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• By focusing on the equivalence principle (EP), Einstein discovered that the
gravitational field can be modeled as a curved spacetime. The mathematics
of such a curved manifold is that of Riemannian geometry. We present
in Section 5.1 some of its basic elements: Gaussian coordinates and the
metric tensor.

• We use the calculus of variations to deduce the geodesic equation for
curves of minimum length (i.e., extreme invariant spacetime interval). We
also discuss how this equation describes a straight line.

• We next present a geometric description of the EP physics of gravitational
time dilation. In this geometric theory, the metric gμν(x) plays the role of a
relativistic gravitational potential.

• The identification of curved spacetime as the gravitational field naturally
suggests that spacetime’s geodesic equation is the GR equation of mo-
tion, which reduces to the Newtonian equation of motion in the limit of a
nonrelativistic moving particle (v 
 c) in a static and weak gravitational
field. This also clarifies how Newton’s theory is extended by Einstein’s
general-relativistic theory of gravitation.

The road from the EP to GR can be viewed as follows. The equivalence of an ac-
celerated frame to one with gravity means that we cannot say for sure that gravity
causes a particle’s acceleration. We could just as easily attribute the acceleration to
some property of the reference frame itself. Thus Einstein proposed a geometric
theory modeling gravity as a warping of spacetime. From this point of view, there
is no gravitational force. Particles move freely through spacetime with gravity;
however, the motion of such particles following straight paths in a warped space-
time may be nontrivial. Gravitational phenomena thereby reflect the curvature of
spacetime.

In this chapter, we mainly study the GR equation of motion, the geodesic
equation, which describes the motion of a test particle in a curved spacetime.
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In Chapter 6, we will take up the GR field equation, the Einstein equation, which
describes how a mass/energy source gives rise to a curved spacetime. But before
presenting the geometric gravitational theory itself, we first provide a short math-
ematical introduction to some of the basic elements of a metric description of a
curved space.

5.1 Metric description of a curved manifold

Differential geometry is the branch of mathematics that uses calculus techniques
to study geometry. Its sub-branch Riemannian geometry concerns in particular
the non-Euclidean n-dimensional spaces that can be described by distance mea-
surements. Since most of us can only visualize, and only have any familiarity with,
curved surfaces of two dimensions, we shall often use this simpler case, which was
pioneered by Carl Friedrich Gauss (1777–1855), to illustrate the more general
theory. The extension of Gauss’s theory to higher dimensions was first11 Non-Euclidean geometry was inde-

pendently discovered by János Bolyai
(1802–1860) and Nikolai Lobachevsky
(1792–1856).

studied
by his student, Bernhard Riemann (1826–1866).

5.1.1 Gaussian coordinates and the metric tensor

Gaussian coordinates

Many of us intuitively think of a curved surface as a 2D surface embedded in 3D
Euclidean space, for example a spherical surface (of radius R) described in 3D
Cartesian coordinates (X ,Y ,Z) by

X2 + Y 2 + Z2 = R2. (5.1)

More generally, the embedding coordinates are subject to a constraint condition,
f (X ,Y ,Z) = 0. This is an extrinsic geometric description; the space of interest
(here the curved surface) is described using entities outside the space. We are
most interested in an intrinsic geometric description, a characterization of the
physical space without such external reference. Specifically, we would like to
describe a 2D surface solely through measurements made by an inhabitant who
never leaves that surface. Gauss introduced a generalized parametrization whose
coordinates (x1, x2) are free to range over their respective domains without
constraint:

X = X(x1, x2), Y = Y(x1, x2), Z = Z(x1, x2). (5.2)

The Gaussian coordinates (x1 and x2, the number of which corresponds to
the dimensionality of the embedded space) make the embedding coordinates
(X ,Y , and Z) superfluous; hence the geometric description can be purely
intrinsic.
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Figure 5.1 Gaussian coordinates (θ ,φ)
and (ρ,φ) for the curved surface of a
2-sphere. The dashed line is the prime
meridian. Entirely equivalent to the
(θ ,φ) system are the coordinates (r,φ)
with the radial coordinate r =Rθ meas-
ured from the north pole on the surface
of the sphere (N.B., not from the center
of the sphere).

For the space of a 2-sphere of radius R, described extrinsically by (5.1) and
illustrated in Fig. 5.1, using a 3D Euclidean embedding space, we provide two
examples of Gaussian coordinate systems:

1. The polar coordinate system: To set up a Gaussian coordinate system
(x1, x2) = (θ ,φ) to label points in this 2D surface, first pick a point on the
surface (the north pole) and a longitudinal great circle through the pole
(the prime meridian). The radial coordinate r of a point is the arclength
between the point and the north pole. Instead of r, one can equivalently
use the coordinate θ = r/R (the polar angle2 2 It may be helpful to visualize the co-

ordinate θ of a point as the angle formed
(at the center of the sphere in the embed-
ding space) between the polar (z) axis and
the radial (R) axis as displayed in Fig. 5.1.
Of course, the entire point of the intrin-
sic description is to discard the embedding
space. The surface itself has no center.
When we extend this method to higher
dimensions or pseudo-Euclidean spaces,
such mental/visual crutches will serve less
well in any case.

or colatitude). The azimuthal
angle φ (i.e., the longitude) is measured against the prime meridian. The
coordinate domains are 0 ≤ θ ≤ π and 0 ≤ φ < 2π . In this case, (5.2) is
specified by

X = R sin θ cosφ, Y = R sin θ sinφ, Z = R cos θ . (5.3)

One may easily verify that this parametrization and the following one, (5.4)
are consistent with the extrinsic description, (5.1).

2. The cylindrical coordinate system: We can choose another set of Gaussian
coordinates to label points in the 2D surface by defining a different radial
coordinate ρ = R sin θ , with a domain 0 ≤ ρ ≤ R. Thus (x1, x2) = (ρ,φ),
so that (5.2) is specified by3 3 If the spherical surface is embedded in

a 3D Euclidean space, ρ is interpreted as
the perpendicular distance to the Z axis as
shown in Fig. 5.1. Perhaps the term cylin-
drical coordinates becomes more under-
standable if, instead of ρ, we use Z directly:
(x1, x2) = (Z,φ), where ρ2 = R2 – Z2.
While Z = R cos θ , with a domain of –R �
Z � R, covers all latitudes, ρ covers only
half of the sphere.

X = ρ cosφ, Y = ρ sinφ, Z = ±
√
R2 – ρ2. (5.4)

From now on, we will no longer use extrinsic coordinates such as (X ,Y ,Z).
By coordinates, we shall always mean Gaussian coordinates such as (x1, x2) that
label points on a 2D space. Since one can choose from any number of coor-
dinate systems, and geometric relations should be independent of such choices,
a proper formulation of geometry must be invariant under general coordinate
transformations.
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Exercise 5.1 Coordinate choice

Clearly the ideal choice of coordinate system often depends on the task at hand. Consider the calculation in the space of a 2D
plane of the circumference of a circle of radius R (2πR of course). It is easy in polar coordinates (r, θ), but rather complicated
in Cartesian coordinates (x, y). Carry out the calculations in both coordinate systems.

It must be emphasized that the coordinates {xa} generally do not form a vector
space (elements of which can be added and multiplied by scalars, etc.). They are
labels of points in the curved space and are devoid of any physical significance
in their own right. Cartesian coordinates in flat space are the exception. We learn
in our first physics course that the displacement between two distant points is
a vector. Indeed, we have already applied rotation and boost transformations to
coordinate displacements. We cannot do this in curved spaces! However, we may
treat infinitesimal displacements as vectors, because they reside in a flat space, as
we will discuss in the context of the flatness theorem (Section 5.1.3).

The metric tensor

The basic idea of Riemannian geometry is that the geometry (angles, lengths,
and shapes) of a space can be described by length measurements. To illustrate
this for the case of a 2D spherical surface (of radius R), one first sets up a Gauss-
ian coordinate system (e.g., polar or cylindrical coordinates) to label points on
the globe, then measures the infinitesimal distances between neighboring points
(Fig. 5.2). These length measurements are summarized in an entity called the
metric gab (whose indices range over the coordinates). It relates length measure-
ments to differentials in the chosen Gaussian coordinates at any given point in the
space by (3.19), which may be written as a matrix product:

Longitudinal
distances dsθ

Latitudinal
distances dsφ

Figure 5.2 Using distance measure-
ments along links of constant longitude
(dsθ ) and latitude (dsφ) to specify the
shape of the spherical surface.
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ds2 = gab dxa dxb (5.5)

=
(
dx1 dx2

)(g11 g12
g21 g22

)(
dx1

dx2

)

= g11(dx1)2 + 2g12 dx1 dx2 + g22(dx2)2.

Note that the metric is always a symmetric matrix (g12 = g21), because dxa dxb =
dxb dxa. Also recall that the metric is directly related to the basis vectors of the
space: gab = ea ·eb, cf. (3.8). ds2 is formally interpreted as the infinitesimal squared
length.4 4 Equation (5.5) is understood to mean

ds2 =
∑

a,b gab dx
a dxb; i.e., the Einstein

summation convention has been em-
ployed. For Cartesian coordinates in a
Euclidean space, it is simply the Pythag-
orean theorem, ds2 = dx2 + dy2 + · · · . Re-
call the result worked out in Exercise 3.1
that a contraction between symmetric and
antisymmetric tensors vanishes. Thus, if
the metric had an antisymmetric part
g Aab = –g Aba, it would not contribute to the
length, because g Aab dx

a dxb = 0.

The metric is an intrinsic geometric quantity Once the coordinate system
has been chosen, the elements of the metric at a point x = (x1, x2) can then be
determined by infinitesimal distance measurements between x and nearby points.
If we choose to measure the length ds1 along the dx1 direction (i.e., dx2 = 0),
then (5.5) reduces to (ds1)2 = g11(dx1)2. Similarly, (ds2)2 = g22(dx2)2. Let the
measured length between x and the nearby point (x1 + dx1, x2 + dx2) be ds12. In
this way, without invoking any extrinsic embedding space, the metric elements
(g11, g22, g12) at x can all be expressed in terms of measured lengths (ds1, ds2, ds12)
and coordinate differentials (dx1, dx2):

g11 =
ds12

(dx1)2
, g22 =

ds22

(dx2)2
,

g12 =
ds212 – ds

2
1 – ds

2
2

2 dx1 dx2
= –

ds1 ds2 cosα
dx1 dx2

. (5.6)

To reach the last equality, we have used the law of cosines ds212 = ds21 + ds22 –
2 ds1 ds2 cosα, where α is the angle subtended by the axes. We expect that the
off-diagonal metric elements should describe the deviation of the basis vectors
from orthogonality (g12 ≡ ê1 · ê2 ∼ cosα); thus, if the coordinates are orthogonal
(α = π/2), the metric matrix must be diagonal (g12 = 0). We emphasize again
that the coordinates {xa} themselves do not measure distance. Only through the
metric as in (5.5) are they connected to distance measurements.

As we have already noted prior to this subsection, because an infinitesimally
small area on a curved surface can be treated as a flat plane (per the flat-
ness theorem), flat-space geometric relations such as the law of cosines and the
Pythagorean theorem apply.

Themetrics for a 2-sphere Here we will work out a concrete example by writ-
ing down the metric for a 2-sphere in the polar coordinate system. One finds that
the latitudinal distances dsφ = R sin θ dφ (subtended by some fixed dφ between
two points having the same radial distance/latitude, dsθ = 0) become ever smaller
as one approaches the poles (θ → 0,π). Meanwhile, the longitudinal distances
dsθ (subtended by dθ between two points having the same longitude dφ = 0)
have the same value, dsθ = Rdθ , over the whole range of θ and φ. (See Fig. 5.2.)
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Such distance measurements completely describe this spherical surface. These
distance measurements can be compactly expressed in terms of the metric ten-
sor elements. Because we have chosen orthogonal coordinates, gθφ = eθ · eφ = 0,
the infinitesimal length between two nearby points with coordinate displacement
(dθ , dφ) can be expressed using the Pythagorean theorem as

[ds2](θ ,φ) = (dsθ )2 + (dsφ)2

= R2 dθ2 + R2 sin2 θ dφ2. (5.7)

Matching terms of (5.7) and (5.5) yields the metric tensor for this (θ ,φ)
coordinate system:

g(θ ,φ)ab = R2

(
1 0
0 sin2 θ

)
. (5.8)

Exercise 5.2 Cylindrical coordinate metric

Find the metric tensor for the cylindrical coordinates (ρ,φ) on a 2-sphere.

Suggestion: From Fig. 5.1, note that the radial coordinate is related to the polar
angle by ρ = R sin θ ; then show that

g(ρ,φ)ab =

(
R2/(R2 – ρ2) 0

0 ρ2

)
. (5.9)

Coordinate transformation in a curved space

A key difference between curved and flat spaces is that curved space must nec-
essarily have position-dependent coordinate bases, while a flat space can have
constant (Cartesian) coordinates. As a consequence, the metric and coordinate
transformation matrices are position-dependent in any curved space.55 The contrast between flat and curved

spaces will also be discussed in Section 6.1,
as well as in the introductory paragraph of
Chapter 11. For examples of a transforma-
tion as a matrix of partial derivatives, see
Exercise 2.4 and Box 5.2.

Because a flat space can still have curvilinear coordinates (such as polar coor-
dinates), the main features of coordinate transformation can be illustrated in a flat
space with a curvilinear coordinate system. Take the simplest case of a 2D plane.
Consider the transformation from Cartesian coordinates {xa} = (x, y) to polar
coordinates {xa}→ {x′a} = (r, θ). A coordinate transformation can in general be
written as a matrix of partial derivatives:

dxa = [�]abdx
′b with [�]ab =

∂xa

∂x′b
; (5.10)

this expression follows from an application of the chain rule of differentiation. In
this 2D example, taking derivatives of the relations x = r cos θ and y = r sin θ
leads to
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dx
dy

)
=

(
cos θ –r sin θ
sin θ r cos θ

)(
dr
dθ

)
. (5.11)

The elements of the transformation matrix are derivatives, for example,

[�]11 = cos θ =
∂x
∂r

=
∂x1

∂x′1
and [�]12 =

∂x1

∂x′2
. (5.12)

We note that, unlike the rotation matrix (1.5) or the Lorentz transformation
(2.12), the transformation matrix elements [�]ab are position-dependent—here
they depend on {x′a} = (r, θ).

Exercise 5.3 Transformation in curved space

Find the coordinate transformation matrix [�] (showing its coordinate dependence)
that changes the polar coordinates (θ ,φ) to the cylindrical coordinates (ρ,φ) on a
2-sphere:

(
dρ
dφ

)
= [�]

(
dθ
dφ

)
. (5.13)

5.1.2 The geodesic equation

As previously stated, in Riemannian geometry, the spatial geometry is determined
by (infinitesimal) length measurements, which are codified in the metric tensor.
Namely, once the (Gaussian) coordinate system has been chosen, the metric ele-
ments gab(x) relate the coordinate differentials to the measured lengths at all x. In
this way, the geometry of the space can be determined from the metric.6 6 A note of caution: while the metric de-

termines the geometry, geometry may not
fix the metric. For example, a metric with
constant elements describes a space with
zero curvature, but a space with no curva-
ture does not necessarily imply a constant
metric. More specifically, a flat plane can
be described by polar coordinates, whose
metric is position-dependent.

Here we
shall work out such an example: how to find, from the metric, the equation that
describes the shortest curve between two fixed points in a space.

Any curve in a space can be written in the form7

7 Namely, as the parameter τ varies
(τ1, τ2, τ3, . . .), one obtains a contin-
uous set of coordinates xa(τ1), xa(τ2),
xa(τ3), . . . . An example of such a para-
metric description of a curve would be the
trajectory of a particle parameterized by its
time.

xa(τ), where τ is some pa-
rameter (which might be, but need not be, proper time) having some range, for
example [τi , τf ]. We are interested in finding, for a given space, the shortest curve,
called the geodesic, that connects initial xa(τi) and final xa(τf ) positions. (A dis-
cussion of the geodesic as a straight line can be found in Box 5.2.) The squared
length (invariant interval) ds2 of an infinitesimal segment of any curve is given
by (5.5). We integrate ds =

√
|ds2| (the length of a spacelike segment or the

proper time of a timelike one) along this curve, changing to Greek indices as is
conventional for 4D spacetime (also denoting ẋμ = dxμ/dτ):

s =
∫
ds =

∫ √
|gμνdxμdxν| =

∫
L(x, ẋ) dτ , (5.14)
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where

L(x, ẋ) =
√
|gμν ẋμẋν|. (5.15)

To determine the shortest line in the curved space, we impose the extremization
condition88 In contrast to the extremization of a

function f (x), in which a single variable x is
varied resulting in the condition df /dx=0,
here one varies an entire function x(τ)
(all possible curves running from x(τi) to
x(τf )), resulting in the condition (5.16),
which yields the Euler–Lagrange equation
(5.17).

for variation of the path with endpoints fixed:

δs = δ
∫
L(x, ẋ) dτ = 0, (5.16)

which the calculus of variations can translate (cf. Box 5.1) into a partial
differential equation—the Euler–Lagrange equation:

d
dτ

∂L
∂ ẋμ

–
∂L
∂xμ

= 0. (5.17)

Box 5.1 Euler–Lagrange equation from action extremization

In physics, one often uses the calculus of variations to formulate equa-
tions of motion and field equations from the least-action principle. Namely,
these equations are derived as the Euler–Lagrange equations from the
extremization of some action integral:

S =
∫ τ2

τ1

L(x, ẋ)dτ . (5.18)

The integrand, called the Lagrangian, is the difference between the kinetic
energy and the potential energy for a classical system parameterized by time:

L(x, ẋ) = T(ẋ) – V (x). (5.19)

The principle of least action states that the action is extremal with respect
to the variation of the trajectory xμ(τ) with its endpoints fixed at initial and
final positions xμ(τ1) and xμ(τ2). This extremization requirement can be
translated into a partial differential equation as follows. The variation of the
Lagrangian is

δL(x, ẋ) =
∂L
∂xμ

δxμ +
∂L
∂ ẋν

δẋν . (5.20)

Thus the condition for extremization9
9 Extremization means minimization or

maximization. This allows us to avoid the
square roots and absolute values in (5.14)
and (5.15) by integrating ds2 (rather ds)
as our action, cf. (5.23). For timelike
curves such as the trajectories of a parti-
cle with mass, the action is negative and
maximized (least negative) by the geodesic
path. Taylor and Wheeler (2000) gave it
the evocative name “the principle of ex-
tremal aging.”

of the action integral becomes

0 = δS = δ
∫ τ2

τ1

L(x, ẋ) dτ =
∫ τ2

τ1

(
∂L
∂xμ

δxμ +
∂L
∂ ẋν

d
dτ
δxν

)
dτ

=
∫ τ2

τ1

(
∂L
∂xμ

–
d
dτ

∂L
∂ ẋμ

)
δxμ dτ . (5.21)
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To reach the last expression, we have performed an integration by parts on
the second term:∫ τ2

τ1

∂L
∂ ẋν

d(δxν) =
[
∂L
∂ ẋν

δxν(τ)
]τ2
τ1

–
∫ τ2

τ1

(δxν) d
(
∂L
∂ ẋν

)
. (5.22)

The first term on the right-hand side can be discarded, because the endpoint
positions are fixed: δxν(τ1) = δxν(τ2) = 0. Since δS must vanish for arbitrary
variations δxμ(τ), the expression in parentheses on the right-hand side of
(5.21) must also vanish. The result is the Euler–Lagrange equation (5.17).
For the simplest case of L = 1

2mẋ
2 – V (x), the Euler–Lagrange equation is

just the familiar F = ma equation, as it yields mẍ + ∇V = 0.

The geodesic determined by the Euler–Lagrange equation As a math-
ematical exercise, one can show that the same Euler–Lagrange equation (5.17)
following from (5.15) follows as well from a Lagrangian of the form

L(x, ẋ) = gμν ẋμẋν , (5.23)

which, without the square root, is much easier to work with. With L in this form,
the derivatives in (5.17) become

∂L
∂ ẋμ

= 2gμν ẋν ,
∂L
∂xμ

=
∂gλρ
∂xμ

ẋλẋρ , (5.24)

where we have used the fact that the metric function gμν depends on xμ but
not on ẋμ. Substituting these relations back into (5.17), we obtain the geodesic
equation,

d
dτ

(gμν ẋν) –
1
2
∂gλρ
∂xμ

ẋλẋρ = 0, (5.25)

which determines the geodesic, the curve that extremizes the invariant interval
(the spatial path of the shortest length or the timelike trajectory of maximal proper
time) between two points.

Exercise 5.4 Geodesics on simple surfaces

Use the geodesic equation (5.25) to confirm the familiar results that the geodesic is (a) a straight line on a flat plane and (b) a
great circle on a spherical surface.

Suggestion: For case (b), working out the full parametrization can be complicated; just check that the great circle given by
φ = constant and θ = α + βτ solves the relevant geodesic equation.
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Casting the geodesic equation into standard form We can rewrite (5.25)
in a more symmetric form. Differentiating the first term and noting that
the metric’s dependence on the curve parameter τ is entirely through xμ(τ),
we have

gμν
d2xν

dτ 2
+
∂gμρ
∂xλ

dxλ

dτ
dxρ

dτ
–
1
2
∂gλρ
∂xμ

dxλ

dτ
dxρ

dτ
= 0. (5.26)

In the second term, we have relabeled the dummy index ν → ρ; also, its coefficient
can be decomposed into a symmetric (with respect to the exchange of λ and ρ
indices) and an antisymmetric term:

∂gμρ
∂xλ

=
1
2

(
∂gμρ
∂xλ

+
∂gμλ
∂xρ

)
+

1
2

(
∂gμρ
∂xλ

–
∂gμλ
∂xρ

)
. (5.27)

Since the product (dxλ/dτ)(dxρ/dτ) in the second term on the left-hand side
of (5.26) is symmetric, the antisymmetric part will not survive their contraction
(cf. Exercise 3.1). In this way, the geodesic equation (5.25) becomes

gμν
d2xν

dτ 2
+

1
2

(
∂gμρ
∂xλ

+
∂gμλ
∂xρ

–
∂gλρ
∂xμ

)
dxλ

dτ
dxρ

dτ
= 0. (5.28)

We can remove the first metric gμν factor by contracting the whole equation with
the inverse metric gμσ . In this way, the geodesic equation can now be written in
its standard form,

d2xσ

dτ 2
+ �σλρ

dxλ

dτ
dxρ

dτ
= 0, (5.29)

where

�σλρ =
1
2
gσμ

(
∂gμρ
∂xλ

+
∂gμλ
∂xρ

–
∂gλρ
∂xμ

)
. (5.30)

The set �μλρ defined by this particular combination of the first derivatives of
the metric tensor are called the Christoffel symbols (also known as the affine or
connection coefficients). Recall that the metric is directly related to the coordinate
bases, gμν = eμ ·eν , as in (3.8). �μνλ are nonvanishing because the bases, and hence
the metric, are position-dependent. They are called symbols, because, despite
their appearance with indices, �μνλ are not tensor elements.1010 As we shall demonstrate in Chap-

ter 11, in particular (11.84), the geodesic
equation (5.29) is a proper tensor equa-
tion, even though �μλρ and the first deriv-
ative term have extra terms in their trans-
formation. But these extra terms mutually
cancel.

Namely, they do not
transform as tensor components under a coordinate transformation, cf. (3.27).
Clearly, (5.29) is applicable for all higher-dimensional spaces (just by varying
the range of the indices). Of particular relevance to us, this geodesic equation
for 4D spacetime turns out to be the equation of motion in the GR theory of
gravitation.
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Box 5.2 Geodesic as a straight line

In the above, we have introduced the geodesic as the shortest line between two fixed endpoints in a curved space
by a variational calculation. Here we will provide another view of (5.29) as the equation describing a straight line in
coordinate systems with position-dependent bases.

A curved space must necessarily have position-dependent coordinates. In a flat space, it is possible to have constant
coordinate bases (Cartesian coordinates), but we can still have curvilinear coordinates such as polar coordinates. Thus
this second interpretation of the geodesic equation can be illustrated by the case of a straight line in a flat 2D plane.
In the Cartesian system {xa}= (x, y), a straight line is the curve xa(τ) with the tangent (dxa/dτ) unchanged along the
curve (see, e.g., Fig. 11.2a):

d2xa

dτ 2
= 0. (5.31)

We now transform this equation to another system such as polar coordinates {x′a} = (r, θ). The coordinate derivatives
(with respect to the curve parameter) transform in the same way as the coordinate differentials of (5.10):

dxa

dτ
=
∂xa

∂x′b
dx′b

dτ
. (5.32)

In this way, the left-hand side of (5.31) can be written as

d
dτ

(
dxa

dτ

)
=

d
dτ

(
∂xa

∂x′b
dx′b

dτ

)
=
∂xa

∂x′b
d2x′b

dτ 2
+
d
dτ

(
∂xa

∂x′b

)
dx′b

dτ
. (5.33)

The last term contains

d
dτ

(
∂xa

∂x′b

)
=

∂2xa

∂x′b∂x′c
dx′c

dτ
(5.34)

with the first factor on the right-hand side being the position derivatives of the transformation matrix,

∂2xa

∂x′b∂x′c
=

∂

∂x′b

(
∂xa

∂x′c

)
, (5.35)

which are nonvanishing because the transformation is position-dependent when the bases are position-dependent.
The straight-line equation thus takes the form

∂xa

∂x′b
d2x′b

dτ 2
+

∂2xa

∂x′b∂x′c
dx′b

dτ
dx′c

dτ
= 0. (5.36)

In order to compare this straight-line equation with the geodesic equation (5.29), we multiply it by the inverse
coordinate transformation ∂x′b/∂xc, with the property (∂x′b/∂xc)(∂xa/∂x′b) = δac . After relabeling some indices, we can
write (5.36) as

d2x′a

dτ 2
+
[
∂x′a

∂xd
∂2xd

∂x′b∂x′c

]
dx′b

dτ
dx′c

dτ
= 0. (5.37)

continued
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Box 5.2 continued

This is the geodesic equation (5.29) when we identify the square bracket as the Christoffel symbols (5.30): [. . .] = �abc.
We will not work out their explicit correspondence, but only remark that both expressions are related to the moving
bases—in �abc, we have the derivatives of the metric, and in [. . .], we have derivatives of the coordinate transformation.
Although our discussion has been carried out in a flat space, the key ingredient is the position dependence of the
coordinates. This property is a necessary feature of a curved space, while it is optional in a flat space. Thus this
demonstration that the geodesic equation (5.29) describes a straight line is also valid in a curved space. The proper
proof, involving the concepts of covariant differentiation and parallel transport, will be presented in Section 11.1.

5.1.3 Local Euclidean frames and the flatness
theorem

A different choice of coordinates leads to a different metric, which is generally
position-dependent. What distinguishes a flat space from a curved one is that for
a flat space it is possible to find a coordinate system for which the metric is a
constant, like Cartesian coordinates in Euclidean space with [g] = [1] or in the
Minkowski space of SR with [g] = diag(–1, 1, 1, 1) ≡ [η].

While it is clear that flat and curved spaces are different geometric entities,
they are closely related. We are familiar from our experience with curved surfaces
that any curved space can be approximated locally by a flat plane. This is the
content of the flatness theorem.

In a curved spacetime with a general coordinate system xμ and a metric value
gμν at a given point P, it is always possible to find a coordinate transformation
xμ→ x̄μ and gμν→ ḡμν such that the metric is flat at P (which can be taken
to be the origin of the transformed coordinates, P→ 0), with ḡμν = ημν and
∂ ḡμν/∂ x̄λ =0; thus

ḡμν(x̄) = ημν + γμνλρ(0)x̄λx̄ρ + · · · . (5.38)

Namely, the metric in the neighborhood of the origin (P) will differ from ημν only
by the second- and higher-order derivatives. This is simply a Taylor series ex-
pansion of the metric at the origin; there is the constant ḡμν(0) plus second-order
derivative terms γμνλρ(0)x̄λx̄ρ . That ḡμν(0) = ημν should not be a surprise. For
a metric value at one point, it is always possible to find an orthogonal system
so that ḡμν(0) = 0 for μ �= ν. The diagonal elements can be scaled to unity so
that the new coordinate bases all have unit length. Thus the metric is an identity
matrix or whatever is the correct orthogonal flat metric with the appropriate
signature. The nontrivial content of (5.38) is the absence of the first derivative.

In short, only in a flat manifold is it possible to have a constant metric for the
entire space. However, in a curved space, it is still possible to have local Euclidean
frames {x̄μ}. The flatness theorem informs us that the general spacetime metric
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gμν(x) is characterized at a point (P) not so much by the value gμν|P , since that
can always be chosen to be its flat-space value, ḡμν|P = ημν , or by its first deriv-
ative, which can always be chosen to vanish, ∂ ḡμν/∂ x̄λ|P = 0, but by the second
derivative of the metric, ∂2ḡμν/∂xλ∂xρ , which characterizes the curved space. It is
related to the curvature of the space, to be discussed in Chapter 6.

5.2 From the equivalence principle
to a metric theory of gravity

How did Einstein get the idea for a geometric theory of gravitation? What does
one mean by a geometric theory?

A geometric physics theory

By a geometric theory or a geometric description of any physical phenomenon, we
mean a theory that attributes the results of physical measurements directly to the
underlying geometry of space and time. This can be illustrated by the description
of a spherical surface (Fig. 5.2) that we discussed earlier in this chapter. The
length measurements on the surface of a globe are different in different directions:
the east/west distances between pairs of points separated by the same azimuthal
angle �φ are smaller for pairs farther from the equator, while the north/south
lengths for a given �θ are all the same. We could, in principle, interpret such
results in two equivalent ways:

1. Without considering that the 2D space is curved, we could say that the
physics (i.e., dynamics) is such that the measuring ruler changes its scale
at different points or when pointing in different directions—much in the
same manner as the Lorentz–FitzGerald length contraction of SR was
originally interpreted.

2. Alternatively, we could use a standard ruler with a fixed scale, and attribute
the varying length measurements to the underlying geometry of a curved
spherical surface per Fig. 5.2. This geometry is expressed mathematically
by a position-dependent metric tensor gab(x) �= δab.

EP physics and a warped spacetime

In Chapter 4, we deduced several physical consequences from the empirical prin-
ciple of gravity–inertia equivalence. In a geometric theory, these gravitational
phenomena are attributed to the underlying curved spacetime, which has a metric
as defined in (5.5):

ds2 = gμν dxμ dxν . (5.39)

For SR, we have the geometry of a flat spacetime with a position-independent
metric gμν = ημν ≡ diag(–1, 1, 1, 1). The study of EP physics led Einstein to
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propose that gravity represents the structure of a curved spacetime, with gμν �=
ημν , and that gravitational phenomena are just the effects of curved spacetime on
a test object. For instance, gravitational time dilation just reflects the bending of
spacetime in the time direction.

Gravitational time dilation due to g00 �= –1 For gravitational time dilation,
instead of working with a complicated scheme of clocks running at different
rates, this physical phenomenon can be interpreted geometrically as showing the
presence of a nontrivial metric. Namely, we can interpret (4.40) in terms of a
nontrivial metric. Recall our discussion relating the metric elements to the de-
fined coordinates and distance measurements, cf. (5.6); the time–time element of
the metric can be fixed by

g00 =
ds20

(dx0)2
, (5.40)

where dx0 = c dt is the coordinate time interval and ds20 = [ds2]dxi=0 is the meas-
ured interval in the time direction. The coordinate time is measured by the clock
at a location far from the source of gravity (� = 0), while ds20 = –c2 dτ 2 is directly
related to the proper time τ(x) measured by stationary clocks located at x. Thus
(5.40) is simply the relation dτ 2 = –g00 dt2, which, by (4.40), implies

g00 = –
(
1 +

�(x)
c2

)2

� –
(
1 +

2�(x)
c2

)
. (5.41)

The metric element g00 deviates from its flat-spacetime value of η00 = –1 because
of the presence of gravity. Thus the geometric interpretation of gravitational time
dilation is that gravity warps spacetime (in this case in the time direction), chang-
ing the spacetime metric element from a constant η00 = –1 to an x-dependent
function g00 (x).

5.2.1 Curved spacetime as gravitational field

We provide further arguments for identifying warped spacetime as the gravita-
tional field. Adopting a geometric interpretation of EP physics, we find that the
resultant spacetime geometry has characteristics of a warped manifold such as
a position-dependent metric and deviations from Euclidean geometric relations.
Moreover, at every location, we can always transform gravity away to obtain a lo-
cally inertial spacetime, just as one can always find a locally flat region in a curved
space (per the flatness theorem).

Position-dependent metric

The metric tensor in a curved space is necessarily position-dependent as in
(5.41). In Einstein’s geometric theory of gravitation, the metric function com-
pletely describes the gravitational field. The metric gμν(x) plays the role of the
relativistic gravitational potential, just as �(x) is the Newtonian gravitational
potential.
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Non-Euclidean relations

In a curved space, Euclidean relations no longer hold. For example, the ratio of
a circle’s circumference to its radius may differ from 2π . The EP also implies
non-Euclidean relations among geometric measurements. We illustrate this with
a simple example. Consider a cylindrical room in high-speed rotation around its
axis. The centripetal acceleration of the reference frame, according to the EP, is
equivalent to a centrifugal gravitational field. (This is one way to produce artificial
gravity.) For such a rotating frame, one finds that, because of SR (longitudinal)
length contraction, the circular circumference of the cylinder is no longer equal
to 2π times the radius, which does not change because the frame’s velocity is
transverse to the radial direction (see Fig. 5.3). Thus Euclidean geometry fails in
the presence of gravity. We reiterate this connection: the rotating frame, accord-
ing to the EP, is a frame with gravity; the rotating frame, according to SR length
contraction, has a relation between its radius and circumference that is not Eu-
clidean. Hence we say that in the presence of gravity the measuring rods map out
a non-Euclidean geometry.

Local flat metric and local inertial frame

In a curved space, a small region can always be described approximately as a flat
space per the flatness theorem, cf. (5.38). Now, if we identify the curvature of our
spacetime as the gravitational field, the corresponding flatness theorem must be
satisfied. Indeed, the EP informs us that gravity can always be transformed away
locally. In the absence of gravity, spacetime is flat. Thus Einstein put forward
this elegant theory that identifies gravity as the structure of spacetime, thereby
incorporating the EP in a fundamental way.

ωt

Figure 5.3 Rotating cylinder with
length contraction in the tangential
direction but not in the radial direction,
resulting in a non-Euclidean relation
between circumference and radius.

Figure 5.4 The convergence of two par-
ticle trajectories can be explained by ei-
ther an attractive force or the underlying
geometry of a spherical surface.

A 2D illustration of geometry as gravity The possibility of using a curved
space to represent a gravitational field can be illustrated with the following exam-
ple involving a 2D curved surface. Two masses on a spherical surface start out at
the equator and move along two longitudinal great circles (which are geodesics, as
shown in Exercise 5.4). As they move along, the distance between them decreases
(Fig. 5.4). We can attribute this convergence to some attractive force between
them or simply to the curvature of space. We will discuss such tidal effects in
more detail in Section 6.2.2.

Example 5.1 Curved spacetime and gravitational redshift

In Chapter 4, we showed that the strong EP implies a gravitational redshift
(in a static gravitational field) of light frequency ω, cf. (4.20),

�ω

ω
= –

��

c2
. (5.42)

continued
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Example 5.1 continued

From this result, we heuristically deduced that in the presence of nonzero
gravitational potential, the metric must deviate from its flat-space value.
Namely, from the gravitational redshift, we deduced a curved spacetime.
Now we shall show the converse: that a curved spacetime implies redshift.
In this chapter, we have seen that Einstein’s theory based on a curved space-
time yields the result (5.41) in the Newtonian limit. This can be stated as a
relation between the proper time τ and the coordinate time t:

dτ =
√
–g00 dt, with g00 = –

(
1 + 2

�

c2

)
. (5.43)

Here we wish to show how the gravitational frequency shift result (5.42)
emerges in this curved-spacetime description. In Fig. 5.5, the two curvy lines
are the lightlike worldlines of two wavefronts emitted at an interval dtem apart.
They curve because the spacetime is warped by gravity. (In flat spacetime,
they would be two straight 45◦ lines.) Because the gravitational field is static
(hence spacetime curvature is time-independent), this dtem time interval be-
tween the two wavefronts is maintained throughout the trip from emission to
reception:

dtem = dtrec. (5.44)

On the other hand, because the frequency is inversely proportional to the
proper time interval ω = 1/dτ , we can use (5.43) and (5.44) to derive the
redshift:

ωrec

ωem
=
dτem
dτrec

=
√
–(g00)em dtem√
–(g00)rec dtrec

=
(
1 + 2(�em/c2)
1 + 2(�rec/c2)

)1/2

= 1 +
�em –�rec

c2
+O

(
�2/c4

)
, (5.45)

Emitter
worldline

Light
worldline

Receiver
worldline

ct

dtrec

dtem

x

Figure 5.5 Worldlines for two light
wavefronts propagating from emitter to
receiver in a static curved spacetime.

which is the claimed result of (5.42):

ωrec – ωem

ωem
= –

�rec –�em

c2
. (5.46)

5.2.2 GR as a field theory of gravitation

Recall that a field-theoretical description of the interaction between a source and
a test particle involves two steps:

Source particle ––→
Field

equation

Field ––→
Equation of
motion

Test particle
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Instead of acting directly on the test particle through some instantaneous action-
at-a-distance force, the source particle creates a field everywhere, which then
acts on the test particle locally. The first step is governed by the field equation,
which, given the source distribution, dictates the field everywhere. In the case of
electromagnetism, this is Maxwell’s equations. In the second step, the equation
of motion determines a test particle’s motion from the field at its location. The
electromagnetic equation of motion follows directly from the Lorentz force law.

Based on his study of EP phenomenology, Einstein made the conceptual leap
(a logical deduction, but a startling leap nevertheless) that curved spacetime is
the gravitational field. A source mass gives rise to a curved spacetime, which in
turn influences the motion of a test mass:

Source ––→
Einstein field
equation

Curved spacetime ––→
Geodesic
equation

Test particle

While spacetime in SR, as in all pre-GR physics, is fixed, it is dynamic in the
general theory of relativity and is determined by the matter/energy distribution.
GR fulfills Einstein’s conviction that “space is not a thing.” Spacetime is merely
an expression of the ever-changing relations among physical processes. Thus
the metric,11 11 It is important to note that the gravi-

tational field is not a scalar, nor is it a four-
component vector, but rather a symmetric
tensor gμν = gνμ with ten independent
components; in contrast, the antisymmet-
ric electromagnetic field tensor Fμν = –Fνμ
has six components.

which describes the geometry, is ever-changing. Furthermore, the
laws of physics should not depend on reference frames. Physics equations should
be tensor equations under general coordinate transformations. This principle of
general covariance is a key feature of GR.

Next we shall study the GR equation of motion, the geodesic equation, which
describes the motion of a test particle in a curved spacetime. The more difficult
topic of the GR field equation, the Einstein equation, is deferred to Chapter 6,
after we have briefly discussed the Riemann curvature tensor.

5.3 Geodesic equation as the GR equation
of motion

In GR, the mass/energy source determines the metric function through the field
equation. Namely, the metric gμν(x) is the solution of the GR field equation. From
gμν(x), one can write down the geodesic equation, which fixes the trajectory of the
test particle. In this approach, gravity is regarded as the structure of spacetime
rather than as a force (which would bring about acceleration through Newton’s
second law). That is, a test body will move freely in such a curved spacetime; it
is natural to expect12 12 The correctness of this heuristic

choice will be justified by a formal der-
ivation of the geodesic equation in Sec-
tion 11.3.1.

it to follow the shortest and straightest possible trajectory,
the geodesic curve. Thus the particle’s coordinate acceleration comes from the
geodesic equation (5.29) rather than Newton’s second law.
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Box 5.3 The geodesic is the worldline of a test particle

It may appear somewhat surprising to hear that a test particle will follow a
“straight line” in the presence of a gravitational field. After all, our experi-
ence is just the opposite: when we throw an object in the earth’s gravitational
field, it follows a parabolic trajectory. Was Einstein saying that the parabolic
trajectory is actually straight? All such paradoxes result from confusing 4D
spacetime with ordinary 3D space. The GR equation of motion tells us that a
test particle will follow a geodesic line in spacetime (whose invariant interval
has a negative part from the time coordinate) rather than a geodesic line in
the 3D space (which minimizes ordinary length). A geodesic in spacetime (a
worldline) generally does not imply a straight trajectory in its spatial subspace.
A simple illustration using a spacetime diagram should make this clear.

Consider an object thrown to a height of 10m over a distance of 10m.
Its spatial trajectory is displayed in Fig. 5.6(a). When we represent the cor-
responding worldline in the spacetime diagram, we must also plot the time
axis ct; see Fig. 5.6(b). The object takes 1.4 s to reach the highest point and
another 1.4 s to come down. But a 2.8 s time interval will be represented by
almost one million kilometers of ct in the spacetime diagram (more than the
round-trip distance to the moon), leading to a very nearly straight worldline
as depicted in Fig. 5.6(c).

The main point here is not so much the straightness of the worldline,
which reflects the practically flat spacetime in the very weak terrestrial grav-
itational field (recall that �⊕/c2 � 10–10). Rather, the point is that one
must not confuse the trajectory in regular 3D space with the geodesic curve
in spacetime.13

13 One can picture the spacetime being
curved by the (gravitational) change of the
time intervals when moving away from the
origin.
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(c)(c)
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Figure 5.6 (a) Particle trajectory in the
(x, y) plane. (b) Particle worldline with
projection onto the (x, y) plane as shown
in (a), plotted with a greatly compressed
time axis. (c) Spacetime diagram with
the time axis restored to its proper scale.

The interval extremized by the geodesic in spacetime is not simply the spa-
tial length (cf. Box 5.3). In fact, the invariant interval of a particle’s worldline
is its proper time. We shall demonstrate that this geodesic equation is the rela-
tivistic generalization of the Newtonian equation of motion (4.9). To do so, we
must define more precisely the sense in which Einstein’s theory is an extension of
Newtonian gravity; it is much more than an extension to higher-speed motion.

5.3.1 The Newtonian limit

To support our claim that the geodesic equation is the GR equation of motion, we
shall now show that the geodesic equation (5.29) does reduce to the Newtonian
equation of motion (4.9) in the Newtonian limit of

a test particle moving with nonrelativistic velocity v
 c,
in a weak and static gravitational field.
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We now take such a limit of the GR equation of motion (5.29):

• Nonrelativistic speed, dxi/dt 
 c: This inequality, dxi 
 c dt, implies that

dxi

dτ

 c

dt
dτ

=
dx0

dτ
. (5.47)

Keeping only the dominant term (dx0/dτ)(dx0/dτ) in the double sum over
indices λ and ρ in the geodesic equation (5.29), we have

d2xμ

dτ 2
+ �μ00

dx0

dτ
dx0

dτ
= 0. (5.48)

• Static field, ∂gμν/∂x0 = 0: Because all time derivatives vanish, the Christoffel
symbols of (5.30) take a simpler form:

�
μ

00 = –
1
2
gμν
∂g00
∂xν

. (5.49)

• Weak field, hμν 
 1: We assume that the metric is not too different from
the flat-spacetime metric ημν = diag(–1, 1, 1, 1):

gμν = ημν + hμν , (5.50)

where hμν(x) is a small correction field. ημν is constant, so ∂gμν/∂xλ =
∂hμν/∂xλ. The Christoffel symbols, being derivatives of the metric, are of
order hμν . To leading order, (5.49) is

�
μ

00 = –
1
2
ημν

∂h00
∂xν

,

which, because ηνμ is diagonal, has (for a static h00) the following compo-
nents:

�0
00 =

1
2
∂h00
∂x0

= 0 and �i00 = –
1
2
∂h00
∂xi

. (5.51)

We can now evaluate (5.48) by using (5.51): the μ = 0 equation leads to

dx0

dτ
= constant, (5.52)

and the three μ = i equations are

d2xi

dτ 2
+ �i00

dx0

dτ
dx0

dτ
=
(
d2xi

c2 dt2
+ �i00

)(
dx0

dτ

)2

= 0, (5.53)
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where we have used the chain rule dxi/dτ = (dxi/dx0)(dx0/dτ) and the con-
dition (5.52) to conclude that d2xi/dτ 2 = (d2xi/dx0 2)(dx0/dτ)2. Equation
(5.53), together with (5.51), implies

d2xi

c2 dt2
–
1
2
∂h00
∂xi

= 0, (5.54)

which can be compared with the Newtonian equation of motion (4.9).
Thus h00 = –2�/c2, and, using the definition (5.50), we recover (5.41),
first obtained heuristically in the previous discussion.

We can indeed regard the metric tensor as the relativistic generalization of the
gravitational potential. The expression (5.50) also provides us with a criterion to
characterize a field as weak:

[
|h00|
 |η00|

] ⇒
[
|�|
c2

 1

]
. (5.55)

Consider the gravitational potential at the earth’s surface. It is equal in magni-
tude to the gravitational acceleration times the earth’s radius, |�⊕| = g × R⊕ =
O(107 m2/s2), or |�⊕|/c2 = O(10–10). Thus any gravitational field less than
ten billion g’s (acting over distances comparable to the earth’s radius) may be
considered weak.

Review questions

1. What is an intrinsic geometric description (vs. an ex-
trinsic description)? Describe the intrinsic geometric
operations that fix the metric elements.

2. What is the relation of the geodesic equation to the
length-extremization condition?

3. What is the fundamental difference between coordi-
nate transformations in a curved space and those in flat
space (e.g., Lorentz transformations in flat Minkowski
space)?

4. What is a local Euclidean frame of reference? What is
the flatness theorem?

5. What does one mean by a “geometric theory of phys-
ics”? Use distance measurements on the surface of a
globe to illustrate your answer.

6. How can the phenomenon of gravitational time di-
lation be described in geometric terms? Use this to

argue that the spacetime metric can be regarded as the
relativistic gravitational potential.

7. Use the simple example of a rotating cylinder to il-
lustrate how EP physics can imply a non-Euclidean
geometric relation.

8. What significant conclusion did Einstein draw from the
analogy between the facts that a curved space is locally
flat and that gravity can be transformed away locally?

9. Give the heuristic argument that the GR equation of
motion is the geodesic equation.

10. What is the Newtonian limit? In this limit, what rela-
tion can one infer between the Newtonian gravitational
potential and a certain metric tensor component of the
spacetime. Use this relation to derive the gravitational
redshift.




