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• This chapter may be viewed as the mathematical appendix of the book.
While some important GR results have been stated previously without
proof, we now introduce the basics of the tensor formalism needed to
properly formulate GR. Specific topics are introduced with an empha-
sis on their mathematical content, so the reader should refer back to the
previous chapters for their physics context.

• While the tensors used in GR are basically the same as those in SR,
differentiation of tensor components in a curved space must be han-
dled with extra care, because basis vectors in a curved spacetime are
position-dependent.

• By adding extra terms (involving a combination of the metric’s first deriva-
tives called Christoffel symbols) to the ordinary derivative operator, we can
form a covariant derivative, which acts on tensor components to yield com-
ponents of a new tensor. Covariant differentiation has a clear geometric
meaning in terms of parallel transport of tensors.

• The Riemann tensor reflects multiple aspects of curvature. Its expression
(11.40) can be derived from

– the change of a vector parallel-transported around a closed path (which
is related to the noncommutivity of covariant derivatives of a vector);

– the deviation of geodesics (tidal forces).

• We use the Bianchi identity to show that the Einstein tensor has no co-
variant divergence, qualifying it to be the geometric term in the GR
field equation. The metric tensor itself also satisfies this criterion, thereby
allowing the cosmological constant term.

• The approach to Einstein field equation via the principle of least action
is sketched. The relevant mathematics of its Schwarzschild solution is
outlined.
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General relativity requires that physics equations be covariant under any general
coordinate transformation that leaves invariant the infinitesimal interval

ds2 = gμν dxμ dxν . (11.1)

Just as SR requires physics equations to be tensor equations with respect to
Lorentz transformations, GR equations must be tensor equations with respect
to general coordinate transformations. In this way, the principle of GR can be
fulfilled automatically.

General coordinate transformations

Recall our discussion in Section 3.2 that tensor components are the expan-
sion coefficients of a tensor in terms of the basis vectors. Under a coordinate
transformation, a tensor does not itself change, but its components transform be-
cause of the changed bases. The transformation rules of tensor components are
listed in (3.25)–(3.27). Because repeated reference to tensor components can be
cumbersome, we often simply refer to tensor components as tensors.

In Chapter 5 and in particular (5.10), we suggested that coordinate trans-
formations can be written in terms of partial derivatives.1 1 This also applies to position-

independent coordinate transformations
such as ordinary rotations and Lorentz
transformations; see Exercise 2.4.

We now discuss
these general coordinate transformations further. From the basic chain rule of
differentiation, we have

dx′μ =
∂x′μ

∂xν
dxν , ∂ ′μ =

∂xν

∂x′μ
∂ν . (11.2)

We can interpret these relations as the transformations (dxν , ∂ν) → (dx′μ, ∂ ′μ)
by the respective transformation matrices (∂x′μ/∂xν , ∂xν/∂x′μ). Recall our Chap-
ter 3 definitions of contravariant and covariant vector components (Aμ, Aμ);
they transform in the same way as (dxν , ∂ν). Thus we can write the respective
transformations of the contravariant and covariant components of a vector as

Aμ –→ A′μ =
∂x′μ

∂xν
Aν , (11.3)

Aμ –→ A′μ =
∂xν

∂x′μ
Aν . (11.4)

We display the contravariant transformation in 4D spacetime:
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This way of writing a transformation also has the advantage of preventing us from
misidentifying the transformation [...]μν as a tensor.

Because any vector A is coordinate-independent and may be expanded as
A = Aμeμ = Aμeμ, the transformations of its expansion coefficients Aμ and Aμ
must cancel out (i.e., be the inverse of) those of the corresponding bases:

e′μ =
∂xν

∂x′μ
eν and e′ν =

∂x′ν

∂xρ
eρ . (11.6)

This is the reason why
{
Aμ
}
are called the covariant components: they transform

in the same way as the basis vectors {eμ}, while the contravariant components
{Aμ} transform oppositely, like the inverse bases {eμ}.

A tensor T of higher rank is likewise coordinate-independent and can be simi-
larly expanded in terms of basis elements that are (direct) products of the vector
bases:

T=Tμν... λ...eμ ⊗ eν · · · ⊗ eλ ⊗ · · · . (11.7)

Therefore, tensor components Tμν... λ... transform like products of vector compo-
nents AμBν · · ·Cλ · · · . For example, mixed tensor components T μ

ν transform as

T μ
ν –→ T ′ μν =

∂xλ

∂x′ν
∂x′μ

∂xρ
T ρ
λ . (11.8)

In particular, the metric tensor components change as

gμν –→ g′μν =
∂xλ

∂x′μ
∂xρ

∂x′ν
gλρ . (11.9)

Recall that the metric tensor components are related to the basis vectors {eμ}
(and components of the inverse metric to the inverse basis vectors {eμ}) by

gμν = eμ · eν and gμν = eμ · eν . (11.10)

Since the basis vectors of a curved space are position-dependent, so must be
the associated metric. Relations such as (11.9) with position-dependent gλρ and
g′μν imply that general coordinate transformations must themselves vary over
spacetime.

11.1 Covariant derivatives and parallel
transport

Physics equations usually involve differentiation. While tensors in GR are basi-
cally the same as SR tensors, the derivative operators in a curved space require
considerable care. General coordinate transformations are position-dependent, so
ordinary derivatives of tensor components, except for the trivial case of a scalar
tensor, are not components of tensors. Nevertheless, we shall construct covariant
differentiation operations that do result in tensor component derivatives.
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11.1.1 Derivatives in a curved space and Christoffel
symbols

We first demonstrate that ordinary derivatives spoil the transformation properties
of tensor components. We then construct covariant derivatives that correct this
problem.

Ordinary derivatives of tensor components are not tensors

In a curved space, the derivative ∂νAμ is not a tensor. Namely, even though Aμ

and ∂ν transform like vectors, as indicated by (11.3) and (11.2), their combination
∂νAμ does not transform as required by (11.8):

∂νAμ –→ ∂ ′νA
′μ �= ∂xλ

∂x′ν
∂x′μ

∂xρ
∂λAρ . (11.11)

We can find the full expression for ∂ ′νA′μ by differentiating (∂ ′ν ≡ ∂/∂x′ν) both
sides of (11.3):

∂ ′νA
′μ =

∂

∂x′ν

(
∂x′μ

∂xρ
Aρ
)

=
∂xλ

∂x′ν
∂x′μ

∂xρ
(∂λAρ) +

∂2x′μ

∂x′ν∂xρ
Aρ , (11.12)

where the chain rule (11.2) has been used. Compared with the right-hand side of
(11.11), there is an extra term, the second term on the right-hand side, because

∂

∂x′ν

(
∂x′μ

∂xρ

)
�= 0; (11.13)

the transformations are position-dependent, which follows from the position
dependence of the metric. We see that the fundamental problem lies in the
changing bases, eμ = eμ(x), of the curved space. More explicitly, because
the vector components are the projections of the vector onto the basis vectors
Aμ = eμ · A, the changing bases ∂νeμ �= 0 produce an extra (second) term in the
derivative:

∂νAμ = eμ · (∂νA) +A · (∂νeμ). (11.14)

The properties of the two terms on the right-hand side will be studied separately
below.

Covariant derivatives as expansion coefficients of ∂νA

In order for an equation to be manifestly relativistic, we must be able to cast it as
a tensor equation, whose form is unchanged under coordinate transformations.
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Thus, we seek a covariant derivativeDν to be used in covariant physics equations.
Such a differentiation is constructed so that it acts on tensor components to yield
a new tensor of rank one greater, which transforms per (11.8):

DνAμ –→ D′νA
′μ =

∂xλ

∂x′ν
∂x′μ

∂xρ
DλAρ . (11.15)

As will be demonstrated below, the first term on the right-hand side of (11.14) is
just this desired covariant derivative term.

We have suggested that the difficulty with differentiating vector components
Aμ is their coordinate dependence. By this reasoning, derivatives of a scalar func-
tion� should not have this complication, because a scalar tensor does not depend
on the bases: �′ = �, so

∂μ� –→ ∂ ′μ�
′ =

∂xλ

∂x′μ
∂λ�. (11.16)

Similarly, the derivatives of the vector A itself (not its components) transform
properly, because A is coordinate-independent:

∂μA –→ ∂ ′μA =
∂xλ

∂x′μ
∂λA. (11.17)

Both (11.16) and (11.17) merely reflect the transformation of the del opera-
tor (11.2). If we dot both sides of (11.17) by the inverse basis vectors, e′ν =
(∂x′ν/∂xρ)eρ , we obtain

e′ν · ∂ ′μA =
∂xλ

∂x′μ
∂x′ν

∂xρ
eρ · ∂λA. (11.18)

This shows that eν · ∂μA is a proper mixed tensor22 We can reach the same conclusion by
applying the quotient theorem (see Exer-
cise 3.2) to (11.20), with the observation
that since both ∂μA and eν are good ten-
sors, so must be their quotient (DμAν).

as required by (11.8), and this
is the covariant derivative (11.15) we have been seeking:

DμAν = eν · ∂μA. (11.19)

This relation implies that DμAν can be viewed as the projection33 We are treating {∂μA} as a set of vec-
tors, each labeled by an index μ. The
combination DμAν is a projection of ∂μA,
in the same way that Aν = eν · A is a
projection of the vector A.

of the vectors
{∂μA} along the direction of eν ; we can then interpret DμAν as the coefficient of
expansion of {∂μA} in terms of the basis vectors:

∂μA = (DμAν)eν . (11.20)

Christoffel symbols as expansion coefficients of ∂νeμ

On the other hand, we do not have a similarly simple transformation relation like
(11.17) when the coordinate-independent A is replaced by one of the coordinate
basis vectors eμ, which by definition change under coordinate transformations.
Still, by mimicking (11.20), we can expand ∂νeμ as
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∂νeμ = –�μνλe
λ or A · (∂νeμ) = –�μνλA

λ. (11.21)

Similarly, we have4 4 eμ · eν = [I]νμ, so ∂λ(eμ · eν) = 0. One
can then apply the derivative product rule
and plug in the expansion of ∂νeμ to solve
for ∂νeμ.∂νeμ = +�λνμeλ or A · (∂νeμ) = +�λνμAλ. (11.22)

But the expansion coefficients {�μνλ} are not tensors. Anticipating the result, we
have here used the same notation for these expansion coefficients as for the
Christoffel symbols introduced in Chapter 5 (cf. (5.30))—also called the affine
connection (connection, for short).

Plugging (11.19) and (11.21) into (11.14), we have

DνAμ = ∂νAμ + �
μ
νλA

λ. (11.23)

Thus, in order to produce the covariant derivative, the ordinary derivative ∂νAμ

must be supplemented by another term. This second term directly reflects the
position dependence of the basis vectors, shown in (11.21). Even though neither
∂νAμ nor �μνλA

λ has the correct tensor transformation properties, the transforma-
tion of �μνλA

λ cancels the unwanted term in the transformation of ∂νAμ (11.12),
so that their sum DνAμ is a good tensor. Further insight into the structure of the
covariant derivative can be gleaned by invoking the basic geometric concept of
parallel displacement of a vector, to be presented in Section 11.1.2.

One can easily show that the covariant derivative of a covariant vector Aμ takes
on a form similar to (11.23) for the contravariant vector Aμ:

DνAμ = ∂νAμ – �λνμAλ. (11.24)

A mixed tensor such as Tμν , which transforms in the same way as the product
AμBν , will have a covariant derivative

DνTρμ = ∂νTρμ – �λνμT
ρ
λ + �ρνσT

σ
μ . (11.25)

There should be a Christoffel term for each index of the tensor—a (+�T) for each
contravariant index and a (–�T) for each covariant index. A specific example is
the covariant differentiation of the (covariant) metric tensor gμν :

Dλgμν = ∂λgμν – �
ρ
λμgρν – �

ρ
λνgμρ . (11.26)

Christoffel symbols and metric tensor

We have introduced the Christoffel symbols �μνλ as the coefficients of expansion of
∂νeμ as in (11.21). In this section, we shall relate these �μνλ to the first derivatives of
the metric tensor. This will justify the identification with the symbols first defined
in (5.30).
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The metric tensor is covariantly constant While the metric tensor is
position-dependent, ∂[g] �= 0, its components are constant with respect to
covariant differentiation, D[g] = 0 (we say that gμν is covariantly constant):

Dλgμν = 0. (11.27)

One way to prove this is to express the metric in terms of the basis vectors,
gμν = eμ · eν , and apply the definition of the affine connection, ∂νeμ = +�ρνμeρ ,
given in (11.22):

∂λ(eμ · eν) = (∂λeμ) · eν + eμ · (∂λeν)
= �ρλμeρ · eν + �ρλνeμ · eρ . (11.28)

Reverting back to the metric tensors, this relation becomes

∂λgμν – �
ρ
λμgρν – �

ρ
λνgμρ = Dλgμν = 0, (11.29)

where we have applied the definition of the covariant derivative of a covariant
tensor gμν as in (11.26). As we shall see, the covariant constancy of the metric
tensor is the key property that allowed Einstein to introduce his cosmological
constant term in the GR field equation.

Exercise 11.1 Christoffel symbols as the metric tensor derivative

(a) The geometry in which we are working has the property that two covariant
differentiation operations on a scalar tensor commute: DμDν� = DνDμ� (we
call such derivatives torsion-free). From this, prove that Christoffel symbols are
symmetric with respect to interchange of their lower indices: �μνλ = �

μ
λν .

(b) Using the definition (11.22) of Christoffel symbols as the coefficients of expan-
sion of the derivative ∂νeμ, we showed that the metric is covariantly constant as in
(11.29). After this, derive the expression for Christoffel symbols, as the first deriva-
tives of the metric tensor, shown in (5.30). To signify its importance, this relation is
called the fundamental theorem of Riemannian geometry.

Suggestion: One can obtain the result by taking the linear combination of three
equations expressing (Dg = 0) with indices cyclically permuted and by using �μνλ =
�
μ
λν as shown in (a).

Once the connection of the first derivative of the metric and the Christof-
fel symbols is established, we can better understand the result in (11.29). Since
Christoffel symbols vanish in the local Euclidean frame, 0 = ∂μgνλ = Dμgνλ. The
first equality follows from the flatness theorem (discussed in Section 5.1.3); the
second follows from �

μ
νλ = 0, hence ∂ = D, in the local Euclidean frame. The last

expression is covariant, so it must equal zero in every frame of reference, thus
proving (11.27).



Covariant derivatives and parallel transport 243

11.1.2 Parallel transport and geodesics
as straight lines

Parallel transport is a fundamental concept in differential geometry. It illuminates
the meaning of covariant differentiation and the associated Christoffel symbols.
Furthermore, we can use this operation to clearly portray the geodesic as the
straightest possible curve,5 5 This is to be compared with our pre-

vious discussion in Box 5.2, using only
ordinary derivatives.

the curve traced out by the parallel transport of its
tangent vector. In Section 11.3, we shall derive the Riemann curvature tensor by
way of parallel-transporting a vector around a closed path.

Component changes under parallel transport

Equation (11.23) follows from (11.14). It expresses the relation between ordi-
nary and covariant derivatives. Writing DAμ = (DνAμ) dxν and dAμ = (∂νAμ) dxν ,
(11.14) becomes

dAμ = DAμ – �μνλA
ν dxλ. (11.30)

We will show that the Christoffel symbols in the derivatives of vector components
reflect the effects of parallel transport of a vector by a displacement of dx. First,
what is a parallel transport? Why does one need to perform such an operation?
Recall the definition of the derivative of a scalar function �(x),

∂μ� =
d�(x)
dxμ

= lim
h→0

�(x + hêμ) –�(x)
h

. (11.31)

Its numerator involves the difference of the function’s values at two different
positions. Evaluating the coordinate-independent scalar function �(x) at two
locations does not introduce any complication. This is not so for vector com-
ponents. The differential dAμ on the left-hand side of (11.30) is the difference
Aμ(x + dx) – Aμ(x) ≡ Aμ(2) – A

μ

(1) between the vector components Aμ = eμ · A,
evaluated at two nearby positions, (1) and (2), separated by dx. There are two
sources of this difference: the change in the vector itself, A(2) �= A(1), and a co-
ordinate change, eμ(2) �= eμ(1); they correspond to the two terms on the right-hand
side of (11.14). Thus the total change is the sum of two terms:

dAμ = [dAμ]total = [dAμ]true + [dAμ]coord. (11.32)

The term representing the change in the vector itself may be called the true
change,

[dAμ]true = eμ · dA = DAμ. (11.33)

The other term represents the projection of A onto the change in the (inverse)
basis vector between the two points separated by dx. This change is a linear com-
bination of the products of components of the vector Aν with the separation dxλ,
with the Christoffel symbols as coefficients:

[dAμ]coord = A · deμ = –�μνλA
ν dxλ. (11.34)
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Figure 11.1 Parallel transport of a vec-
tor A in a flat plane with polar coor-
dinates: from position-1 at the origin,
where A(1) = (A(1)

φ ,A(1)
r ), to position-

2, A(2) = (A(2)
φ ,A(2)

r ). The differences
in the basis vectors at these two posi-
tions, (e(1)φ , e(1)r ) �= (e(2)φ , e(2)r ), bring
about component changes. In particular,
A(1)
φ = 0 while A(2)

φ �= 0, and A(1)
r =

{[A(2)
φ ]2 + [A(2)

r ]2}1/2.

This discussion motivates us to introduce the geometric concept of parallel
transport. It is the process of moving a tensor without changing the tensor itself (in
its local tangent space).6

6 Strictly speaking, this statement is
meaningful only in flat spaces. A tensor
at one point in a curved space cannot be
compared with a tensor at another point;
they are different entities. For an obvious
example, consider what a north-pointing
vector on the equator would equal at the
north pole—it is not defined. However,
a curved space is locally flat (to first or-
der), so we can parallel-transport a vector
through a curved space, while keeping it
constant in its local tangent space. We
will see that this does induce second-
order changes to a tensor after it has been
parallel-transported in a closed path to its
starting point, where it can be compared
with its original state.

The only change in the tensor components under parallel
displacement is due to coordinate changes, dAμ = [dAμ]coord. In a flat space with
a Cartesian coordinate system, this is trivial, since there is no coordinate change
from point to point. But in a flat space with a curvilinear coordinate system such
as polar coordinates, this parallel transport itself induces component changes, as
shown in Fig. 11.1.

For the vector example discussed here, we have [dAμ]true = eμ ·dA = DAμ = 0.
Thus the mathematical expression for a parallel transport of vector components is

DAμ = dAμ + �μνλA
ν dxλ = 0. (11.35)

Recall that we have shown that the metric tensor is covariantly constant:
Dμgνλ = 0. We now understand that covariant constancy of a tensor means that
any change in its tensor components is due to coordinate change only. But a
change in the metric, by definition, is a pure coordinate change. Hence, it must
have a vanishing covariant derivative.

(b)

(a)

Figure 11.2 (a) A straight line in a flat
plane is a geodesic, the curve traced out
by parallel transport of its tangents. (b)
When a vector is parallel-transported
along a straight line, the angle between
the vector and the line is unchanged.

The geodesic as the straightest possible curve

The process of parallel-transporting a vector Aμ along a curve xμ (σ ) can be
expressed, according to (11.35), as

DAμ

dσ
=
dAμ

dσ
+ �μνλA

ν dx
λ

dσ
= 0. (11.36)

From this, we can define the geodesic line as the straightest possible curve, be-
cause it is the line constructed by parallel transport of its tangent vector. See
Fig. 11.2(a) for an illustration of such an operation in flat space. In this way, the
geodesic condition can be formulated by setting Aμ = dxμ/dσ in (11.36):

D
dσ

(
dxμ

dσ

)
= 0, (11.37)

or, more explicitly,

d
dσ

dxμ

dσ
+ �μνλ

dxν

dσ
dxλ

dσ
= 0. (11.38)

This agrees with the geodesic equation (5.29).
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Exercise 11.2 Parallel transport of a vector along a geodesic

Show that when a vector Aμ is parallel-transported along a geodesic, the angle
between the vector and the geodesic (i.e., the tangent of the geodesic) is unchanged
as in Fig. 11.2(b). Namely, prove the following relation:

D
dσ

(
Aμ

dxμ

dσ

)
= 0. (11.39)

11.2 Riemann curvature tensor

As stated in Chapter 6, the Riemann curvature (6.20) is a tensor of rank 4:

Rμλαβ = ∂α�
μ
λβ – ∂β�

μ
λα + �

μ
να�

ν
λβ – �

μ
νβ�

ν
λα . (11.40)

We shall demonstrate below that although the terms on the right-hand side are
ordinary derivatives and Christoffel symbols, and thus are not tensors, their
combination is nevertheless a proper tensor.

Rμλαβ determines, independently of the coordinate choice, whether a space
is curved. At any point in any curved space, one can always find a coordinate
system (the local Euclidean frame) in which the metric’s first derivatives vanish,
∂g = 0. However, the second derivatives of the metric, ∂2g = 0, vanish only for
a flat space. Hence, in a flat space, ∂2g + (∂g)2 ∝ Rμλαβ = 0. Since the Riemann
curvature is a good tensor, if it vanishes for one set of coordinates, it vanishes for
all coordinates.7 7 This is exactly like the simpler 2D sit-

uation with the Gaussian curvature K of
(6.7). The problem of reducing the Rie-
mann curvature tensor of (11.40) in 2D
space to the Gaussian curvature of (6.7)
is worked out in Problem 13.11 in (Cheng
2010).

In fact, we can also show that this is a sufficient condition for a
space to be flat; i.e., Rμλαβ = 0 implies a flat space.

Two separate derivations of the Riemann tensor Having learned the for-
malism of covariant derivatives and the concept of parallel transport, we are now
ready to derive the curvature tensor expression (11.40) in a space with arbitrary
dimensions.

• The first derivation uses the feature that curvature measures the deviation
of geometric relations from their corresponding Euclidean versions. We dis-
cussed in Section 6.1 the particular relation (6.19) that for a 2D curved
surface the angular excess ε of an infinitesimal polygon (the sum of the
interior angles over its Euclidean value) is proportional to the Gaussian
curvature K at its location:

ε = Kσ , (11.41)

where σ is the area of the polygon. We will generalize this relation (11.41)
for a 2D curvature K to an n-dimensional curved space. In this extension
(Section 11.2.1), the concept of parallel transport plays a central role.
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• The second derivation uses the feature that curvature causes relativistic tidal
forces; we generalize the Newtonian deviation equation (6.24) to the GR
equation of geodesic deviation. In this generalization (Section 11.2.2), co-
variant differentiation plays an indispensable role in finding the covariant
equation that describes the relative motion of geodesic paths.

11.2.1 Parallel transport of a vector around
a closed path

To extend the relation (11.41) to higher dimensions, one must first generalize the
2D quantities of angular excess ε and area σ to a higher-dimensional space.

Angular excess ε and directional change of a vector

How can an angular excess be measured in a higher-dimensional space? We first
use the concept of parallel transport to cast the relation (11.41) in a form that
can be generalized to n dimensions. The angular excess ε of a polygon is equal
to the directional change in a vector after it has been parallel-transported around
the perimeter. The simplest example of such a polygon is a spherical triangle
with three 90◦ interior angles. Figure 6.2 shows that a vector parallel-transported
around the triangle changes its direction by 90◦, which is the angular excess. The
generalization of (11.41) to an arbitrary triangle, and hence to any polygon, can
be found in Sections 5.3.2 and 13.3 in (Cheng 2010). The key observation is that
when a vector is parallel-transported along a geodesic, the angle it forms with the
geodesic is unchanged; cf. Exercise 11.2. Recall the definition that an angle is the
ratio of arclength to radius as shown in Fig. 11.3(a). Thus, the directional angular
change, and hence the angular excess, can be written as the ratio of the change
in a vector to its magnitude: dθ = ε = dA/A. Substituting this into (11.41), we
obtain

dA = K Aσ . (11.42)

Namely, the change in a vector after a round-trip parallel transport is propor-
tional to the vector itself and the area of the closed path. The coefficient of
proportionality is identified as the curvature.

(a)

r

A'

A

dA
rΔθ

Δθ dθ

B

A
θ

σ
(b)

Figure 11.3 (a) The directional change
in a vector can be expressed as a frac-
tional change in the vector: dθ = dA/A.
(b) The area vector of a parallelogram
is the cross product of its two sides,
σ = A× B.

The area tensor

We will use (11.42) as a model for the curvature relation for a higher-dimensional
curved space. We first need to write the 2D equation (11.42) in a proper index
form that can be generalized to an n-dimensional space. Recall that the 2D area
of a parallelogram spanned by two vectors A and B can be expressed as a vector
product as in Fig. 11.3(b): σ = A × B. Using the antisymmetric Levi-Civita
symbol in index notation,88 Levi-Civita symbols are discussed in

Sidenote 19 in Chapter 3.
we can write this as

σk = εijkAiB j . (11.43)
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The area vector σ has magnitude AB sin θ and direction given by the right-hand
rule. But (11.43) is not a convenient form to use in a higher-dimensional space:
(i) It refers to a 3D embedding space, even though the parallelogram resides in
a 2D space. (ii) For a different number of dimensions, we would need to use the
antisymmetric tensor with a different number of indices—e.g., in a 4D embedding
space, εμνλρ . We will instead use a two-index object σ ij to represent the area:9 9 In the second equality of (11.44), we

use the identity εijkεmnk = δimδ
j
n – δinδ

j
m.

σ ij ≡ εijkσk = εijkεmnkAmBn = AiB j – AjBi . (11.44)

In a 2D space, we can write σ ij entirely with 2D indices, without reference to any
embedding space. (Recall the distinction between intrinsic vs. extrinsic geometric
descriptions discussed in Chapter 5.) In an n-dimensional space, we can represent
the area spanned by aλ and bρ by the antisymmetric combination

σλρ = aλbρ – bλaρ , (11.45)

with the indices ranging over the dimensions of the space: λ, ρ = {1, 2, ..., n}.

The curvature tensor in an n-dimensional space

Now we have the proper area tensor (11.45), we can cast (11.42) in tensor form
to represent10 10 The minus sign is required so as to

be compatible with the curvature defini-
tion given in (11.40), if the direction of
the parallel-transport loop is in accord with
the area direction (11.45), i.e., given by the
right-hand rule around σ in the 2D case
(counterclockwise in Fig. 11.4).

the change dAμ in a vector due to parallel transport around a
parallelogram spanned by two infinitesimal vectors aλ and bρ :

dAμ = –RμνλρA
νaλbρ . (11.46)

Namely, the change is proportional to the vector Aν itself and to the two vectors
aλ and bρ spanning the parallelogram. The coefficient of proportionality Rμνλρ
is a quantity with four indices, antisymmetric in λ and ρ so as to pick up both
terms on the right-hand side of (11.45). We shall take this to be the definition of
the curvature (called the Riemann curvature tensor) of an n-dimensional space.11 11 We can plausibly expect this coef-

ficient Rμνλρ to be a tensor, because the
differential dAμ (taken at a given position),
aλ, bρ , and Aν are tensors, so the quotient
theorem (Exercise 3.2) tells us that Rμνλρ
should be a good tensor.

Explicit calculation in Box 11.1 of the change in a vector parallel-transported
around an infinitesimal parallelogram then leads to the expression (11.40).

Box 11.1 Deriving the Riemann tensor by parallel-transporting
a vector around a closed path

Here we shall parallel-transport a vector around an infinitesimal parallelo-
gram PQP ′Q ′ spanned by two infinitesimal vectors aα and bβ , shown in
Fig. 11.4. Recall that under parallel transport of a vector, DAμ = 0, so the
total vectorial change in (11.35) is due entirely to coordinate change:

dAμ = –�μνλA
ν dxλ. (11.47)

continued
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Box 11.1 continued

The opposite sides of the parallelogram in Fig. 11.4, (a + da)α and (b + db)β ,
are obtained by parallel transport of aα and bβ by bνand aμ, respectively. The
expression for parallel transport (11.47) gives the relations

(a + da)α = aα – �αμνa
μbν ,

(b + db)β = bβ – �βμνa
μbν . (11.48)

Using (11.47) again, we now calculate the change in a vector Aμ due to
parallel transport from P → Q→ P ′ :

(a + da)α

aα
(b + db)βbβ

P 'Q '

QP

Figure 11.4The parallelogram PQP ′Q′

is spanned by two vectors aα and bβ . The
opposite sides (a + da)α and (b + db)β

are obtained by parallel transport of aα

and bβ by bνand aμ, respectively.
dAμPQP′ = dAμPQ + dAμQP′ (11.49)

= –(�μναA
ν)Paα – (�

μ
νβA

ν)Q(b + db)β .

The subscripts P and Q on the last line denote the respective positions where
these functions are to be evaluated. Since eventually we shall compare all
quantities at one position, say P, we will Taylor-expand the quantities (...)Q
around the point P:

(�μνβ)Q = (�μνβ)P + aα(∂α�
μ
νβ)P , (11.50)

(Aν)Q = (Aν)P + aα(∂αAν)P = (Aν)P – aα(�νλαA
λ)P ,

where we have used (11.47) to reach the last expression. From now on, we
shall drop the subscript P. We substitute into (11.49) the expansions (11.48)
and (11.50):

dAμPQP′ = –�μναA
νaα (11.51)

–(�μνβ + a
α∂α�

μ
νβ)(A

ν – aα�νλαA
λ)(bβ – �βρσa

ρbσ ).

We multiply this out and keep terms up to O(ab):

dAμPQP′ = –�μναA
νaα – �μνβA

νbβ + Aν�μνβ�
β
ρσa

ρbσ

–∂α�
μ
λβA

λaαbβ + �μνβ�
ν
λαA

λaαbβ . (11.52)

The vectorial change due to parallel transport along the other sides, P →
Q ′ → P ′, can be obtained from this expression by the simple interchange
a↔ b:

dAμPQ′P′ = –�μναA
νbα – �μνβA

νaβ + Aν�μνβ�
β
ρσa

ρbσ

–∂β�
μ
λαA

λaαbβ + �μνα�
ν
λβA

λaαbβ . (11.53)
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For a round-trip parallel transport12 12 The order of the difference in
(11.54) corresponds to parallel trans-
port in the counterclockwise direction (on
Fig. 11.4) in accordance with the area di-
rection as defined in (11.43) and (11.45).

from P back to P, the vectorial change
dAμ corresponds to the difference of the above two equations (which results
in cancellation of the first three terms on the right-hand sides):

dAμ = dAμPQP ′ – dA
μ

PQ ′P ′ (11.54)

= –(∂α�
μ
λβ – ∂β�

μ
λα + �

μ
να�

ν
λβ – �

μ
νβ�

ν
λα)A

λaαbβ .

We conclude, after comparing (11.54) with (11.46), that the sought-after
Riemann curvature tensor in terms of Christoffel symbols is just the quoted
result (11.40).

Exercise 11.3 Riemann curvature tensor as the commutator of covariant derivatives

We can obtain the same result as in Box 11.1 somewhat more efficiently by calculating the double covariant derivative

DαDβAμ = Dα(∂βAμ + �
μ
βλA

λ) = ..., (11.55)

as well as the reverse order DβDαAμ = Dβ(∂αAμ + �μαλA
λ) = .... Show that their difference (expressed here as a commutator)

is just the expression for the Riemann tensor given by (11.40):

[Dα ,Dβ ]Aμ = RμλαβA
λ. (11.56)

Comments: (i) At first sight, one may question this approach to the problem of parallel transport of a vector around a closed
path—wouldn’t parallel transport mean that DA = 0? But the calculation in Box 11.1 shows that D(DA) �= 0; calculating
the vectorial change requires consistency in keeping the higher-order terms in Taylor expansions. See Sidenote 6 for a related
comment.

(ii) It is also straightforward to show that the covariant derivative commutator acting on a mixed tensor (instead of on a
contravariant vector) will lead to

[Dα ,Dβ ]Tμν = RμλαβT
λ
ν – R

λ
ναβT

μ
λ; (11.57)

i.e., for each contravariant index, there will be a +RT term on the right-hand side, and, for each covariant index, a –RT term.

11.2.2 Equation of geodesic deviation

In Section 11.2.1, we have derived an expression for the curvature (11.40) by a
purely geometric method. A more physical approach would be to seek the GR
generalization of the tidal forces discussed in Section 6.2.2. Following exactly the
same steps used to derive the Newtonian deviation equation (6.24), let us consider
two particles: one follows the spacetime trajectory xμ(τ), and the other follows
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xμ(τ) + sμ(τ). These two particles, separated by the displacement vector sμ, obey
their respective GR equations of motion, the geodesic equations, cf. (5.29):

d2xμ

dτ 2
+ �μαβ(x)

dxα

dτ
dxβ

dτ
= 0 (11.58)

and (
d2xμ

dτ 2
+
d2sμ

dτ 2

)
+ �μαβ(x + s)

(
dxα

dτ
+
dsα

dτ

)(
dxβ

dτ
+
dsβ

dτ

)
= 0. (11.59)

When the separation sμ is small, we can approximate the Christoffel symbols
�
μ
αβ(x + s) by a Taylor expansion

�
μ
αβ(x + s) = �

μ
αβ(x) + ∂λ�

μ
αβ s

λ + · · · . (11.60)

From the difference of the two geodesic equations, we obtain, to first order in sμ,

d2sμ

dτ 2
= –2�μαβ

dsα

dτ
dxβ

dτ
– ∂λ�

μ
αβ s

λ dx
α

dτ
dxβ

dτ
. (11.61)

We are seeking the relative acceleration (the second derivative of the separation sμ)
along the worldline. So far we have only written down ordinary derivatives. In
GR equations, we must use covariant derivatives. From (11.36), we have the first
covariant derivative,

Dsμ

dτ
=
dsμ

dτ
+ �μαβ s

α dx
β

dτ
, (11.62)

and the second covariant derivative,

D2sμ

dτ 2
=

D
dτ

(
Dsμ

dτ

)
=

d
dτ

(
Dsμ

dτ

)
+ �μαβ

(
Dsα

dτ

)
dxβ

dτ

=
d
dτ

(
dsμ

dτ
+ �μαβ s

α dx
β

dτ

)
+ �μαβ

(
dsα

dτ
+ �αλρs

λ dx
ρ

dτ

)
dxβ

dτ

=
d2sμ

dτ 2
+ ∂λ�

μ
αβ

dxλ

dτ
sα
dxβ

dτ
+ �μαβ

dsα

dτ
dxβ

dτ
+ �μαβ s

α d
2xβ

dτ 2

+�μαβ
dsα

dτ
dxβ

dτ
+ �μαβ�

α
λρs

λ dx
ρ

dτ
dxβ

dτ
. (11.63)

For the first term on the right-hand side (d2sμ/dτ 2), we apply (11.61); for
d2xβ/dτ 2 in the fourth term we use the geodesic equation (11.58):

d2xβ

dτ 2
= –�βλρ

dxλ

dτ
dxρ

dτ
. (11.64)
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In this way, we find

D2sμ

dτ 2
= –2�μαβ

dsα

dτ
dxβ

dτ
– ∂λ�

μ
αβ s

λ dx
α

dτ
dxβ

dτ
+ ∂λ�

μ
αβ

dxλ

dτ
sα
dxβ

dτ

+2�μαβ
dsα

dτ
dxβ

dτ
– �μαβ s

α�
β

λρ

dxλ

dτ
dxρ

dτ

+�μαβ�
α
λρs

λ dx
ρ

dτ
dxβ

dτ
. (11.65)

After a cancellation of two terms and the relabeling of several dummy indices, this
becomes

D2sμ

dτ 2
= –∂λ�

μ
αβ s

λ dx
α

dτ
dxβ

dτ
+ ∂β�

μ
λα

dxα

dτ
sλ
dxβ

dτ
(11.66)

–�μλρs
λ�

ρ
αβ

dxα

dτ
dxβ

dτ
+ �μρβ�

ρ
λαs

λ dx
α

dτ
dxβ

dτ
.

Factoring out the common (dxα/dτ)(dxβ/dτ) yields the equation of geodesic
deviation:

D2sμ

Dτ 2
= –Rμαλβ s

λ dx
α

dτ
dxβ

dτ
, (11.67)

where Rμαλβ is just the Riemann curvature given in (11.40). Namely, the tensor of
the gravitational potential’s second derivatives (tidal gravity) in (6.24) is replaced
in GR by the Riemann curvature tensor (11.40).

Exercise 11.4 From geodesic deviation to nonrelativistic
tidal forces

Show that the equation of geodesic deviation (11.67) reduces to the Newtonian
deviation equation (6.24) in the Newtonian limit. In the nonrelativistic limit of
slow-moving particles with 4-velocity dxα/dτ � (c, 0, 0, 0), the GR equation
(11.67) is reduced to

d2si

dt2
= –c2Ri0j0s

j . (11.68)

We have also set s0 = 0, because we are comparing the two particles’ accelerations
at the same time. Thus (6.24) can be recovered by showing the relation

Ri0j0 =
1
c2

∂2�

∂xi∂x j
(11.69)

in the Newtonian limit. You are asked to prove that this expression is the limit of
Riemann curvature in (11.40).
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11.2.3 Bianchi identity and the Einstein tensor

We have already displayed the symmetries and contractions of the Riemann cur-
vature tensor in Section 6.3.1. In particular, we have the symmetric Ricci tensor
and the Ricci scalar:

Rμν ≡ gαβRαμβν , R ≡ gαβRαβ . (11.70)

It was suggested that some linear combination Rμν +aRgμν will enter the GR field
equation as both terms are rank-2 symmetric tensors composed of the metric
and its derivatives. As it turns out, the constant a can be fixed by requiring the
combination to be covariantly constant: Dμ(Rμν + aRgμν) = 0 (cf. the opening
discussion in Section 11.3.2). An efficient way is to use the Bianchi identity,

DλRγ αμν +DνRγ αλμ +DμRγ ανλ = 0. (11.71)

The structure of this identity (11.71) suggests that we derive it from the Jacobi
identity for the double commutators of three operators—in this case, the operators
are covariant derivatives:

[Dλ, [Dμ,Dν]] + [Dν , [Dλ,Dμ]] + [Dμ, [Dν ,Dλ]] = 0. (11.72)

Exercise 11.5 Jacobi identity and double commutator of covariant
derivatives

(a) Prove the Jacobi identity. Namely, demonstrate explicitly that the cyclic com-
bination of three double commutators of any three operators (in particular the
differential operators in (11.72)) vanishes.
(b) Use the expression for the Riemann tensor in terms of the double commutator in
(11.57) to show that

[Dλ, [Dμ,Dν]]Aα = –DλRγαμνAγ + R
γ

λμνDγAα . (11.73)

Applying (11.73) to every double commutator in (11.72) acting on the
covariant vector Aα , we have

0 = ([Dλ, [Dμ,Dν]] + [Dν , [Dλ,Dμ]] + [Dμ, [Dν ,Dλ]])Aα

= –DλRγαμνAγ –DνR
γ

αλμAγ –DμR
γ

ανλAγ

+RγλμνDγAα + R
γ

νλμDγAα + R
γ

μνλDγAα (11.74)

= –(DλRγαμν +DνR
γ

αλμ +DμR
γ

ανλ)Aγ

+(Rγλμν + R
γ

νλμ + R
γ

μνλ)DγAα .
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The second term on the right-hand side vanishes because of the cyclic symmetry
property (6.32). It then follows that the parenthesis in the first term must also
vanish, leading to the Bianchi identity (11.71).

Our next objective is to use the Bianchi identity to find the covariantly constant
linear combination of Rμν and Rgμν , which we need for the GR field equation.

First we contract (11.71) with gμα ; because the metric tensor is covariantly
constant, Dλgαβ = 0, this metric contraction can be pushed right through the
covariant differentiation:

–DλRγ ν +DνRγ λ +DμgμαRγ ανλ = 0. (11.75)

Contracting another time with gγ ν yields

–DλR +Dνgγ νRγ λ +DμgμαRαλ = 0. (11.76)

At the last two terms, the metric just raises the indices:

–DλR +DνRνλ +DμR
μ
λ = –DλR + 2DνRνλ = 0. (11.77)

Pushing through yet another gμλ in order to raise the λ index at the last term
gives us

Dλ(–Rgμλ + 2Rμλ) = 0. (11.78)

Thus this combination (6.36), called the Einstein tensor,

Gμν = Rμν – 1
2Rg

μν , (11.79)

i.e., the combination (Rμν +aRgμν) with the constant fixed a = –1/2 is covariantly
constant:

DμGμν = 0. (11.80)

Gμν is a covariantly constant, rank-2, symmetric tensor involving the second
derivatives of the metric ∂2g as well as terms quadratic in ∂g—exactly what we
were seeking for the GR field equation; cf. (6.5).

11.3 GR tensor equations

According to the strong EP, gravity can always be transformed away locally. As
first discussed in Section 5.2, Einstein suggested an elegant formulation of the
new theory of gravity based on a curved spacetime. The EP is thus fundamentally
built into the theory. Local flatness (a metric structure of spacetime) means that
SR (the theory of flat spacetime with no gravity) is automatically incorporated
into the new theory. Gravity is modeled not as a force but as the structure of
spacetime; free particles just follow geodesics in a curved spacetime.



254 Tensor Formalism for General Relativity

11.3.1 The principle of general covariance

The field equation for the relativistic potential, the metric function gμν(x), must
have the same form no matter what generalized coordinates are used to label
worldpoints (events) in spacetime. One expresses this by the requirement that
the physics equations must satisfy the principle of general covariance. This is a
two-part statement:

1. Physics equations must be covariant under the general coordinate trans-
formations that leave the infinitesimal spacetime line element interval ds2

invariant.

2. Physics equations should reduce to the correct SR form in the local inertial
frames. Namely, we must have the correct SR equations in free-fall frames,
in which gravity is transformed away. Additionally, gravitational equations
reduce to Newtonian equations in the limit of low-velocity particles in a
weak and static field.

The minimal substitution rule

This general principle provides us with a well-defined path to go from SR equa-
tions (which are valid in local inertial frames with no gravity) to GR equations that
are valid in every coordinate system in curved spacetime (curved because of the
presence of gravity). GR equations must be covariant under general local trans-
formations. The key feature of a general coordinate transformation, in contrast
to the (Lorentz) transformation in flat spacetime, is its spacetime dependence—
hence the requirement for covariant derivatives. To go from an SR equation to the
corresponding GR equation is simple: we need to replace the ordinary derivatives
(∂) in SR equations by covariant derivatives (D):

∂ –→ D (= ∂ + �). (11.81)

This is known as the minimal substitution rule, because we are assuming the
absence of the (high-order) Riemann tensor Rμνλρ terms, which vanish in the
flat-spacetime limit. Since the Christoffel symbols � are derivatives of the metric
(i.e., they represent the gravitational field strength), the introduction of covariant
derivatives naturally brings the gravitational field into the physics equations. In
this way, we can, for example, find the equations that describe electromagnetism
in the presence of a gravitational field:

∂μFμν = –
1
c
jν –→ DμFμν = –

1
c
jν . (11.82)

Namely, Gauss’s and Ampère’s laws of electromagnetism in the presence of a
gravitational field take on the form

∂μFμν + �
μ
μλF

λν + �νμλF
μλ = –

1
c
jν , (11.83)

with gravity entering through the Christoffel symbols.
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GR equation of motion

Gravity in Einstein’s formulation is not a force, but the structure of spacetime.
Thus the motion of a particle under the sole influence of gravity is the motion of
a free particle in spacetime. At this point, instead of arguing heuristically (as in
Section 5.3) that the geodesic equation should be the equation of motion in GR,
the minimal substitution rule actually provides us with a formal way to arrive at
this conclusion. The SR equation of motion for a free particle is dẋμ/dτ = 0,
where τ is the proper time and ẋμ = dxμ/dτ the 4-velocity of the particle. Ac-
cording to the minimal substitution rule, the corresponding GR equation should
then be

Dẋμ

dτ
= 0, (11.84)

which we recognize from (11.37) and (11.38) to be simply the geodesic equation.

11.3.2 Einstein field equation

We note that the above minimal substitution procedure cannot be used to obtain
the GR field equation, because there is no SR gravitational field equation. The
search for the GR field equation must start all the way back at Newton’s equation
as discussed at the beginning of Chapter 6, cf. (6.4). Since the energy–momentum
right-hand side of the field equation (6.4) must satisfy the GR conservation
condition,

DμTμν = 0, (11.85)

we must have for the geometric left-hand side a covariantly constant, symmetric,
rank-2 tensor involving metric derivatives (∂2g), (∂g)2 ∼ ∂�,�2, which are just
the properties of the Einstein curvature tensorGμν . This then leads to the Einstein
field equation:

Gμν = Rμν – 1
2Rgμν = κTμν , (11.86)

where κ is a proportionality constant. This in general is a set of six cou-
pled partial differential equations. The number of independent elements of the
symmetric tensors Gμν and Tμν are reduced from ten to six by the four compo-
nent equations of (11.80) and (11.85), the covariant constancy conditions. This
number of independent equations just matches the number of independent el-
ements of the metric solution gμν(x)—whose ten components, as we explained
in Sidenote 12 in Chapter 6, are reduced to six by the requirement of general
coordinate transformation xμ → x′μ so that the metric gμν(x′) must still be a
solution.

This field equation can be written in an alternative form. Taking the trace of
the above equation, we have

– R = κT , (11.87)
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where T is the trace of the energy–momentum tensor, T = gμνTμν . In this way,
we can rewrite (11.86) in an equivalent form by replacing Rgμν by –κTgμν :

Rμν = κ(Tμν – 1
2Tgμν). (11.88)

Exercise 11.6 Newtonian limit of Einstein’s field equation

Show that Newton’s gravitational field law, written in differential form (4.7), is the leading-order approximation to the Einstein
field equation (11.88) in the Newtonian limit (cf. Section 5.3.1) for a slow (v
 c) source particle producing a static and weak
gravitational field. In this way, one can also establish the connection between the proportionality constant κ and Newton’s
constant as shown in (6.39).

Einstein equation via the principle of least action In the above derivation
of the GR field equation, we worked directly with the rank-2 Einstein tensor,
which must satisfy a bunch of necessary conditions. Tμν and hence Gμν had to be
covariantly constant to satisfy the constraint of energy–momentum conservation
in GR, which is rather complicated conceptually. The same field equation can be
obtained more systematically via the principle of least action (cf. Box 5.1). The
action for any field, instead of being a time integral of the Lagrangian L for a
particle as in (5.18), is a 4D integral of the Lagrangian density L. The invariant
4D volume differential product1313 Coordinate transformation involves

the Jacobian J so that d4x′ = d4xJ and
g′ = gJ–2 as the metric has two lower
indices hence two inverse transformation
factors. Thus

√
–g′ d4x′ = √–g d4x.

is
√
–g d4x, where g is the determinant of the

metric tensor gμν . The relevant action for the GR metric field in vacuum is called
the Einstein–Hilbert action,

Sg =
∫

Lg
√
–g d4x =

∫
gμνRμν

√
–g d4x. (11.89)

For the invariant source-free GR Lagrangian density, one makes the natural
identification with the Ricci scalar: Lg = R. We can then derive the Tμν = 0
version of (11.86) as the Euler–Lagrange equation resulting from minimiza-
tion of this action. The variation of the action δSg has three pieces involving
δgμν , δRμν , and δ

√
–g. The integral containing the δRμν factor, after an integra-

tion by parts, turns into a vanishing surface term. The variation δ
√
–g is easiest

to compute for a diagonal metric. The determinant is the product of its ele-
ments g =

∏
μ gμμ, so its variation (using the inverse metric gμν) is simplified

to δg = g
∑
μ δgμμ/gμμ = ggμν δgμν = –ggμν δgμν . As the metric matrix is sym-

metric, we can diagonalize it by coordinate transformation; this expression for δg
must be valid for all coordinates. Thus δ

√
–g = –1

2
√
–ggμν δgμν . Consequently, the

variational principle requires

δSg =
∫ √

–g d4x (Rμν – 1
2Rgμν) δg

μν = 0, (11.90)

which implies the Einstein equation (11.86).14

14 It is possible to incorporate terms for
other fields into the Lagrangian density to
derive the field equations that describe the
interaction of gravity with other sources.
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The Schwarzschild solution The Einstein equation (11.88), in the exterior
region (where Tμν = 0) of a spherical source, merely states that the Ricci tensor
vanishes: Rμν = 0. From Box 6.2, we learnt that a spherically symmetric metric
involves only two scalar functions, g00 and grr . We first express in terms of g00
and grr the Christoffel symbols �μνλ, and then the Riemann curvature tensor Rμνλρ ,
which is then contracted to give the Ricci tensor Rμν . The field equations (R00 =
Rrr = 0) are two coupled differential equations for g00 and grr . One of them simply
yields the relation grr = –1/g00 of (6.57); the other is an ordinary differential
equation for g00,

dg00
dr

+
g00
r

= –
1
r
. (11.91)

The solution to the homogeneous part (dḡ00/dr+ ḡ00/r = 0) is ḡ00 = r∗/r for some
constant r∗. By adding to the easily checked particular solution, g00,part = –1, we
obtain the general result shown in (6.57): g00 = –1 + r∗/r.

Einstein’s cosmological constant The energy–momentum tensor Tμν and
Einstein curvature tensor Gμν are covariantly constant; clearly, any term to be
added to the GR field equation must also have this property. This requirement
for mathematical consistency allowed Einstein to insert another metric term as
in (8.74),15 15 The gravitational Lagrangian density

is modified as Lg = R + 2�; the variation
of the resulting action then leads to (8.74).

because the metric tensor itself is covariantly constant, as shown in
(11.27).

Review questions

1. What is the fundamental difference between coordi-
nate transformations in a curved space and those in flat
space (e.g., Lorentz transformations in flat Minkowski
space)?

2. Writing the coordinate transformation as a partial de-
rivative matrix, give the transformation laws for a
contravariant vector Aμ –→ A′μ and a covariant vector
Aμ –→ A′μ, as well as for a mixed tensor Tμν –→ T ′μν .

3. From the transformation of Aμ –→ A′μ in the an-
swer to the previous question, work out the coor-
dinate transformation of the derivatives ∂μAν . Why
do we say that ∂μAν is not a tensor? What is the
underlying reason why ∂μAν is not a tensor? How
do the covariant derivatives DμAν transform? Why
is it important to have differentiations that result in
tensors?

4. Write out the covariant derivative DμTλρν (in terms of
the connection symbols) of a mixed tensor Tλρν .

5. The relation between the Christoffel symbol and the
metric tensor is called “the fundamental theorem of
Riemannian geometry.” Write out this relation.

6. What is the flatness theorem? Use this theorem to
show that the metric tensor is covariantly constant:
Dμgνλ = 0.

7. As the Christoffel symbols �μαβ are not components
of a tensor (and ordinary derivatives generally do not
yield tensors), how do we know that Rμλαβ = ∂α�

μ
λβ –

∂β�
μ
λα + �

μ
να�

ν
λβ – �

μ
νβ�

ν
λα is really a tensor?

8. The quantitative description of tidal force is the New-
tonian deviation equation. What is its GR analog?
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What geometric quantity of a curved spacetime re-
places the second derivatives of the gravitational po-
tential?

9. In Einstein’s search for a linear combination of Rμν and
Rgμν that is covariantly constant, why is such a con-
straint required? What is an efficient way to find this
combination?

10. What is the principle of general covariance?

11. If a physics equation is known in the SR limit, how
does one form its GR analog? Since SR equations are
valid only in the absence of gravity, turning them into
their GR versions implies the introduction of a gravi-
tational field into the relativistic equations. How does
gravity enter into this alteration of the equations?

12. How can one determine the GR equation of motion
from that of SR? Why can we not find the GR field
equation in the same way?




