5eV · cm. Also, ρc,0c2 � 5.5 GeV/m3 is
equivalent to the rest energy of � 6 protons
per cubic meter.

ρc,0c2 � 0.88 × 10−10 J/m3 � 5500 eV/cm3. (9.17)

In the following we shall discuss the measurement of the universe’s various
mass densities (averaged over volumes on the order of 100 Mpc3) for both
luminous and nonluminous matter. In recent years, these parameters have been
deduced rather accurately by somewhat indirect method—including detailed
statistical analysis of the temperature fluctuation in the cosmic microwave
background (CMB) radiation and from large-structure studies by the 2dF and
SDSS galaxy surveys mentioned above. The large-structure study involves
advanced theoretical tools that are beyond the scope of this introductory pre-
sentation. In the following we choose to present a few methods that involve
rather simple physical principles, even though they may be somewhat “dated”
in view of recent cosmological advances. Our discussion will in fact be
only semiquantitative. Subtle details of derivation as well as qualification
of the stated results will be omitted. The purpose is to provide some gen-
eral idea as to how cosmological parameters can in principle be deduced
phenomenologically.
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9.2.1 Luminous matter and the baryonic density

Luminous matter
The basic idea of measuring the mass density for luminous matter is through
its relation to the luminosity L, which is the energy emitted per unit time,

ρlum =
(

luminosity
density

)
×

(
M

L

)
. (9.18)

(Here we omit the subscript 0 for the present epoch.) That is, one finds it
convenient to decompose the mass density into two separate factors: the lumi-
nosity density and the mass-to-luminosity ratio. The luminosity density can
be obtained by a count of galaxies per unit volume, multiplied by the average
galactic luminosity. Several surveys have resulted in a fairly consistent conclu-
sion of 200 million solar luminosity L� per Mpc3 volume,

(
luminosity

density

)
≈ 2 × 108 L�

(Mpc)3
. (9.19)

The ratio (M/L) is the amount of mass associated, on the average, with a given
amount of light. This is the more difficult quantity to ascertain. Depending on
the selection criteria one gets a range of values for the mass-to-luminosity ratio.
The average of these results came out to be (M/L) ≈ 4M�/L�. Plugging this
and (9.19) into (9.18 ) we obtain an estimate of the density for luminous matter
ρlum ≈ 8 × 108 M�/Mpc3 ≈ 5 × 10−32 g/cm3, or in terms of the density ratio
defined in (9.15)

�lum ≈ 0.005. (9.20)

Total amount of baryonic matter and the intergalactic medium
We designate the type of matter, for which we cannot directly detect its
presence through its electromagnetic emissions, as nonluminous matter. This
includes such matter as neutrinos which have no electromagnetic interaction,
as well as matter such as intergalactic hydrogen molecules, which, although
they do not “shine,” can be detected through their absorption of electromag-
netic radiation.

Ordinary matter made of baryons (protons and neutrons) and electrons is
referred to in cosmology as baryonic matter.10 Baryons is the particle physics

10Such a name neglects electrons (one
species of leptons), which constitute less than
0.1% of the baryonic matter masses.

name for strongly interacting particles, composed of quark triplets, that carry
nontrivial baryon numbers—as are the cases of protons and neutrons. For our
purpose here, the baryon number is just the proton plus neutron numbers.
Other types of particles, such as photons, electrons, and neutrinos, carry zero
baryon number. Baryon matter (protons, neutrons and electrons) can clump to
form atoms and molecules, leading to large astronomical bodies. Luminous
matter (shining stars) is baryonic matter; but some of the baryonic matter,
such as interstellar or intergalactic gas, may not shine—they are nonluminous
baryonic matter.11 That is, baryonic matter can be luminous stars or optically

11Besides the interstellar gas around galax-
ies, nonluminous baryonic matter can be
planets or stellar remnants such as black
holes, white dwarfs, and brown dwarfs (the
last category being stars of the size of Jupiter,
with not enough mass to trigger the ther-
monuclear reaction to make it shine).nonluminous gas12 of ordinary atoms:
12This includes X-ray emitting hot gas.

�B = �lum + �gas. (9.21)
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As it turns out, we have methods that can deduce the total baryonic abundance
�B regardless of whether they are luminous or nonluminous. The light nuclear
elements (helium, deuterium, etc.) were produced predominantly in the early
universe at the cosmic time O(102 s), cf. Section 10.4. Their abundance (in
particular deuterium) is sensitive to the baryonic abundance. From such con-
siderations one deduces the result (Burles et al. 2001; Tegmark et al. 2006)

�B = 0.042 ± 0.002, (9.22)

which is confirmed by the latest CMB anisotropy measurements (see
Chapter 11), as well as gravitational microlensing (see Box 7.2).

From (9.20), we see that �B 	 �lum. This means that most of the “ordi-
nary matter” is not visible to us. Theoretical studies, backed up by detailed
simulation calculations, indicate that a major portion of it is in the form of
unseen neutral gas in galaxies as well as in the space between galaxies. Such
an intergalactic medium (IGM) is in the form of wispy filaments that connect
galaxy clusters. Their presence has been verified by careful examination of
quasar spectra. Quasars are among the most powerful light sources in the
universe. Their light reaches us after passing through successive layers of
IGM at various distances resulting in a quasar spectrum imprinted with neutral
hydrogen absorption lines. From the line depths one can infer the amount
and distribution of the absorbing gas. Such studies were able to account13

13Until very recently, such an IGM has been
detected in the early universe; finding such
nonluminous atoms in the nearby universe
had not been successful. However, theoretical
studies (e.g. Cen and Ostriker, 1999) sug-
gest such IGM baryons should have been
shock-heated by the large-scale collapsing
and squeezing that formed the foamy cos-
mic structure. The corresponding absorp-
tion lines of the heated atoms move up to
the far-ultraviolet and X-ray region. Mea-
surements of such absorption lines with the
expected intensity has recently been reported
(Danforth and Shull, 2008).

for the difference between �B and �lum; namely, an optically nonluminous
�gas ≈ 0.038.

9.2.2 Dark matter and the total mass density

One of the great discoveries of modern cosmology has been the finding that
there is more mass in the universe than just baryonic matter. That is, the bulk
of the nonluminous matter is not baryonic. We call such nonluminous and
nonbaryonic matter, dark matter.

Dark matter vs. baryonic matter
Dark matter is supposedly made up of exotic particles that have neither electro-
magnetic emission nor absorption. Namely, they have no electromagnetic inter-
action at all (i.e. they do not have strong or electromagnetic charges). Neutrinos
are cases in point. They only feel the weak nuclear force. With their masses
being extremely small, neutrinos are expected to be in relativistic motion. They
are examples of “hot dark matter.” Also, there may exist “cold dark matter”
composed of nonrelativistic heavy particles. Hot and cold dark matter have
distinctly different effects on the formation of galaxies and clusters of galaxies
from the initial density inhomogeneity in the universe. Research in the past
decade favors the possibility of cold dark matter.14 The prime examples of

14If the dark matter had been fast mov-
ing (hot) particles, they would be able to
stream away from high density regions, thus
smooth out small density perturbations. This
would have left only the large-scale per-
turbations, leading to the formation of the
largest structure (superclusters) first, with the
smaller structures (galaxies) being produced
from fragmentation. This top-down scenario
is inconsistent with observation.

CDM are the “weakly interacting massive particles” (WIMPs) predicted by
the various extensions of the Standard Model of particle interactions.15 WIMPs

15It has been suggested that the Standard
Model of particle physics be extended by the
inclusion of supersymmetry (cf. discussion
in Section 11.7.3). Every known elementary
particle must then have a supersymmetric
partner, with a spin differing by half a unit.
The lightest of such hypothesized supersym-
metry particles are expected to be neutralino
fermions (partners to the neutral Higgs scalar
and weak gauge bosons) and should be stable
against spontaneous decay. They can in prin-
ciple make up the bulk of the required dark
matter WIMPs.

are expected to be much more massive than nucleons (in the 50–1000 GeV/c2

range) but interact weakly—a particle with such a mass and interaction rate
can produce just the correct CDM abundance in the big bang cosmology, to
be discussed in Chapter 10 (see in particular the related subject of primordial
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neutrinos in Section 10.5.3). For a recent review,16 see for example Bertone, 16Among other examples of speculated CDM
particles are axions and Kaluza–Klein parti-
cles. Axions are associated with our effort to
explain how the strong interaction theory of
QCD avoids having a large violation of the
combined symmetry of charge conjugation
and parity. The KK particles are associated
with the speculated existence of compactified
extra spatial dimensions.

Hooper and Silk (2005).
The total mass of the universe can thus be divided into two categories:

baryonic, which may be luminous or nonluminous, and dark matter,17 which

17Hot dark matter such as neutrinos con-
tribute a negligible amount.

has only weak interaction:

�M = �B + �DM. (9.23)

Although the dark matter does not emit electromagnetic radiation, it still feels
gravitational effects. In the following we first list several methods of detecting
the total amount of masses, whether due to luminous or nonluminous matter,
through their gravitational interaction.

Galactic rotation curves
The most direct evidence of dark matter’s existence comes from measured
“rotation curves” in galaxies. Consider the gravitational force that a spherical
(or ellipsoidal) mass distribution exerts on a mass m located at a distance r
from the center of a galaxy, see Fig. 9.4(a). Since the contribution outside the
Gaussian sphere (radius r ) cancels out, only the interior mass M(r) enters into
the Newtonian formula for gravitational attraction. The object is held by this
gravity in circular motion with centripetal acceleration v2/r. Hence

v(r) =
√

GN M(r)

r
. (9.24)

In this way, the tangential velocity inside a galaxy is expected to rise linearly
with the distance from the center (v ∼ r) if the mass density is approximately
constant. For a light source located outside the galactic mass distribution
(radius R), the velocity is expected to decrease as v ∼ 1/

√
r , see Fig. 9.4(b).

Fig. 9.5 The dark matter halo surrounding
the luminous portion of the galaxy. In our
simple presentation, we take the halo to be
spherical. In reality the dark matter halo may
not be spherical and its distribution may not
be smooth.

The velocity of particles located at different distances (the rotation curves)
can be measured through the 21-cm lines of the hydrogen atoms. The surpris-
ing discovery was that, beyond the visible portion of the galaxies (r > R),
instead of this fall-off, they are observed to stay at the constant peak value (as
far as the measurement can be made). See, for example, Cram et al. (1980).
This indicates that the observed object is gravitationally pulled by other than
the luminous matter; hence it constitute direct evidence for the existence of
dark matter. Many subsequent studies confirm this discovery. The general
picture of a galaxy that has emerged is that of a disk of stars and gas embedded
in a large halo of dark matter, see Fig. 9.5. According to (9.24), the flatness

Fig. 9.4 (a) Gravitational attraction on a
mass m due to a spherical mass distribu-
tion (shaded disk). The circle passing through
m represents the Gaussian spherical surface.
(b) The solid line is the observed rotation
velocity curve v(r). It does not fall as r−1/2

beyond R, the edge of the visible portion of
a galaxy.
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of the rotation curve means that M ∝ r . We can think of the halo as a sphere
with mass density decreasing as r−2. Measurements of the rotational curve for
spiral galaxies have shown that halo radii are at least ten times larger than the
visible radii of the galaxies. This leads to a lower bound on the dark matter
density of �DM � 0.1.

Use of the virial theorem to infer gravitational mass
Because the rotation curves cannot be measured far enough out to determine
the extent of the dark matter halo, we have to use some other approach to fix the
mass density of the dark matter in the universe. Here we discuss one method
which allows us to measure the total (luminous and dark) mass in a system of
galaxies (binaries, small groups, and large clusters of galaxies), that are bound
together by their mutual gravitational attraction. This involves measurements
of the mean-square of the galactic velocities 〈v2〉 and the average galactic
inverse separation 〈s−1〉 of the luminous components of the system. These two
quantities, according to the virial theorem of statistical mechanics, −2〈T 〉 =
〈V 〉, relating the average kinetic and potential energy, are proportional to each
other—with the proportional constant given by the total gravitational mass M
(luminous and dark) of the system,

〈v2〉 = GN M

〈
1

s

〉
. (9.25)

The proof of this theorem is left as an exercise (Problem 9.6). Here we
shall merely illustrate it with a simple example. Consider a two-body system
(M, m), with M 	 m, separated by distance s. The Newtonian equation of
motion GN Mm/s2 = mv2/s immediately yields the result in (9.25). From
such considerations,18 one obtains a total mass density that is something like18While the argument involving the virial

theorem may appear to be somewhat abstract,
its result can be understood crudely as saying
that the constituents of a system held gravita-
tionally cannot move too fast so as to exceed
the escape velocity v2

esc = 2GN M/r. For a
review of the simple concept of escape veloc-
ity, see Eq. (10.15) in Section 10.1.2.

50 times larger than the luminous matter. Thus the luminous matter, being what
we can see when looking out into space, represents only a tiny fraction of the
mass content of the universe.

There are now several independent means to determine the mass density
at the present era �M,0: one approach is through gravitational lensing by
galaxies, and clusters of galaxies19 (see Section 7.2); another is by comparing

19After subtracting out the peaks correspond-
ing to the stars and galaxies from the mass
distribution as deduced by gravitational lens-
ing (e.g. Fig. 7.5), one is still left with a
huge smooth bulged piece that can only be
accounted for by the existence of dark matter
and optically nonluminous gas.

the number of galaxy clusters in galaxy superclusters throughout the cosmic
age; yet another is from measured CMB temperature fluctuations. A value for
the total mass density that is generally consistent with the above discussed
results has been obtained (Tegmark et al. 2006):

�M,0 = 0.245 ± 0.025. (9.26)

We shall show in the next chapter that the whole universe is permeated with
radiation. However, its energy density is considerably smaller so that �R,0 �
�M,0.

A historical note That there might be a significant amount of dark matter
in the universe was first pointed out by Fritz Zwicky in the 1930s. The basis
of this proposal is just the method we have outlined here. Zwicky noted that,
given the observed radial velocities of the galaxies, the combined mass of the
visible stars and gases in the Coma Cluster was simply not enough to hold
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Fig. 9.6 Images of the “Bullet Cluster” 1E0657−558 from Clowe, et al. (2006) showing it as having been produced by the collision of two galactic
clusters, resulting in the separation of hot gas and dark matter (with their embedded stars and galaxies). (a) Optical image from the Hubble Space
Telescope; (b) X-ray image from the Chandra telescope. Mass density contours from gravitational lensing reconstruction, showing two mass peaks
separated from the hot gaseous regions.

them together gravitationally. That is, what is holding together a galaxy or a
cluster of galaxies must be some form of dark matter. The modern era began
in 1970 when Vera Rubin and W. Kent Ford, using more sensitive techniques,
were able to extend the rotation curve measurements far beyond the visible
edge of gravitating systems of galaxies and clusters of galaxies.

Bullet Cluster offers direct empirical evidence of dark matter
In all the above discussions, the presence of dark matter was deduced through
its gravitational effects (finding total �M > �B). On might wonder whether it
is possible to explain the observation, instead of postulating the existence of a
new form of matter, by modifying the law of gravity. Here we present a piece
of evidence for dark matter that simply cannot be evaded by this alternative
explanation. This is the observational result shown in Fig. 9.6. Three images
of the galaxy cluster 1E0657-558, the “Bullet Cluster,” are displayed here. The
picture on the left shows galaxies that make up a few percent of the cluster
mass; the picture on the right is the X-ray image from the Chandra telescope
showing where the bulk of the hot gas is located. Superimposed on top of
these two pictures is the mass contours as derived from gravitational lensing.
These counters have two mass peaks which, while they more or less track the
locations of observed galaxies, are situated at very different positions from the
atomic gas. Such an observation cannot be explained by any modified law of
gravity but is consistent with the interpretation that this Bullet Cluster came
about because of a collision of two clusters of galaxies. The dark matter and
baryonic gas are separated because the dark matter (having small interaction
cross-section) passes through20 “like a bullet” while the baryonic gases are left 20Most of the galxies track the deep dark

matter gravitational potentials.behind.

Matter densities in the universe: A summary Dark matter is mostly
nonrelativistic particles having only gravitational and weak interactions. It
does not emit or absorb electromagnetic radiation. Its presence has been
deduced from the velocity distribution of a gravitationally bound system.
The most direct empirical evidence is the mass distribution in the Bul-
let Cluster. On an even larger scale the abundance of dark matter can be
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quantified from the study of large cosmic structure and CMB. All this leads
to a total mass density equal approximately to a quarter of the critical density:

�M = �B + �DM � 0.25. (9.27)

The total baryonic (atomic) density can be deduced from the observed amount
of light nuclear elements and the big bang nucleosynthesis theory or from the
observed CMB temperature anisotropy:

�B � 0.04, (9.28)

The bulk of which is in the intergalactic medium and has been detected through
its electromagnetic absorption lines. What we can see optically, stars and
galaxies, is only a small part of this baryonic density:

�B = �gas + �lum with �gas 	 �lum � 0.005. (9.29)

Thus the luminous matter associated with the stars we see in galaxies repre-
sents about 2% of the total mass content. Most of the matter is dark (�DM �
0.21) composed mostly of exotic nonrelativistic particles such as WIMPs. The
exact nature of these exotic nonbaryonic CDM particles remains one of the
unsolved problems in physics.

9.3 The cosmological principle

That the universe is homogeneous and isotropic on the largest scale of hun-
dreds of Mpc has been confirmed by direct observation only recently (cf. the
discussion at the end of Section 9.1.2). Other evidence for its homogeneity
and isotropy came in the form of the extremely uniform CMB radiation. This
is the relic thermal radiation left over from an early epoch when the universe
was only 105 years old. The nonuniformity of CMB is on the order of 10−5

(cf. Sections 10.5 and 11.3.1). This shows that the “baby universe” can be
described as being highly homogeneous and isotropic.

But long before obtaining such direct observational evidence, Einstein had
adopted the strategy of starting the study of cosmology with a basic working
hypothesis called the cosmological principle (CP): at each epoch (i.e. each
fixed value of cosmological time t) the universe is homogeneous and isotropic.
It presents the same aspects (except for local irregularities) from each point:
the universe has no center and no edge.

• This statement that there is no privileged location in the universe (hence
homogeneous and isotropic) is sometimes referred to as the Copernican
cosmological principle. It is in essence the ultimate generalization of the
Copernican principle.

• This is a priori the most reasonable assumption, as it is difficult to think
of any other alternative. Also, in practice, it is also the most “useful,”
as it involves the least number of parameters. There is some chance
for the theory to be predictive. Its correctness can then be checked by
observation. Thus CP was invoked in the study of cosmology long before
there was any direct evidence for a homogeneous and isotropic universe,
but it is now fully supported by observation.
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• The observed irregularities, i.e. the structure, in the universe (stars,
galaxies, clusters of galaxies, superclusters, voids, etc.) are assumed
to arise because of gravitational clumping around some initial density
unevenness. Various mechanisms for seeding such density perturbation
have been explored. Most of the efforts have been concentrated around
the idea that, in the earliest moments, the universe passed through a
phase of extraordinarily rapid expansion, the “cosmic inflationary epoch.”
The small quantum fluctuations were inflated to astrophysical size and
they seeded the cosmological density perturbation (cf. Sections 11.2.3
and 11.3.1).

The cosmological principle gives rise to a picture of the universe as a
physical system of a “cosmic fluid.” The fundamental particles of this fluid
are galaxies, and a fluid element has a volume that contains many galaxies, yet
is small compared to the whole system of the universe. Thus, the motion of a
cosmic fluid element is the smeared-out motion of the constituent galaxies.
It is determined by the gravitational interaction of the entire system—the
self-gravity of the universe. This means that each element is in free-fall; all
elements follow geodesic worldlines. (In reality, the random motions of the
galaxies are small, on the order of 10−3.)

Such a picture of the universe allows us to pick a privileged coordinate
frame, the comoving coordinate system, where

t ≡ the proper time of each fluid element

x i ≡ the spatial coordinates carried by each fluid element.

A comoving observer flows with a cosmic fluid element. The comoving coord-
inate time can be synchronized over the whole system. For example, t is
inversely proportional to the temperature of the cosmic background radiation
(see Section 10.3) which decreases monotonically. Thus, we can in principle
determine the cosmic time by a measurement of the background radiation
temperature. This property allows us to define space-like slices, each with
a fixed value of the coordinate time, and each is homogenous and isotropic.

Because each fluid element carries its own position label the comoving
coordinate is also the cosmic rest frame—as each fluid element’s position coor-
dinates are unchanged with time. But we must remember that in GR the coor-
dinates do not measure distance, which is a combination of the coordinates
and the metric. As we shall detail below, viewed in this comoving coordinate,
the expanding universe, with all galaxies rushing away from each other, is
described not by changing position coordinates, but by an ever-increasing
metric. This emphasizes the physics underlying an expanding universe not as
something exploding in the space, but as the expansion of space itself.

9.4 The Robertson–Walker spacetime

9.4.1 The metric in the comoving coordinate system

The cosmological principle says that, at a fixed cosmic time, each space-
like slice of the spacetime is homogeneous and isotropic. In Section 7.1
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spherical symmetry has been found to restrict the metric to the form of
gμν = diag(g00, grr , r2, r2 sin2 θ) with only two scalar functions (g00 and
grr ). In this section we discuss the geometry resulting from the cosmological
principle: when expressed in comoving coordinates, it has a Robertson–Walker
metric.

The time components
Because the coordinate time is the proper time of fluid elements, we must
have g00 = −1. The fact that the spacelike slices for fixed t can be defined
means that the spatial axes are orthogonal to the time axes:21

21Because fixed-time space-like slices of
space exist, we can consider an event as sepa-
rated from two other events in two distinctive
ways. The first connects the event to another
on a space-like space containing all events
with the same cosmic time: daμ = (0, dx i )

for a definite spatial index i; the second is an
interval connecting the event to another one
along the worldline of a comoving observer:
dbμ = (dt, 0). The inner product of these
two intervals gμνdaμdbν = gi0dx i dt (the
repeated μ and ν indices are summed, but
not the i indices) is an invariant, valid in
any coordinate system including the local
Minkowski frame. This makes it clear that the
left-hand side vanishes. The above equality
then implies gi0 = 0.

g00 = −1 and g0i = gi0 = 0. (9.30)

The self-consistency of this choice of coordinates can be checked as follows. A
particle at rest in the comoving frame is a particle in free fall under the mutual
gravity of the system; it should follow a geodesic worldline obeying Eq. (6.9):

d2xμ

dτ 2
+ �

μ
αβ

dxα

dτ

dxβ

dτ
= 0. (9.31)

Being at rest, dx i = 0 with i = 1, 2, 3, we only need to calculate the Christof-
fel symbol �

μ
00. But the metric properties of (9.30) imply that �

μ
00 = 0 for

all μ. Thus these fluid elements at rest with respect to the comoving frame
(dxi/dτ = d2xi/dτ 2 = 0) do satisfy (trivially) the geodesic equation.

The metric for a 3D space with constant curvature
Let gi j be the spatial part of the metric; the relations in (9.30) imply that the
4D metric that satisfies the cosmological principle is block-diagonal:

gμν =
(−1 0

0 gi j

)
. (9.32)

The invariant interval expressed in terms of the comoving coordinates is

ds2 = −c2dt2 + gi j dx i dx j

≡ −c2dt2 + dl2. (9.33)

Because of the CP requirement (i.e. no preferred direction and position),
the time dependence in gi j must be an overall length factor R(t), sometimes
referred to as the radius of the universe, with no dependence on any of the
indices:

dl2 = R2(t)dl̃2 (9.34)

where the reduced length element dl̃ is both t-independent and dimensionless.
It is also useful to define a dimensionless scale factor

a(t) ≡ R(t)

R0
, (9.35)
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with denominator on the right-hand side (RHS) R0 ≡ R(t0) so that the scale
factor is normalized at the present epoch by a(t0) = 1.

One has the picture of the universe as a three-dimensional (3D) map with
cosmic fluid elements labeled by the fixed comoving coordinates x̃i . Time
evolution enters entirely through the time dependence of the map scale R(t) =
a(t)R0, see Fig. 9.7,

xi (t) = a(t)R0 x̃i (9.36)

with x̃i being the fixed (t-independent) dimensionless map coordinates, while
a(t) is the size of the grids and is independent of the map coordinates. As
the universe expands, the relative distance relations (i.e. the shape of things)
are not changed.

Fig. 9.7 A three-dimensional map of the
cosmic fluid with elements labeled by t-
independent x̃i comoving coordinates. The
time dependence of any distance is entirely
determined by the t-dependent scale factor.

The Robertson–Walker metric
The Robertson–Walker (RW) metric is for a spacetime which, at a give time,
has a 3D homogeneous and isotropic space. One naturally expects this space to
have a constant curvature. In Section 5.3.2 we have already written down the
metric22 for the 3D spaces with constant curvature in two spherical coordinate 22While the deduction of the 3D spatial met-

ric given in Section 5.3.2 is only heuristic, in
Section 14.4.1 we shall provide an indepen-
dent derivation of the same result.

systems, with the dimensionless radial coordinates being χ = r/R0 and ξ =
ρ/R0, respectively, and the differential solid angle d�2 = dθ2 + sin2 θdφ2:

• Equation (5.53) for the comoving “polar” coordinates (χ, θ, φ):

dl2 = R2
0a2(t)dχ2 + k−1(sin2

√
kχ)d�2. (9.37)

• Equation (5.55) for the comoving “cylindrical” coordinates (ξ, θ, φ)

dl2 = R2
0a2(t)

(
dξ2

1 − kξ2
+ ξ2d�2

)
. (9.38)

The parameter k in gi j can take on the values ±1, 0 with k = +1 for a
3-sphere, k = −1 for a 3-pseudosphere, and k = 0 for a 3D Euclidean (flat)
space. Some properties of such spaces, such as their embedding and their
volume evaluation, were also discussed in Problems 5.7 and 5.8. In the context
of cosmology, the universe having a k = +1 positively curved space is called
a “closed universe,” a k = −1 negatively curved space an “open universe,” and
k = 0 a “flat universe.”

In practice, one can use either one of the two coordinates displayed in (9.37)
and (9.38); they are equivalent. In the following, for definiteness, we shall work
with the (ξ, θ, φ) coordinate system of (9.38).

9.4.2 Distances in the RW geometry

In an expanding universe with a space that may be curved, we must be very
careful in any treatment of distance. In the following sections we shall deal
with several kinds of distance, starting with conceptually the simplest: the
proper distance.
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The proper distance
The proper distance dp(ξ, t) to a point at the comoving radial distance
ξ and cosmic time t can be calculated from the metric (9.38) with
d� = 0 and dt = 0:

dp(ξ, t) = a(t)R0

∫ ξ

0

dξ ′

(1 − kξ ′2)1/2
(9.39)

so that the time dependence (due to expansion of the universe) on the RHS is
entirely contained in the scale factor a(t)

dp(ξ, t) = a(t)dp(ξ, t0) (9.40)

where the fixed (comoving) distance at the present epoch is

dp(ξ, t0) = R0

∫ ξ

0

dξ ′

(1 − kξ ′2)1/2
=

(
R0√

k

)
sin−1(

√
kξ). (9.41)

Namely, for a space with positive curvature k = +1, we have dp(ξ, t0) =
R0 sin−1 ξ ; negative curvature, R0 sinh−1 ξ , and a flat space R0ξ = ρ.

Hubble’s law follows from CP The relation (9.40) implies a proper velocity
of

vp(t) = d(dp)

dt
= ȧ(t)

a(t)
dp(t). (9.42)

Evidently the velocity is proportional to the separation. This is just Hubble’s
law with the Hubble constant expressed in terms of the scale factor:

H(t) = ȧ(t)

a(t)
and H0 = ȧ(t0). (9.43)

Recall that the appearance of an overall scale factor in the spatial part of the
Robertson–Walker metric follows from our imposition of the homogeneity and
isotropy condition. The result in (9.42) confirms our expectation that in any
geometrical description of a dynamical universe which satisfies the cosmolog-
ical principle, hence the distance scaling relation (9.40), Hubble’s law emerges
automatically. We emphasize that, in the GR framework, the expansion of the
universe is described as the expansion of space, and “big bang” is not any sort
of “explosion of matter in space,” but rather it is an “expansion of space itself.”
Space is a dynamic quantity, which is expanding; that is, the metric function
of spacetime is the solution to Einstein equation and its scale factor increases
with time.

Relating distance to the scale factor at emission To relate distance to the
redshift of a light source located at the comoving distance ξem, we use the fact
that the observer and emitter are connected by a light ray along a radial path
(d� = 0),

ds2 = −c2dt2 + R2
0a2(t)

dξ2

1 − kξ2
= 0. (9.44)
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Moving c2dt2 to one side and taking the minus sign for the square-root for
incoming light, we have

−
∫ tem

t0

cdt

a(t)
= R0

∫ ξem

0

dξ

(1 − kξ2)1/2
= dp(ξem, t0) (9.45)

where (9.41) has been used to express the second integral in terms of the proper
distance at t = t0. The first integral can be put into a more useful form by
changing the integration variable to the scale factor,

−
∫ tem

t0

cdt

a(t)
= −

∫ aem

1

cda

a(t)ȧ(t)
= −

∫ aem

1

cda

a2(t)H(t)
, (9.46)

where we used (9.43) to reach the last expression. In this way (9.45) becomes
the relation tbetween the proper distance and scale factor at the emission time

dp(ξem, t0) = −
∫ aem

1

cda

a2 H(a)
. (9.47)

Once again, this is the distance between us and the light emitter located at
comoving radial coordinate ξem with light emitted when the scale factor was
aem.

Redshift and the scale factor We see that the scale factor a(t) is the key
quantity in our description of the time evolution of the universe. In fact,
because a(t) is generally a monotonic function, it can serve as a kind of
cosmic clock. How can the scale factor be measured? The observable quan-
tity that has the simplest relation to a(t) is the wavelength shift of a light
signal.

The spectral shift, according to (9.3), is

z = �λ

λ
= λrec

λem
− 1. (9.48)

We expect that the wavelength (in fact any length) scales as a(t) (see
Problem 9.8 for a more detailed justification):

λrec

λem
= a(trec)

a(tem)
. (9.49)

Since the “received time” is at t0 with a(t0) = 1, we have the basic relation

1 + z = 1

a(tem)
. (9.50)

For example, at the redshift of z = 1, the universe had a linear size half
as large as at the present one. In fact a common practice in cosmology is
to refer to “the redshift of an era” instead of its cosmic time. For example,
the “photon decoupling time,” when the universe became transparent to light
(cf. Section 10.5), is said to occur at z = 1100, etc.
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Distance in terms of redshift Changing the integration variable in (9.47) to
the redshift, we have the relation between proper distance and redshift in the
Robertson–Walker spacetime:

dp(z) =
∫ z

0

cdz′

H(z′)
. (9.51)

The functional dependence of distance on the redshift is, of course, the Hubble
relation. Different cosmological models having a Hubble constant with dif-
ferent z dependence would yield a different distance–redshift relation. Thus
the Hubble curve can be used to distinguish between different cosmological
scenarios. As we shall discuss in the next chapter, our universe has been
discovered to be in an accelerating expansion phase. By fitting the Hubble
curve we shall deduce that the universe’s dominant energy component is some
unknown “dark energy,” which provides the repulsion in causing the expansion
to proceed at an ever faster rate.

Luminosity distance and standard candle
The principal approach in calculating the distance to any stellar object is to
estimate its true luminosity and compare that with the observed flux (which is
reduced by the squared distance). Thus it is important to have stars with known
intrinsic luminosity that can be used to gauge astronomical distances. Stars
with luminosity that can be deduced from other properties are called “standard
candles.” A well-known class of standard candles is the Cepheid variable stars,
which have a definite correlation between their intrinsic luminosity and their
pulse rates. In fact, Edwin Hubble used Cepheids to deduce the distances of the
galaxies collected for his distance vs. redshift plot. Clearly, the reliability of the
method depends on one’s ability to obtain the correct estimate of the intrinsic
luminosity. A famous piece of history is that Hubble underestimated the lumi-
nosity of his Cepheids by almost a factor of 50, leading to an underestimation
of the distances, hence an overestimate of the Hubble constant H0 by a factor of
seven. This caused a “cosmic age problem” because the resultant Hubble time
(which should be comparable to the age of the universe) became much shorter
than the estimated ages of many objects in the universe. This was corrected
only after many years of further astronomical observation and astrophysical
modeling. Here, we assume that the intrinsic luminosity of a standard candle
can be reliably obtained.

In this section, we study the distance that can be obtained by measuring the
light flux from a remote light source with known luminosity. Because we use
observations of light emitted in the distant past of an evolving universe, this
requires us to be attentive in dealing with the concept of time.

The measured flux of watts per unit area is related to the intrinsic luminosity
L, which is the total power-radiated by the emitting object, as

f ≡ L

4πd2
L

. (9.52)

This defines the luminosity distance dL. Let us note that in space with any
constant curvature the area of a “sphere” is given by 4πd2

p where dp is the
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proper radial distance, cf. (9.41). In a static universe, the luminosity distance
equals the proper distance to the source: dp = dL.

f(static) = L

4πd2
p
. (9.53)

In an expanding universe the observed flux, being proportional to the energy
transfer per unit time, is reduced by a factor of (1 + z)2: one power of (1 + z)
comes from energy reduction due to wavelength lengthening of the emitted
light, and another power due to the increasing time interval. Let us explain:
The energy being proportional to frequency ω, the emitted energy, compared
to the observed one, is given by the ratio,

ωem

ω0
= λ0

λem
= 1

a(tem)
= 1 + z, (9.54)

where we have used a(t0) = 1 and (9.49) and (9.50). Just as frequency is
reduced by ω0 = ωem(1 + z)−1, the time interval must be correspondingly
increased by δt0 = δtem(1 + z), leading to a reduction of energy transfer rate
by another power of (1 + z):

ω0

δt0
= ωem

δtem
(1 + z)−2. (9.55)

Thus the observed flux in an expanding universe, in contrast to the static
universe result of (9.53), is given by

f = L

4πd2
p (1 + z)2

. (9.56)

Namely, the luminosity distance (9.52) differs from the proper distance by

dL = dp(1 + z). (9.57)

In Chapter 10 the cosmological equations will be solved to obtain the
epoch-dependent Hubble’s constant in terms of the energy/mass content of
the universe. In this way we can find how the proper distance dp (thus also
the luminosity distance) depends on the redshift z via (9.51) for the general
relation. (Problem 9.11 works out the case of small z.) In Box 9.1 we explain
the astronomy practice of plotting the Hubble diagrams of redshift vs. distance
modulus (instead of luminosity distance), which is effectively the logarithmic
luminosity distance.

Box 9.1 Logarithmic luminosity and distance modulus

Ancient Greek astronomers classified the brightness (observed flux) of stars
as having “first magnitude” to “sixth magnitude” for the brightest to the
faintest stars visible to the naked eye—the brighter a star is, the smaller its
magnitude. Since for this magnitude range of m(6) − m(1) = 5 the apparent
luminosities span roughly a factor of 100, namely, f(1)/ f(6) � 100,

(cont.)
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Box 9.1 (Continued)

a definition of apparent magnitude m is suggested:

m ≡ −2.5 log10
f

f0
(9.58)

so that m(6) − m(1) = 2.5 log10 f(1)/ f(6) = 5. The reference flux is taken to
be f0 ≡ 2.52 × 10−8W m−2 so that the brightest visible stars correspond
to m = 1 objects. In this scale, for comparison, the sun has an apparent
magnitude m� = −26.8.

Similar to (9.58), we can define a logarithmic scale, called absolute magni-
tude, for the intrinsic luminosity of a star:

M ≡ −2.5 log10
L

L0
(9.59)

where the reference luminosity L0 is defined so that a star with this power
output will be seen at a distance 10 pc away to have a flux f0:

f0 = L0

4π (10 pc)2
. (9.60)

This works out to be L0 = 78.7L�. Using the definition of luminosity
distance as given in (9.52), Eq. (9.60) can be translated into an expression
for the luminosity ratio

f

L
= f0

L0

(
10 pc

dL

)2

. (9.61)

Taking the logarithm of this equation leads to the definition of distance
modulus (m − M) , which can be related to luminosity distance by taking
the difference of (9.58) and (9.59) and substituting in (9.61):

m − M = 5 log10
dL

10 pc
. (9.62)

In the astronomy literature one finds the common practice of plotting the
Hubble diagram with one axis being the redshift z and another axis, instead
of luminosity distance, its logarithmic function, the distance modulus (e.g.
Fig. 11.8 and Fig. 11.11)

Review questions

1. What does it mean that Hubble’s law is a linear relation?
What is the significance of this linearity? Support your
statement with a proof.

2. What is the Hubble time tH? Under what condition is it
equal to the age of the universe t0? In a universe full of
matter and energy, what would be the expected relative
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magnitude of these two quantities (tH > t0 or tH < t0)?
What is the lower bound for t0 deduced from the observa-
tion data on globular clusters?

3. What are “galaxy rotation curves?” What feature would we
expect if the luminous matter were a good representation
of the total mass distribution? What observational feature
of the rotation curve told us that there were significant
amounts of nonluminous matter associated with galaxies
and clusters of galaxies?

4. Give a simple example that illustrates the content of the
virial theorem for a gravitational system. How can this be
used to estimate the total mass of the system?

5. What is baryonic matter? The bulk of baryonic mat-
ter resides in the intergalactic medium (IGM) and does
not shine. Why don’t we count it a part of dark
matter?

6. What are the values that we have for the total mass density
�M, for the luminous matter �lum, and for the baryonic
matter �B? From this deduce an estimate of the dark

matter density �DM. All values are for the present epoch,
and list them only to one significant figure.

7. What is the cosmological principle? What are comoving
coordinates?

8. Write out the form of the Robertson–Walker metric for
two possible coordinate systems. What is the input (i.e. the
assumption) used in the derivation of this metric?

9. What are the physical meanings of the scale factor a(t) and
the parameter k in the Robertson–Walker metric? How is
the epoch-dependent Hubble constant H(t) related to the
scale factor a(t)?

10. What is the scaling behavior of wavelength? From this
derive the relation between the scale factor a(t) and the
redshift z.

11. Derive the integral expression for the proper distance dp =
c
∫

H−1dz to the light source with redshift z.

12. What is luminosity distance? How is it related to the proper
distance?

Problems

9.1 The universe as a strong gravitational system One can
check that the universe as a whole corresponds to a
system of strong gravity that requires a GR description by
making a crude estimate of the parameter ε in Eq. (9.1).
For this calculation you can assume a static Euclidean
universe having a finite spherical volume with radius
given by a horizon length cH−1

0 and having a mass den-
sity comparable to the critical density as given in (9.14).

9.2 Luminosity distance to the nearest star The nearest star
appears to us to have a brightness f∗ � 10−11 f� ( f�
being the observed solar flux). Assuming that it has the
same intrinsic luminosity as the sun, estimate the distance
d∗ to this star, in the distance unit of parsec, as well as in
the astronomical unit AU � 5 × 10−6pc.

9.3 Gravitational frequency shift contribution to the Hubble
redshift Hubble’s linear plot of redshift vs. distance
relies on spectral measurement of galaxies beyond the
Local Group with redshift z � 0.01. A photon emitted
by a galaxy suffers not only a redshift because of cosmic
recession, but also a gravitational redshift. Is the latter
a significant factor when compared to the recessional
effect? Suggestion: compare the gravitational redshifts of
light from a galaxy with mass MG = O(1011 M�) and
linear dimension RG = O(1012 R�) to the redshift for
light leaving the surface of the sun, z� = O(10−6).

9.4 Energy content due to starlight By assuming the stars
have been shining with the same intensity since the
beginning of the universe and always had the luminosity
density as given in (9.19), estimate the density ratio
�∗ = ρ∗/ρc for starlight. For this rough calculation you
can take the age of universe to be the Hubble time tH .

9.5 Night sky as bright as day Olbers’ paradox is solved in
our expanding universe because the age of the universe
is not infinite t0 � tH and, having a horizon length
� ctH , it is effectively not infinite in extent. Given
the present luminosity density of (9.19), with the same
approximation as Problem 9.4, estimate the total flux
due to starlight. Compare your result with the solar flux
f� = L�/(4π (AU)2). We can increase the star light
flux by increasing the age of the universe t0. How much
older does the universe have to be in order that the night
sky is as bright as day?

9.6 The virial theorem Given a general bound system of
mass points (located at rn) subject to gravitational forces
(central and inverse square) Fn = −∇Vn with Vn ∝ r−1

n ,
by considering the time derivative, and average, of
the sum of dot-products of momentum and position
G ≡ �npn ·rn (called the virial), show that the time-
averages of the kinetic and potential energy are related
by 2 〈T 〉 = − 〈V 〉 .
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9.7 Proper distance from comoving coordinate χ In the
text we worked out the proper distance from a point with
radial coordinate ξ as in (9.40). Now perform the same
calculation (and obtain a similar result) for a point labeled
by the alternative radial coordinate χ with a metric given
by (9.37).

9.8 Wavelength in an expanding universe By a careful
consideration of the time interval between emission
and reception of two successive wavecrests, prove that
in an expanding universe with a scale factor a (t) , the
wavelength scales as expected:

λrec

λem
= a (trec)

a (tem)
.

Suggestion: Apply Eq. (9.45) to two successive
emissions/receptions of waves.

9.9 The deceleration parameter and Taylor expansion of the
scale factor Display the Taylor expansion of the scale
factor a (t) and [a (t)]−1 around t = t0, up to (t − t0)2 ,

in terms of the Hubble’s constant H0 and the deceleration
parameter defined by

q0 ≡ −ä (t0) a (t0)

ȧ2 (t0)
. (9.63)

9.10 The steady-state universe The conventional interpreta-
tion of an ever increasing scale factor (expanding uni-
verse) means that all objects must have been closer in the
past, leading to a big bang beginning. We also mentioned
in Section 9.4.2 that, because of an initial overestimate of
the Hubble constant (by a factor of seven), there was
a “cosmic age problem.” To avoid this difficulty, an
alternative cosmology, called the steady-state universe
(SSU), was proposed by Hermann Bondi, Thomas Gold,
and Fred Hoyle. It was suggested that, consistent with the
Robertson–Walker description of an expanding universe,
all cosmological quantities besides the scale factor (the
expansion rate, deceleration parameter, spatial curvature,
matter density, etc.) are time independent. A constant
mass density means that the universe did not have a
big hot beginning; hence there cannot be a cosmic age
problem. To have a constant mass density in an expanding
universe requires the continuous, energy-nonconserving,
creation of matter. To SSU’s advocates, this spontaneous
mass creation is no more peculiar than the creation of

all matter at the instant of big bang. In fact, the name
“big bang” was invented by Fred Hoyle as a somewhat
disparaging description of the competing cosmology.

(a) Supporters of SSU find this model attractive on the-
oretical grounds—because it is compatible with the
“perfect cosmological principle.” From the above out-
line of SSU and the cosmological principle in Section
9.3, can you infer what this “perfect CP” must be?

(b) RW geometry, hence (9.43), also holds for SSU, but
with a constant expansion rate H (t) = H0. From
this, deduce the explicit t-dependence of the scale
factor a (t) . What is the SSU prediction for the
deceleration parameter q0 defined in (9.63)?

(c) SSU has a 3D space with a curvature K = k/R2 that
is not only constant in space but also in time. Does
this extra requirement fix its spatial geometry? If so,
what is it?

(d) Since the matter density is a constant ρM (t) =
ρM,0 � 0.3ρc,0 and yet the scale factor increases
with time, SSU requires spontaneous matter creation.
What must be the rate of this mass creation per
unit volume? Express it in terms of the number of
hydrogen atoms created per cubic kilometer per year.

9.11 z2 correction to the Hubble relation The Hubble rela-
tion (9.5) is valid only in the low velocity limit. Namely,
it is the leading term in the power series expansion of the
proper distance in terms of the redshift. Use the definition
of deceleration parameter introduced in (9.63) to show
that, including the next order, the Hubble relation reads as

dp (t0) = cz

H0

(
1 − 1 + q0

2
z

)
. (9.64)

(a) One first uses (9.45) to calculate the proper distance
up to the quadratic term in the “look-back time”
(t0 − tem).

(b) Use the Taylor series of Problem 9.10 to express
the redshift in terms of the look-back time up to
(t0 − tem)2.

(c) Deduce the claimed result of (9.64) by using the
result obtained in (a) and inverting the relation
between the redshift and look-back time obtained
in (b).


