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• After a review of the Newtonian theory of gravitation in terms of its poten-
tial function, we take the first step in the study of general relativity (GR)
with the introduction of the equivalence principle (EP).

• The weak EP, the equality of the gravitational and inertial masses, was
extended by Einstein to the strong EP, the equivalence between inertia and
gravitation for all interactions. This implies the existence of a local inertial
frame (the frame in free fall) at every spacetime point. In a sufficiently
small region, a local inertial observer will sense no gravitational effects.

• The equivalence of acceleration and gravity means that GR (physics laws
valid in all coordinate systems, including accelerating frames) must be a
theory of gravitation.

• The strong EP has physical consequences on time: gravitational redshift,
time dilation, and the gravitational retardation of light speed leading to
bending of light rays.

• Motivated by the EP, Einstein proposed a curved spacetime description of
the gravitational field.

Soon after completing his formulation of special relativity (SR) in 1905, Einstein
started working on a relativistic theory of gravitation. In this chapter, we cover
mostly the period 1907–1911, when Einstein relied heavily on the equivalence
principle (EP) to extract some general relativity (GR) results. Not until the end of
1915 did he work out fully the ideas of GR. By studying the consequences of the
EP, he concluded that the proper language of GR is Riemannian geometry. In this,
Einstein was helped by his ETH classmate and later colleague Marcel Grossmann
(1878–1936). The mathematics of curved space will be introduced in Chapter 5.
The curved spacetime representation of gravitational fields immediately suggests
the geodesic equation as the GR equation of motion. In Chapter 6, we then begin
the more difficult subject of the GR field equation and its solution.
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4.1 Seeking a relativistic theory
of gravitation

Before discussing GR, Einstein’s field theory of gravitation, we review Newton’s
theory, whose field equation and equation of motion can be expressed in terms of
the gravitational potential.

4.1.1 Newtonian potential: a summary

Newton formulated his theory of gravitation using a force that acts instantane-
ously between distant objects (action-at-a-distance force):

F(r) = –GN
mM
r2

r̂, (4.1)

where GN is Newton’s constant,M the point-source mass, m the test mass, and r
the displacement of m fromM.

Just as in electrostatics, where electric field is force per unit charge, F(r) =
qE(r), we can cast Newton’s gravitational force in the form

F = mg. (4.2)

This defines the gravitational field g (r) as the gravitational force per unit mass.
In terms of this field, Newton’s law of gravitation for a point source of mass M
reads

g(r) = –GN
M
r2

r̂. (4.3)

Just as Coulomb’s law is equivalent to Gauss’s law for the electric field, this field
(4.3) can be expressed for an arbitrary mass distribution as Gauss’s law for the
gravitational field: ∮

S
g · dA= – 4πGNM. (4.4)

The area integral on the left-hand side is the gravitational field flux out of a closed
surface S, andM on the right-hand side is the total mass enclosed inside S. This
integral representation of Gauss’s law (4.4) can be converted into a differential
equation. We first turn both sides into volume integrals. On the left-hand side, we
use the divergence theorem (the area integral of the field flux equals the volume
integral of the divergence of the field), while on the right-hand side, we express
the mass in terms of the mass density function ρ:∫

∇ · g dV = –4πGN

∫
ρ dV . (4.5)

Since this relation holds for any volume, the integrands on both sides must be
equal:

∇ · g = –4πGNρ. (4.6)
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This is Newton’s field equation in differential form. We define the gravitational
potential1 1 Recall the familiar example of the po-

tential � = –GNM/r for a spherically
symmetric source with total massM.

�(r) through the field with g ≡ –∇�, so the field equation (4.6)
becomes

∇2� = 4πGNρ. (4.7)

To obtain the gravitational equation of motion, we insert (4.2) into Newton’s
second law, F = ma, canceling mass to get

d2r
dt2

= g. (4.8)

Thus the gravitational motion of a particle is totally independent of any of its
properties (mass, charge, etc.). The acceleration can be expressed in terms of the
gravitational potential as

d2r
dt2

= –∇�. (4.9)

We note that the Newtonian field theory of gravitation, as embodied in (4.7)
and (4.9), is not compatible with SR, because space and time coordinates are
not treated on equal footings. Newtonian theory is a static field theory. Stated in
another way, these equations are comparable to Coulomb’s law in electrostatics.
They do not account for the effects of motion (i.e., magnetism). This incom-
pleteness just reflects the underlying assumption of an action-at-a-distance force,
which implies an infinite speed of signal transmission, incompatible with the basic
postulate of relativity.

4.1.2 Einstein’s motivation for general relativity

Einstein’s theory of gravitation has a unique history. It was not prompted by
any empirical failure of Newton’s theory, but resulted from pure thought, the
theoretical speculation of one person drawing the consequences of fundamen-
tal principles. It sprang fully formed from Einstein’s mind. As an old physicists’
saying goes, “Einstein just stared at his own navel and came up with GR!”

From Einstein’s published papers, one can infer a few interconnected
motivations:

1. Seeking a relativistic theory of gravitation The Newtonian theory is
not compatible with special relativity, as it invokes an action-at-a-distance
force, implying infinitely fast signal transmission. Furthermore, inertial
frames of reference, which are fundamental to SR, lose their privileged
status in the presence of gravity.

2. “Space is not a thing” This is how Einstein phrased his conviction
that physics laws should not depend on reference frames, which express
the relationships among physical processes in the world but do not have
independent existence.

3. Why are inertial and gravitational masses equal? Einstein strove for a
deeper understanding of this empirical fact.
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Einstein generalized Newton’s field equation (4.7) and the equation of motion
(4.9) to develop a relativistic theory valid in all coordinate systems.

4.2 The equivalence principle:
from Galileo to Einstein

This section presents several properties of gravitation. They all follow from what
Einstein called the principle of the equivalence of gravity and inertia. The final
formulation of Einstein’s theory of gravitation, the general theory of relativity,
automatically and precisely includes this EP. Historically, it motivated a series of
discoveries that ultimately led Einstein to the geometric theory of gravity, which
models the gravitational field as warped spacetime.

4.2.1 Inertial mass vs. gravitational mass

One of the distinctive features of gravity is that its equation of motion (4.9) is
totally independent of the test particle’s properties. This comes about because of
the cancellation of the mass factors in mg and ma. Actually, these two masses
correspond to very different concepts:

• The inertial mass mI in Newton’s second law,

F = mIa, (4.10)

enters into the description of the response of a particle to all forces.

• The gravitational mass mG in Newton’s law of gravitation,

F = mGg, (4.11)

reflects the response of a particle to a particular force: gravity. The gravi-
tational mass mG may be viewed (in analogy to electromagnetic theory) as
the gravitational charge placed in a given gravitational field g.

Now consider two objects, A and B, composed of different materials: one of
copper and the other of wood. When they are let go in a given gravitational field
g (e.g., dropped from the Leaning Tower of Pisa), they will, according to (4.10)
and (4.11), obey the equations of motion:

(a)A =
(
mG

mI

)
A
g, (a)B =

(
mG

mI

)
B
g. (4.12)

Part of Galileo’s great legacy is his experimental observation that all bodies fall
with the same acceleration—that free fall is universal. The equality (a)A = (a)B
then leads to (

mG

mI

)
A
=
(
mG

mI

)
B
. (4.13)
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Because this mass ratio is universal for all substances, it can be set, by appropriate
choice of units, equal to unity. We can simply say

mI = mG. (4.14)

Even at the level of atomic physics, matter is made up of protons, neutrons, and
electrons (all having different interactions) bound together with different bind-
ing energies. It is difficult to find an a priori reason to expect such a relation as
(4.13). As we shall see, this is the empirical foundation underlying the geometric
formulation of GR, the relativistic theory of gravity.

There is no record that Galileo ever measured the acceleration of freely fall-
ing objects (dropped from the Tower of Pisa or elsewhere)2

2 Interestingly Galileo provided a the-
oretical argument, a thought experiment,
in the first chapter of his Discourse and
Mathematical Demonstration of Two New
Sciences, in support of the idea that all sub-
stances should fall with the same acceler-
ation. Consider any falling object: without
this universality of free fall, the tendency of
different components of the object to fall
differently would give rise to internal stress
and could cause certain objects to sponta-
neously disintegrate. The nonobservation
of this phenomenon could then be taken
as evidence for equal accelerations.

. But he did measure
the acceleration of objects sliding down an inclined plane; this slowed-down mo-
tion made measurements feasible. Newton achieved the same end by using a
pendulum to measure the ratio mI/mG for different objects.

N
L

T
mIa

mIa
mGg

mGg

θ

(a) (b)

Figure 4.1 Both the gravitational mass
and inertial mass enter in these phenom-
ena: (a) a sliding object on an inclined
plane, where N is the normal force, and
(b) oscillations of a pendulum, where T
is the tension force in the string.

Exercise 4.1 Physical examples ofmI/mG dependence

(a) For the frictionless inclined plane (with angle θ ) in Fig. 4.1(a), find the ac-
celeration’s dependence on the ratio mI/mG. Thus a violation of the equivalence
principle would show up as a material dependence in the time required for a mate-
rial block to slide down the plane. (b) For the simple pendulum (with string length
L) in Fig. 4.1(b), find the oscillation period’s dependence on the ratio mI/mG.

4.2.2 Einstein: “my happiest thought”

In the course of writing a review article on SR in 1907, Einstein came upon what
he later termed, “my happiest thought.” He recalled the fundamental experimen-
tal result of Galileo that all objects fall with the same acceleration. Since all bodies
accelerate the same way, an observer in a freely falling laboratory will not be able
to detect any gravitational effect (on a point particle) in this frame. That is to say,
gravity is transformed away in reference frames in free fall.

Principle of equivalence stated Imagine an astronaut in a freely falling
spaceship. Because all objects fall with the same acceleration, a released object
will not fall with respect to the spaceship. Thus, from the viewpoint of the astro-
naut, gravity is absent; everything becomes weightless. To Einstein, this vanishing
of the gravitational effect was so significant that he elevated it (in order to focus
on it) to a physical principle, the equivalence principle:⎛

⎜⎝Physics in a frame freely falling in a gravitational field
is equivalent to

physics in an inertial frame without gravity

⎞
⎟⎠ .
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Namely, within a freely falling frame, where the acceleration exactly cancels the
uniform gravitational field, no sign of either acceleration or gravitation can be
found by any physical means. Correspondingly,⎛

⎜⎝ Physics in a nonaccelerating frame with a gravitational field g
is equivalent to

physics in a frame without gravity but accelerating with a = –g

⎞
⎟⎠ .

Absence of gravity in an inertial frame According to the EP, accelerating
frames of reference can be treated in exactly the same way as frames with gravity.
This suggests a new definition of an inertial frame, without reference to any
external environment such as fixed stars, as a frame in which there is no gravity.
Our freely falling spaceship can thereby be deemed an inertial frame of reference;
our astronaut is now an inertial observer. Einstein realized the unique position
of gravitation in the theory of relativity. Namely, he understood that the question
was not how to incorporate gravity into SR, but rather how to use gravitation as a
means to broaden the principle of relativity from inertial frames to all coordinate
systems, including accelerating frames.

From EP to gravity as the structure of spacetime If we confine ourselves
to the physics of mechanics, the EP is just a restatement ofmI = mG. But once pro-
moted to a principle, it allowed Einstein to extend this equivalence between inertia
and gravitation to all physics—not just to mechanics, but also to electromag-
netism, etc. This generalized version is sometimes called the strong equivalence
principle. Thus the weak EP is just the statement of mI = mG, while the strong EP
is the principle of equivalence applied to all physics.33 Or, the EP says that one can form an

inertial frame at any point in spacetime in
which matter satisfies the laws of SR. The
strong EP implies the validity of this equiv-
alence principle for all laws of nature, not
just mechanics.

Henceforth, we shall still call
the strong equivalence principle EP for short. Because the motion of a test body
in a gravitational field is independent of the properties of the body, Einstein came
up with the idea that the effect of gravity on the body can be attributed directly to
some spacetime feature, and that gravity is nothing but the structure of a warped
spacetime.

Exercise 4.2 Two EP brain-teasers

Even in mechanics, in some instances, the (weak) EP can be very useful in helping
us to obtain physics results with simple analysis. Here are two notable examples:
(a) Use the EP to explain the observation (see Fig. 4.2a) that a helium balloon
leans forward in a (forward-) accelerating vehicle. (b) On his 76th birthday,
Einstein received a gift from his Princeton neighbor Eric Rogers.44 Referenced in, e.g., (French 1979,

p 131).
It was a toy

composed of a ball attached by a spring to the inside of a bowl (a toilet plunger),
which was just the right size to hold the ball. The upright bowl was fastened to a
broomstick as in Fig 4.2(b). What is the surefire way, suggested by the EP, to pop
the ball back into the bowl each time?
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(a)

(b)

Figure 4.2 Illustrations for the two EP brain-teasers in Exercise 4.2.

4.3 EP leads to gravitational time dilation
and light deflection

The strong EP implies that gravity can bend a light ray, shift the frequency of
an electromagnetic wave, and cause clocks to run slow. Ultimately, these results
suggested to Einstein that the proper framework to describe the relativistic effects
of gravity is a curved spacetime. These gravitational time dilation phenomena will
be interpreted as reflecting the warping of spacetime in the time direction.

4.3.1 Gravitational redshift and time dilation

To deduce the SR effects of relative motion, we often compare observations made
in different coordinate frames. Similarly, one can obtain the effects of gravity on
certain physical phenomena using the following general procedure:

1. One first considers the description by an observer inside a spaceship in
free fall. According to the EP, there is no gravitational effect in this inertial
frame, and SR applies.

2. One then considers the same situation from the viewpoint of an observer
watching the spaceship from outside: there is a gravitational field in which
the first (freely falling) observer is seen to be accelerating.

3. The combined effects of acceleration and gravity, as seen by the second
observer, must then reproduce the SR description as recorded by the in-
ertial observer in free fall. Physics should be independent of coordinate
choices.

Bending of a light ray—a qualitative account

Let us first study the effect of gravity on a light ray traveling (horizontally) across
a spaceship that is falling in a constant (vertical) gravitational field g. The EP
informs us that from the viewpoint of the astronaut in the spaceship, there is no
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(a)

h

g g g g

h

y

(b)

Figure 4.3 According to the EP, a light
ray will fall in a gravitational field.
(a) To the astronaut in the freely falling
spaceship (an inertial observer), the light
trajectory is straight. (b) To an observer
outside the spaceship, the astronaut is
accelerating (falling) in a gravitational
field. The light ray will be bent so that
it reaches the opposite side at a height
y = gt2/2 below the initial point; it falls
with the spaceship.

detectable effect associated either with gravity or with acceleration: the light trav-
els straight across the spaceship from one side to the other; it is emitted at a height
h and received at the same height h on the opposite side of the spaceship as in
Fig. 4.3(a). But to an observer outside, the spaceship is accelerating (falling) in a
gravitational field g. To this outside observer, the light ray bends as it traverses the
falling spaceship as in Fig. 4.3(b). Thus the EP predicts that gravity bends light.

We do not ordinarily see light curving; for the gravitational field and distance
scale with which we are familiar, this bending effect is unobservably small. Con-
sider a lab with a width of 300m. A light ray travels across the lab in 1μs.
During this interval, the light drops (is bent by) an extremely small amount:
y = gt2/2 � 5 × 10–12 m = 0.05Å. This suggests that one needs to seek such
effects where large masses and great distances are involved—as in astronomical
settings.

Gravitational redshift

Above, we discussed the effect of a gravitational field on a light ray whose trajec-
tory is transverse to the field direction. Now let us consider the situation when the
field is parallel (or antiparallel) to the ray’s path as in Fig. 4.4.

Here we have a receiver placed at a distance h directly above the emitter in a
downward-pointing gravitational field g. Just as in the transverse case considered
above, we first describe the situation from the viewpoint of the astronaut (in free
fall), Fig. 4.4(a). The EP informs us that the spaceship in free fall is an inertial
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(a) (b)

g

h

g g

g

Figure 4.4 The EP implies a gravita-
tional redshift. Light is sent upward and
received at a height h. (a) To an inertial
observer in the freely falling spaceship,
there is no frequency shift. (b) To an
observer outside the spaceship, this as-
tronaut is accelerating in a gravitational
field. In this frame, a gravitational red-
shift cancels the Doppler blueshift, so
both observers agree (as they must) that
the frequency does not change.

frame, with no physical effects associated with gravity or acceleration. The astro-
naut should not detect any frequency shift; the received light frequency ωrec is the
same as the emitted frequency ωem:

(�ω)ff = (ωrec – ωem)ff = 0, (4.15)

where the subscript ff reminds us that these are the values as seen by an observer
in free fall.

From the viewpoint of the observer outside, the spaceship is accelerating (fall-
ing) in a gravitational field as in Fig. 4.4(b). Assume that this spaceship starts to
fall at the moment of light emission. It takes a finite amount of time �t = h/c for
the light signal to reach the receiver on the ceiling (to lowest order in gh/c2, we
can neglect the change in the receiver’s position during the light’s travel). During
that time, the falling receiver accelerates to a downward velocity �u = g�t. The
familiar Doppler formula in the low-velocity approximation (3.54) would lead us
to expect a frequency shift of
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�ω

ω

)
Doppler

=
�u
c
. (4.16)

Since the receiver above is moving toward the emitter below, the light waves must
be compressed; this shift must be toward the blue:

(�ω)Doppler = (ωrec – ωem)Doppler > 0. (4.17)

But, as stated in (4.15), the inertial observer (in free fall) sees no such shift; the
received frequency does not deviate from the emitted frequency. This physical
result must hold for both observers, so the blueshift in (4.17) must somehow be
canceled. To the observer outside the spaceship, gravity is also present. We can
recover the nullshift result if the light is redshifted by gravity by just the right
amount to cancel the Doppler blueshift of (4.16):

(
�ω

ω

)
gravity

= –
�u
c
. (4.18)

We now express the relative velocity on the right-hand side in terms of the
gravitational potential difference �� between the two locations:

�u = g�t =
gh
c

=
��

c
. (4.19)

By combining (4.18) and (4.19), we obtain the gravitational frequency shift:

�ω

ω
= –

��

c2
; (4.20)

namely,55 Whether the denominator is ω1 or ω2,
the difference is of higher order and can be
ignored in these leading-order formulae.

ω1 – ω2

ω2
= –

�1 –�2

c2
. (4.21)

Light emitted at a lower gravitational potential (�2) will be received at a higher
gravitational potential (�1 > �2) with a lower frequency (ω1 < ω2); that is, it
is redshifted, even though the emitter and the receiver are not in relative motion.
Likewise, light emitted at a higher potential appears blueshifted to a receiver at a
lower potential.

The Pound–Rebka experiment In principle, this gravitational redshift can be
tested by a careful examination of the spectral emission lines from an astronomical
object (hence from a deep gravitational potential well). However, such an effect
can easily be masked by the standard Doppler shifts due to the thermal motion
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of the emitting atoms. Consequently, conclusive data did not exist in the first few
decades after Einstein’s paper. It was not until 1960 that the gravitational redshift
was first convincingly verified in a series of terrestrial experiments in which Rob-
ert Pound (1919–2010) and his collaborators measured the tiny frequency shift
of radiation traveling up h = 22.5m, the height of an elevator shaft in the building
housing the Harvard Physics Department:

∣∣∣∣�ωω
∣∣∣∣ =

∣∣∣∣ ghc2
∣∣∣∣ = O(10–15). (4.22)

Normally, it is not possible to fix the frequency of an emitter or absorber to a
very high accuracy, because of the energy shift due to thermal recoils of the atoms.
However, owing to theMössbauer effect,6 6 The Mössbauer effect: Atomic recoil

can reduce the energy of an emitted pho-
ton. Since the emitting atom is surrounded
by other atoms in thermal motion, this
recoil is uncontrollable. (We can picture
the atom as part of a vibrating lattice.)
As a result, the photon energies in differ-
ent emission events can vary considerably,
resulting in a significant spread of their
frequencies. This rules out high-precision
measurements of the atomic frequency
for purposes such as testing the gravita-
tional redshift. But, in 1958, Rudolf Möss-
bauer (1929–2011) made a breakthrough
when he pointed out, and verified by ob-
servation, that crystals with high Debye–
Einstein temperature (i.e., having a rigid
crystalline structure) could pick up the re-
coil by the entire crystal. Namely, in such a
situation, the emitting atom has a huge ef-
fective mass. Consequently, the atom car-
ries away no recoil energy; the photon can
pick up all the energy lost by the emitting
atom, and the frequency of the emitted
radiation is as precise as it can be.

the emission line width in a rigid crystal
is as narrow as possible—limited only by the quantum mechanical uncertainty
principle, �t�E ≥ h̄, where �t is the lifetime of the unstable (excited) state.
Thus a long-lived state would have a particularly small energy/frequency spread.
The Harvard experimenters (Pound and Rebka 1960) worked with an excited
isotope of iron, 57Fe∗, produced through the nuclear beta decay of cobalt-57. It
transitions to the ground state by emitting a gamma ray: 57Fe∗ → 57Fe + γ . The
gamma ray emitted this way at the bottom of the elevator shaft, after climbing the
22.5m, could no longer be resonantly absorbed by a sheet of iron in the ground
state placed at the top of the shaft. To prove that the radiation had been redshifted
by just the right O(10–15) amount, Pound and Rebka introduced an (ordinary)
Doppler blueshift by moving the detector slowly toward the emitter at just the
right speed to compensate for the gravitational redshift. Thus, the radiation could
again be absorbed. What was the speed with which they had to move the receiver?
From (4.20) and (4.16), we have

gh
c2

=
gravity

∣∣∣∣�ωω
∣∣∣∣ =
Doppler

u
c
, (4.23)

with

u =
gh
c

=
9.8 m/s2 × 22.5 m

3× 108 m/s
= 7.35× 10–7 m/s. (4.24)

This is such a small speed that it would take h/u = c/g = O(3 × 107 s) � 1
year to cover the same elevator shaft height. Of course this velocity is just the one
attained by an object freely falling for the time interval O(10–7 s) that it takes the
light to climb the elevator shaft. This is the compensating effect we invoked in our
derivation of the gravitational redshift at the beginning of this section.

Gravitational time dilation

From our understanding of the Doppler effect, this gravitational frequency shift
looks absurd. How can an observer, stationary with respect to the emitter, receive
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a different number of wave crests per unit time than the emitted rate? Here is
Einstein’s radical yet simple answer: while the number of wave crests does not
change, the time unit itself changes in the presence of gravity. Clocks at different
gravitational potentials run at different rates; there is a gravitational time dilation
effect.

Frequency is proportional to the inverse of the local proper time rate
ω ∼ 1/dτ ; the gravitational frequency shift formula (4.21) can be converted to
a time dilation formula:

dτ1 – dτ2
dτ2

=
�1 –�2

c2
. (4.25)

Namely, a clock at higher gravitational potential (�1 > �2) will run faster
(dτ1 > dτ2); a lower clock runs slow. The fast/slow descriptions reflect the
larger/smaller elapsed time intervals. All observers agree on this, since dτ1 and
dτ2 are scalars. Another derivation of (4.25) will be presented in Box 4.1.

Contrast this gravitational time dilation with the distinct SR effect of (2.22):
dt = γ dτ . If two observers are in relative motion, each perceives the other’s clock
to run slow by a factor of γ . Obviously, one must be careful to understand which
clocks rate is being described and by whom. Recall the twin paradox discussed in
Box 2.3. The time dilation of Al’s clock in motion means its time dτA is measured
by a stationary Bill to run slow, dtB > dτA as dtB = γA dτA; when the twins meet,
Bill has aged 50 years compared with Al’s 30. Consider a comparable case in
which Bill lives on the top floor of a high-rise building and Al at the bottom
(�B > �A). The twins will again age differently, now because of gravitational
time dilation. Bill’s clock runs faster; as the years pass by, he will be older than
the low-level-dwelling Al. In Section 4.3.2, orbiting satellites provide yet another
concrete example illustrating these different types of time dilation.

Box 4.1 Gravitational time dilation—another derivation

As discussed in our SR chapters, the standard method to compare clock readings is through the exchange of light
signals. Our way of arriving at the gravitational time dilation result (4.25) followed this standard method—an exchange
of light signals and a comparison of light frequencies—leading to the gravitational redshift and then time dilation
results.

Here we present another derivation of (4.25) that will display its relation to (and its compatibility with) the familiar
SR effect of time dilation due to relative motion. Two clocks are located at different gravitational potential points,
Clock-1 at�1 and Clock-2 at�2. Let Clock-3 fall freely in this gravitational field (see Fig. 4.5); when it passes Clock-1,
it has the speed u1 and when it passes Clock-2, the speed u2. At the instant when Clock-3 passes Clock-1, both clocks
are at the same gravitation potential �1. Thus a comparison of the clocks’ rates involves only the SR effect due to
their relative motion of speed u1. A similar comparison can be carried out when Clock-3 passes Clock-2 at �2 with
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(a) (b)

Clock-1
at Φ1

Clock-2
at Φ2

Clock-3
in free fall

u1

u2

Clock-1
accelerating

up

Clock-3
at rest in its

proper frame

Clock-2
accelerating

up

Figure 4.5 Comparing clock rates at different gravitational potential points: (a) Clock-3
in free fall passing Clock-1 at Φ1 with speed u1 and Clock-2 at Φ2 with speed u2.
(b) Clock-1 is seen moving with speed –u1 in the inertial (free-fall and gravity-free) frame
of Clock-3 when the latter passes Clock-1. A picture similar to (b) can be drawn when
Clock-3 passes Clock-2.

speed u2. One can relate the proper clock rates dτ1 and dτ2 to the coordinate time rate in Clock-3’s freely falling frame
of reference. By the SR time dilation formula at the respective �1 and �2 points,

dt(1)3 = γ1 dτ1, and dt(2)3 = γ2 dτ2, (4.26)

with γ1,2 = (1 – u21,2/c
2)–1/2. Because Clock-3 is in free fall, gravity is absent in its inertial reference frame; time dt3

passes at a constant rate as the other clocks accelerate by: dt(1)3 = dt(2)3 . The time dilation result (4.25) can then be
derived by connecting the two equations in (4.26):

dτ1
dτ2

=
γ2

γ1
=
(
1 – u21/c

2

1 – u22/c2

)1/2

� 1 –
1
2
u21 – u

2
2

c2
= 1 +

�1 –�2

c2
, (4.27)

where, to reach the second line, we have dropped terms O(u4/c4) in the power series expansions of the denominator
and of the square root. At the last equality, we have used the low-velocity version (consistent with our presentation)
of the energy conservation relation for the freely falling Clock-3. The change in kinetic energy must equal minus the
change in potential energy: 1

2m�u
2 = –m��.

This derivation of (4.25) shows that gravitational time dilation is entirely compatible with the previously known SR
time dilation effect—just as we showed its compatibility with the Doppler frequency shift (4.16) in our first derivation
of gravitational redshift (4.20).
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4.3.2 Relativity and the operation of GPS

The Global Positioning System (GPS) is capable of fixing locations on earth by
exchange of electromagnetic signals between the ground and a network of or-
biting satellites. More than 24 satellites are distributed more-or-less uniformly
among orbits around the globe (e.g., four satellites on each of six equally spaced
orbital planes), so that for any point on earth, r, there are at least four satellites
at ri (i = 1, 2, 3, 4) above its horizon (Fig. 4.6). Radar signals encode each satel-
lite’s position and time at transmission (ri , ti). The GPS receiver on the ground
then calculates the four unknowns of its position and time of reception (r, t) by
solving the four simultaneous equations |ri – r| = c|ti – t|. Since distance is ob-
tained from timing measurements, �r = c�t, one needs an extremely accurate
knowledge of the transmission time, as a difference of one nanosecond (10–9 s)
translates into a distance of about one foot, 10–9 s× 3× 108 m/s = 0.3m.

To achieve such accuracy, each satellite carries an atomic clock. Still, all the
time measurements must account for the fact that the clocks on the satellites are
moving at high speeds and are at different gravitational potentials with respect to
the ground location. How large are the resulting SR and gravitational time dilation
effects? In the next paragraph, we carry out an order-of-magnitude calculation to
show that both effects are significant, and furthermore that the gravitational effect
is opposite to, and about six times bigger than, the effect due to relative motion.

Satellites high up in space and moving with high speed To determine the
relativistic effects, we need to know the orbital radius of the satellite (rS) and how
fast it is moving (vS). Each of the satellites is set to have a period of 12 hours,
so that a satellite passes overhead of a given observer on earth twice each day.
We will find (rS, vS) by solving the coupled equations representing the orbital
period (12 hours) and the gravitational equation of motion with the centripetal
acceleration a = v2/r:

2πrS
vS

= 12 h = 12× 3600 s,

GNM⊕
r2S

=
F
m

= a =
v2S
rS

, (4.28)
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r2 r3

r

O

r4

Figure 4.6 Light signals are exchanged
between a location r on earth and four
GPS satellites located at ri (i = 1,2,3,4).
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where M⊕ is the mass of the earth. Solving these two equations, we obtain the
satellite’s orbital radius in terms of the earth’s radius r⊕,

rS = 2.7× 107m = 4.2 r⊕, (4.29)

and the tangential speed vS = 3.87 km/s. Such a velocity gives a relativistic beta
factor of βS = vS/c = 1.3× 10–5 and a Lorentz gamma factor of

γS = (1 – β2
S)

–1/2 = 1 + 0.83× 10–10. (4.30)

Time dilation due to relative motion From this, we can calculate the SR
time dilation correction, as both the satellite clock and the earthbound clock are in
motion. Let t0 be the time recorded by a clock at rest with respect to the coordinate
origin (the center of the earth). The time dilation of the moving satellite clock is
dt0 = γS dτS and that of the clock on earth, dt0 = γ⊕ dτ⊕. Thus the relative dilation
effect due to the motion of the satellite and the ground clocks around the earth is
given by

(
dτ⊕
dτS

)
mo

=
γS

γ⊕
= 1 +

v2S – v
2⊕

2c2
. (4.31)

Since the ground clock speed v⊕ depends on its location on earth and is small,7 7 This is the case even for a receiver lo-
cated on the equator with v⊕ = 2πR⊕/
24 h. Comparing it with vS = 2πrS/12 h,
we have vS/v⊕ = 2rS/R⊕ = 8.4; thus the
correction (v⊕/vS)2 is only about 1%.

we will drop the v2⊕ term. The fractional time difference due to relative motion is,
according to (4.30),

Fmo ≡
(
dτ⊕ – dτS
dτS

)
mo

=
(
dτ⊕
dτS

)
mo

– 1

=
1
2
β2
S = 0.83× 10–10. (4.32)

With dτS < dτ⊕, we say that the satellite clock runs slower than the clock on the
ground. This is so because the satellite time is dilated more than the ground clock,
reflecting their relative speed γS > γ⊕.

Time dilation due to relative heights The gravitational time dilation formula
(4.25) yields a fractional time difference of

Fgrav ≡
(
dτ⊕ – dτS
dτS

)
grav

=
�⊕ –�S

c2
, (4.33)

where �S > �⊕ as the satellite is located at a potential that is less negative,

�⊕ = –
GNM⊕
r⊕

and �S = –
GNM⊕
rS

=
�⊕
4.2

. (4.34)
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In the last term, we have inserted the result from (4.29). Given that �⊕ = –gr⊕,
where g = 9.8m/s2 is the gravitational acceleration at the earth’s surface, one
immediately obtains

Fgrav =
(
dτ⊕
dτS

)
grav

– 1 (4.35)

= –
gr⊕
c2

(
1 –

1
4.2

)
= –5.3× 10–10.

With the elapsed satellite time interval being larger, dτS > dτ⊕, we say that the
satellite clock runs faster than the clock on the ground, in contrast to the effect
due to relative motion.

Full relativistic correction We see that this gravitational correction is about
six times as great as that due to SR time dilation (4.32) and in the opposite di-
rection. When we combine the leading-order corrections due to the gravitational
potential difference (4.33) and to the relative motion (4.31), the total relativistic
correction may be written as(

dτ⊕
dτS

)
rel

=
(
dτ⊕
dτS

)
grav
×
(
dτ⊕
dτS

)
mo

(4.36)

= 1 +
�⊕ –�S

c2
–
v2⊕ – v2S
2c2

.

As we shall see, this result is contained in the full GR solution to be discussed
in Chapter 6 (cf. Example 6.1). Without taking the relativistic correction into
consideration, errors will rapidly accumulate in the GPS time measurements. For
example, in a period of only one minute, by ignoring time dilation due to relative
motion, one would incur an error of Fmo×60 s � 5 ns, while the error from ignor-
ing the gravitational time dilation would be Fgrav × 60 s � –30 ns; taken together,
one gets an error of about 25 ns. As discussed in the introductory paragraph, one
nanosecond corresponds to a distance of about a foot. Without taking relativistic
effects into account, there is no way that the GPS system could pinpoint locations
within a few feet or so in accuracy.

Exercise 4.3 A GPS calculation

We expect that the gravitational time dilation could be reduced if the satellite traveled in a lower orbit. Figure out how low the
satellite’s orbital radius rS must be so that the time dilation effects due to gravity and due to relative motion cancel each other?
What will be its period? Just as we did above, you may neglect v⊕. (a) From the requirement that Fmo +Fgrav = 0, you should
be able to deduce the relation of velocity vS to orbital radius rS:

v2S = 2gr⊕
(
1 –

r⊕
rS

)
. (4.37)
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Note that for this problem, it is entirely adequate to approximate the gamma factor by γ ≡ (1 – β2)–1/2 � 1 + 1
2β

2. (b) From
the centripetal acceleration equation, together with (4.37), one can then find the solution:

v2S =
2
3
gr⊕ and rS =

3
2
r⊕. (4.38)

(c) What will be the resultant orbital period (in contrast to the real GPS system’s 12-hour period)? From these numbers, you
should be able to conclude that such a system of low-flying satellites may have some practical problems.

4.3.3 The EP calculation of light deflection

The EP implies that clocks run at different rates at locations where the
gravitational potentials are different. Such effects will lead to different speed
measurements—even the speed of light can be measured to have different values!
We are familiar with light speeds in different media being characterized by vary-
ing indices of refraction. Gravitational time dilation implies that even in vacuum
there is an effective index of refraction when a gravitational potential is present.
Since potential usually varies in space (i.e., its gradient, the gravitational field, is
usually nonzero), this index is generally a position-dependent function.

Gravity-induced index of refraction in free space At a given position r
with gravitational potential �(r), a determination of light speed with respect to
the local proper time dτ and local proper length dρ gives

dρ
dτ

= c. (4.39)

This speed c is a universal constant. On the other hand, the light speed will deviate
from c according to the elapsed time and distance displacement measured by the
clock and ruler at a different position. In fact, a common choice of coordinate
time and distance is that given by the clock and ruler located far away from the
gravitational source. Equation (4.25) then gives us the relation between the local
time (dτ = dτ1) measured at r and the coordinate time (dt = dτ2) measured
where �2 = 0:

dτ =
(
1 +

�(r)
c2

)
dt. (4.40)

What about the gravitational effect on length measurement? The deflection
of light by a gravitational source was first predicted by Einstein in 1911. The
calculation was based on EP-implied gravitational time dilation alone. This was
before Einstein had developed the idea of gravity as structure of spacetime. Since
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most of the first strong-EP effects to be discussed were those of gravity on time
measurement, Einstein did not discuss in his paper the influence of gravity on
length measurement. Thus, in effect, he set dρ = dr, and this is what we do
here as well. In this way, to a remote observer, light speed is reduced by gravity88 As we shall see in Section 6.4.2, this

deviation of measured light speed from c is
half as much as the full GR solution.

(� being negative):

[c(r)]EP ≡ dr
dt

=
1 +�(r)/c2

dτ
dρ =

(
1 +

�(r)
c2

)
c, (4.41)

which varies from position to position as the gravitational potential varies. For the
faraway observer, the effect of the gravitational field can be viewed as introducing
an index of refraction in space:

1
[n(r)]EP

≡ [c(r)]EP
c

=
(
1 +

�(r)
c2

)
. (4.42)

Let us reemphasize some key concepts behind this position-dependent speed
of light. We are not suggesting that the deviation of c(r) from the constant cmeans
that the speed of light measured by a local observer has changed, or that the
velocity of light is no longer a universal constant in the presence of gravitational
fields. Rather, it reflects the physics that clocks at different gravitational potentials
run at different rates. For an observer located far from the gravitational source
(whose proper time is conveniently taken to be the coordinate time), the velocity
of light appears to slow down. A dramatic example is offered by black holes (to
be discussed in Chapter 7). Because of infinite gravitational time dilation, it would
take an infinite amount of coordinate time for a light signal to leave a black hole
(thus, to the remote observer, no light can escape from a black hole), even though
to a local observer, his proper time seems to flow normally.

y

c dt

x

c1dt

dφ

c2dt

(a) (b)

Figure 4.7 Wavefronts of light trajecto-
ries: (a) Wavefronts of a straight-moving
trajectory in the absence of gravity.
(b) Tilting of wavefronts in a medium
with an index of refraction varying in
the vertical y direction so that c1 > c2.
The bending of the resultant trajectory
is signified by the small angular deflec-
tion dφ.

Bending of light ray calculated using Huygens’ construction We can use
this position-dependent index of refraction to calculate the bending of a light
ray by a transverse gravitational field via the Huygens’ construction. Consider a
plane light wave propagating in the +x direction. At each time interval �t, the
wavefront advances a distance c�t; see Fig. 4.7(a). The existence of a transverse
gravitational field (in the y direction) means a nonvanishing derivative of the grav-
itational potential, d�/dy �= 0. A change of the gravitational potential implies a
change in c(r), which leads to tilting of the wavefronts. We can calculate the angle
of the bending of the light ray by using the diagram in Fig. 4.7(b):

dφ � (c1 – c2) dt
dy

� d[c(r)](dx/c)
dy

. (4.43)

Working in the limit of weak gravity with small�(r)/c2 (or equivalently n � 1), we
can relate d[c(r)] to a change in the index of refraction via (4.42):

d
[
c(r)
c

]
EP

= d
[

1
n(r)

]
EP

=
d�(r)
c2

. (4.44)
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Thus, integrating (4.43) over the entire path, we obtain the total deflection angle:

[δφ]EP =
∫
[dφ]EP =

1
c2

∫ ∞
–∞

∂�

∂y
dx =

1
c2

∫ ∞
–∞

(∇� · ŷ) dx. (4.45)

The integrand is the gravitational acceleration perpendicular to the light path.
We shall apply this formula to the case of a spherical source with � = –GNM/r
and ∇� = GNMr̂/r2. Although the gravitational field will no longer be a simple
uniform field in the ŷ direction, our approximate result can still be used, because
the bending takes place mostly in the small region of r � rmin. (See Fig. 4.8.)
We have

[δφ]EP =
GNM
c2

∫ ∞
–∞

r̂ · ŷ
r2

dx =
GNM
c2

∫ ∞
–∞

y
r3
dx, (4.46)

where we have used r̂ · ŷ = cos θ = y/r. An inspection of Fig. 4.8 also shows that,
for small deflection, we can approximate y � rmin; hence

r = (x2 + y2)1/2 � (x2 + r2min)
1/2, (4.47)

leading to

[δφ]EP =
GNM
c2

∫ ∞
–∞

rmin(
x2 + r2min

)3/2 dx = 2GNM
c2rmin

. (4.48)

It should be noted again: this deflection result follows from an EP calculation
which is based on gravitational time dilation alone. As we shall discuss in Sec-
tion 6.4.2, this is half of the GR result [δϕ]GR = 2[δϕ]EP, because the curved
spacetime description of GR implies in addition a gravitational length contraction.

4.3.4 Energetics of light transmission
in a gravitational field

Because light gravitates (i.e., it bends and redshifts in a gravitational field), it
is tempting to imagine that a photon has a (gravitational) mass. This may well
lead to some erroneous conclusions regarding the energetics of light traveling in a
gravitational field. Box 4.2 addresses this problem.
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Figure 4.8 Angle of deflection δφ of
light by a mass M. A point on the light
trajectory (solid curve) can be labeled ei-
ther as (x, y) or as (r, θ). The source at
S would appear to the observer at O to
be located at a shifted position S′.
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Box 4.2 Energy considerations for gravitating light

Erroneous energy considerations

When considering the propagation of a light ray in a gravitational field,
one might argue as follows: from the viewpoint of relativity, there is no
fundamental difference between mass and energy, E = mIc2. The equiva-
lence mI = mG means that any energy also has a nonzero gravitational mass
mG = E/c2, and hence will gravitate. The gravitational redshift formula
(4.20) can be derived by regarding such a light pulse as losing kinetic
energy when climbing out of a gravitational potential well.99 For instance, the (Pound and Rebka

1960) paper has the title, “Apparent
weight of photons.”

Applying similar
reasoning to the problem of gravitational light deflection, one can derive the
result (4.48) by using the Newtonian mechanics formula9a

9a Equation (4.49) is quoted in small-
angle approximation of a general result
that can be found in textbooks on mechan-
ics. See, e.g., Eq. (4.37) in (Kibble 1985).

for a moving mass
with velocity u being gravitationally deflected by a spherically symmetric
massM (just as in Fig. 4.8),

[δφ]Newton =
2GNM
u2rmin

. (4.49)

For the case of a photon with u = c, this would just reproduce the EP result
shown in (4.48). Thus it so happens that the EP and Newtonian results
coincide. As stated earlier, the predicted deflection is half of the correct GR
prediction. Nevertheless, such an approach to understanding the effect of
gravity on a light ray is conceptually incorrect, because

• A photon has no mass, so it cannot be described as a nonrelativistic
massive object having a gravitational potential energy.

• This approach makes no connection to the underlying physics of gravita-
tional time dilation.

The correct energy consideration

The energetics of gravitational redshift should be properly considered as fol-
lows. Light is emitted and received through atomic transitions between two
atomic energy levels of a given atom:1010 We have used the fact that the en-

ergy of a light ray is proportional to its
frequency. For most of us, the quantum
relation E = h̄ω comes immediately to
mind, but this proportionality also holds
in classical electromagnetism, where the
field can be pictured as a collection of har-
monic oscillators; see, e.g., (Cheng 2013,
Section 3.1).

E1–E2 = h̄ω. We can treat the emitting
and receiving atoms as nonrelativistic massive objects. Thus, when sitting at
a higher gravitational potential, the receiver atom has more energy than the
emitter atom:

Erec = Eem +mgh. (4.50)

We can replace the mass by E/c2, so that, to leading order, Erec =
(1 + gh/c2)Eem. There is a multiplicative energy shift of the atomic levels.
This implies that all the energy levels (and their differences) of the receiving
atom are blueshifted (increased energy, increased frequency) with respect to
those of the emitter atom by
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(E1 – E2)rec =
(
1 +

gh
c2

)
(E1 – E2)em; (4.51)

hence there is a fractional shift of atomic energy(
�E
E

)
atom

=
gh
c2

=
��

c2
. (4.52)

On the other hand, the traveling light pulse, neither gaining nor losing energy
along its trajectory, has the same energy as the emitting atom. But it will be
seen by the blueshifted receiver atom as redshifted:(

�E
E

)
γ

= –
��

c2
=
�ω

ω
, (4.53)

which is the previously obtained result (4.20). This approach is conceptually
correct, as

• Atoms can be treated as nonrelativistic objects having gravitational poten-
tial energy mgh.

• This derivation is entirely consistent with gravitational time dilation. The
gravitational frequency shift does not result from any change in photon
properties. It comes about because the standards of frequency (i.e., time)
are different at different locations. In fact, this present approach gives us a
physical picture of why clocks must run at different rates at different grav-
itational potentials. An atom is the most basic form of a clock, whose time
rates are determined by transition frequencies. The fact that atoms have
different gravitational potential energies (hence different energy levels)
naturally give rise to different transitional frequencies, and hence different
clock rates.

The various results called “Newtonian”

We should also clarify the often-encountered practice of calling results such as
(4.49) Newtonian. By this it is meant that the result can be derived in the pre-
Einsteinian-relativity framework, in which particles can take on any speed we
wish them to have. Consequently, it is entirely correct to use the Newtonian
mechanics formula for a light particle that happens to propagate with speed c.
However, one should be aware of the difference between this Newtonian (pre-
relativistic) framework and the proper Newtonian limit of relativistic physics
(which we shall specify in Section 5.3.3) of nonrelativistic velocity and a static
weak gravitational field. In this contemporary sense, (4.48) is not a result valid
in the Newtonian limit (cf. Section 6.4.2).
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Einstein’s inference of a curved spacetime

Aside from the principle of relativity, the EP is the most important physical prin-
ciple underlying Einstein’s formulation of a geometric theory of gravity. Not only
did it allow accelerating frames to be treated on equal footing with inertial frames,
thus giving early glimpses of GR phenomenology, but also the study of the EP
physics of time change led Einstein to propose that gravity represents the struc-
ture of a curved spacetime.11

11 In particular, that the gravitational
equation of motion (4.9) is totally inde-
pendent of any property of the test particle
suggested to Einstein that the gravitational
field, unlike other force fields, is related to
some fundamental feature of spacetime.

We shall explain this connection after learning in
the following chapters some mathematics of curved spaces.

Review questions

1. Write out, in terms of the gravitational potential � (x),
the field equation and the equation of motion for New-
ton’s theory of gravitation. What is the distinctive fea-
ture of this equation of motion (as opposed to that for
other forces)?

2. What is inertial mass? What is gravitational mass? Give
the simplest experimental evidence that their ratio is
a universal constant (i.e., independent of the material
composition of the object).

3. What is the equivalence principle? What is the weak EP?
The strong EP?

4. Give a qualitative argument that the EP implies gravita-
tional bending of a light ray.

5. Provide two derivations of the formula for gravita-
tional frequency shift: �ω/ω = –��/c2. (a) Use the
idea that gravity can be transformed away by taking
a reference frame in free fall. (b) Use the idea that
atomic energy levels will be shifted in a gravitational
field.

6. Derive the gravitational time dilation formula, �τ/τ =
��/c2, in two ways: (a) from the gravitational fre-
quency shift formula; (b) from the consideration of
three identically constructed clocks—two stationary at
potential points �1 and �2, and the third in free fall
passing by the first two.

7. GPS requires very precise time reading of clocks on
the satellites that send electromagnetic signals to fix lo-
cations within a few meters on earth. What relativistic
effects must be taken into account in order for this
arrangement to work?

8. The presence of a gravitational field implies the pres-
ence of an effective index of refraction in free space.
Does this mean that the speed of light is not absolute?
What is the physical consequence of this index of refrac-
tion. When viewed from later developments, why was
Einstein’s 1911 calculation not complete?

9. Find the deviation from cwhen the light speed measured
by an observer far from the gravitational source, when
only gravitational time dilation is taken into account.




