
Black Holes 7
7.1 Schwarzschild black holes 134

7.2 Astrophysical black holes 144

7.3 Black hole thermodynamics
and Hawking radiation 148

Review questions 155

• A black hole forms around an object massive enough and dense enough
to fit within its event horizon, which is a one-way surface through which
particles and light can only traverse inward. Thus an exterior observer
cannot receive any signal sent from inside.

• In this chapter, we mostly study the spherically symmetric, nonrotat-
ing Schwarzschild black hole. The event horizon is a spherical surface
of radius r = r∗ = 2GNM/c2, which is a coordinate singularity of the
Schwarzschild metric. The metric elements g00 and grr change signs when
crossing from the r > r∗ to the r < r∗ region, leading to a role reversal
between space and time.

• The gravitational energy unleashed when a particle falls into a tightly
bound orbit around a black hole can be enormous, more than ten times
that released in a nuclear fusion reaction. This powers some of the most
energetic phenomena observed in the universe.

• GR-based models show that a rotating star of sufficient final mass
(� 3M�) after it burns out cannot support its own weight, inevitably
collapsing into a rotating (Kerr) black hole.

• The physical reality of, and observational evidence for, black holes are
briefly discussed.

• There is a mysterious correspondence between the laws of black hole phys-
ics and the laws of thermodynamics. In particular, the surface gravity at the
event horizon behaves like the temperature of a thermodynamical system;
the horizon area behaves like the entropy.

• This correspondence was greatly strengthened by the discovery of Hawk-
ing radiation. Quantum fluctuations around the event horizon bring about
the thermal emission of particles and light from a black hole. This is al-
lowed because pair-produced particles falling into the black hole can have
negative energy; their partners may thereby escape with positive energy
without violating energy conservation.

In Chapter 6, we began to describe the Schwarzschild geometry of the space-
time outside a spherical source. In particular, we studied the bending of a
light ray by the sun and the precession of the planet Mercury’s perihelion.
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For these solar system applications, gravity is relatively weak (and therefore
GR corrections are small). Here we study the spacetime structure exterior to
any object whose mass is so compressed that its radius is smaller than its
Schwarzschild radius r∗ = 2GNM/c2. Such objects have been given (by John
Wheeler) the evocative name black holes: they are holes because radiation and
matter can fall into them; they are black because nothing, not even light, can es-
cape from them. These structures necessarily involve such strong gravity (i.e.,
such strongly curved spacetime) that the GR framework is indispensable for their
explication.

Even in the context of Newtonian physics, one can consider a gravity so strong
that light cannot escape. In the eighteenth century, JohnMichell (1724–1793) and
(independently) Pierre-Simon Laplace (1749–1827), proposed the possibility of
a “black star” whose ratio of mass to radius was so large that the required es-
cape velocity vesc =

√
2GNM/r = c

√
r∗/r exceeded the light velocity c. Of course,

this speculation was based upon the (from our modern perspective) erroneous
assumption that light carried a gravitational mass. GR interprets this phenom-
enon instead in terms of the causal structure of the spacetime outside a strong
gravitational source.

Black holes manifest the full power and glory of Einstein’s GR. One of its
signature features is the equal treatment of space and time; hence spacetime is the
natural arena for the description of physical phenomena. GR is the classical field
theory of gravitation, in which curved spacetime is the gravitational field. Now, in
the case of black holes, gravity is so strong and the spacetime so warped that the
roles of space and time are interchanged, leading to many counterintuitive results.

7.1 Schwarzschild black holes

Coordinate singularities The Schwarzschild geometry in Schwarzschild co-
ordinates (ct, r, θ ,φ) has the metric

gμν =

⎛
⎜⎜⎜⎜⎜⎜⎝

–
(
1 –

r∗

r

)
(
1 –

r∗

r

)–1
r2

r2 sin2 θ

⎞
⎟⎟⎟⎟⎟⎟⎠ . (7.1)

The metric and its inverse have singularities at r =0 and r = r∗, as well as θ =0
and π . We understand that θ = 0 and π are coordinate singularities associated
with our choice of the spherical coordinate system. They are not physical, do
not show up in physical measurements at θ = 0 and π , and can be removed by
a coordinate transformation. However, the r = 0 singularity is real. This is not
surprising, as the Newtonian gravitational potential (� ∼ 1/r) for a point mass
already has this feature.
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What about the r = r∗ surface? As we shall demonstrate, it is actually a co-
ordinate singularity. We have discussed the Riemann curvature tensor Rμνλρ (see
(6.20) as well as (6.7)), a nonlinear second-derivative function of the metric that
is nontrivial only in a curved spacetime. In the case of Schwarzschild geometry,
the coordinate-independent product1 1 The Ricci scalar is similarly nonsin-

gular, as it is proportional to the trace of
energy-momentum tensor R = –κT as
discussed in Section 6.3.2.

RμνλρRμνλρ = 12r∗2/r6 is only singular at
r = 0. This indicates that the singularity at r = r∗ must be associated with our
choice of the Schwarzschild coordinate system. Namely, it is not physical and can
be transformed away in suitable coordinates, for example, the Kruskal–Szekeres
coordinates (see Section 7.1.2).

The event horizon While physical measurements are not singular at r = r∗,
that does not mean that this surface is not special. It is an event horizon, separating
events that can be viewed from afar from those that cannot (no matter how long
one waits). That is, the r = r∗ surface is the boundary of a region from which it
is impossible to send out any signal. It is a boundary of communication, much
as earth’s horizon is a boundary of our vision. An event horizon is a one-way
barrier: any timelike or null worldline can pass through only inward; particles and
light rays cannot move outward.

7.1.1 Time measurements around a black hole

We shall begin our discussion of the causal structure of an event horizon with a
simple examination of the elapsed time for a particle traveling inward across the
r = r∗ boundary. While the proper time of the crossing particle is perfectly finite,
a faraway observer sees this crossing take an infinite amount of (Schwarzschild
coordinate) time. Thus no signal sent from the horizon’s surface or its interior
can reach such an observer.

The local proper time

We have already mentioned that there is no physical singularity at r = r∗. Here we
will examine the time measured by an observer traveling across the Schwarzschild
surface. The result shows that such a physical measurement is not singular
at r = r∗.

Let τ be the proper time measured on the surface of a collapsing star (or,
alternatively, the time aboard a spaceship traveling radially inward). Recall from
Section 6.4.2 that for a particle (with mass) in the Schwarzschild spacetime, we
can write a generalized energy balance equation (6.88). This equation can be sim-
plified further for the case of a collapsing star or infalling spaceship starting from
rest at r =∞ (so that E =0), following a radial path along some fixed azimuthal
angle φ (i.e., dφ/dτ =0, so the angular momentum l =0):

1
2
ṙ2 –

GNM
r

= 0; (7.2)
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thus

1
c2

(
dr
dτ

)2
=

2GNM
c2r

=
r∗

r
; hence c dτ = ±

√
r
r∗
dr. (7.3)

The plus sign corresponds to an exploding star (or an outward-bound spaceship)
and the minus sign to a collapsing star (or an inward-bound probe). We pick the
minus sign. A straightforward integration yields

τ (r) = τ0 –
2r∗

3c

[( r
r∗
)3/2

–
( r0
r∗
)3/2]

, (7.4)

where τ0 is the time when the probe is at some reference point r0.
Thus the proper time τ(r) is perfectly smooth at the Schwarzschild surface

(see Fig. 7.1). An observer on the surface of the collapsing star would not feel
anything peculiar when the star passed through the Schwarzschild radius. It would
then take a finite amount of proper time to reach the origin, which is a physical
singularity.

Coordinate
time t(r)

time

r
r = r0r = r*r = 0

Proper
τ(r)

Figure 7.1 The contrasting behavior of
proper time τ(r) vs. coordinate time t(r)
at the Schwarzschild surface.

Exercise 7.1 Travel time from the event horizon
to the singular origin

(a) How much proper time�τ (in terms of the Schwarzschild radius r∗) passes for a
probe falling from the event horizon to the r =0 singularity? You may assume that
the probe fell in radially from rest at infinity as in the discussion above. (b) Evaluate
this time interval for the case of a black hole with a mass 3M� as well as the case
of a supermassive black hole with a mass 109M�.

The Schwarzschild coordinate time

While the time measured by an observer traveling across the Schwarzschild sur-
face is perfectly finite, this is not the case for an observer far away from the source.
Recall that the Schwarzschild coordinate t is the time measured by an observer far
away, where the spacetime approaches the flat Minkowski limit. Here we will show
that the Schwarzschild coordinate time blows up as the probe approaches the
r = r∗ surface. To find the coordinate time as a function of the radial coordinate in
the r > r∗ region, we start with the chain rule: dt/dr = (dt/dτ)/(dr/dτ) = ṫ/ṙ. We
already have an expression for ṙ from (7.3), while ṫ, according to (6.82), is directly
related to the conserved particle energy κ, which is fixed to be c because we are
considering a geodesic with zero kinetic energy at infinity, E = m(κ2 – c2)/2 = 0.
In this way, we find dt/dr = ṫ/ṙ = –(1 – r∗/r)–1/c(r∗/r)1/2, so that

c dt = –

√
r
r∗

dr
1 – r∗/r

, (7.5)
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which shows clearly the singularity at r∗. For r � r∗, we can integrate c dt �
–r∗ dr/(r – r∗) to display the logarithmic singularity:

t – t0 � –
r∗

c
ln

r – r∗

r0 – r∗
. (7.6)

It takes an infinite amount of coordinate time to reach r = r∗. The full function
t(r) in the region outside the Schwarzschild surface can be calculated2 2 See, e.g., Problem 8.2 (solved on

p. 387) in (Cheng 2010).
and is

displayed in Fig. 7.1.

Infinite gravitational redshift The above-discussed phenomenon of a distant
observer seeing a collapsing star slow to a standstill can also be interpreted as an
infinite gravitational time dilation. The relation (6.70) between coordinate and
proper time intervals for a stationary observer is given by

dt =
dτ√
–g00

=
dτ√

1 – r∗/r
. (7.7)

Clearly, the coordinate time interval dt will blow up as r approaches r∗. In terms
of wave peaks, this means that an infinite time interval passes between peaks
reaching the faraway receiver. This can be equivalently described as an infi-
nite gravitational redshift. Equation (5.45) showed that the ratio of the received
frequency to the emitted frequency is

ωrec

ωem
=

√
(g00)em
(g00)rec

=

√
1 – r∗/rem
1 – r∗/rrec

=
dτem
dτrec

(7.8)

When rem → r∗, the received frequency ωrec approaches zero, as the time between
received peaks dτrec blows up to infinity. Thus no signal can be transmitted from
the black hole.

7.1.2 Causal structure of the Schwarzschild surface

The phenomenon of infinite gravitational redshift implies the impossibility of
any signal transmission from the r < r∗ region to an outside observer. The
Schwarzschild surface is in fact a one-way barrier: while matter and radiation
can proceed inward across the horizon, no particle, whether massive or massless,
can move outward.

Role change between space and time

To gain a deeper understanding of the Schwarzschild surface as an event horizon,
we need to study the causal structure of the geometry exterior to a spherical
source. One of the key differences between the r> r∗ and r< r∗ regions is that
the roles of space and time are interchanged, because the metric functions g00
and grr exchange signs at r = r∗:
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r > r∗ outside a black hole: g00 < 0, grr > 0 normal metric;

r < r∗ inside a black hole: g00 > 0, grr < 0 flipped metric.
(7.9)

Thus, in the r > r∗ region, we have the familiar result that the t coordinate is
timelike, while the radial r coordinate is spacelike, but inside the Schwarzschild
surface, the time axis is actually spacelike and the radial axis timelike. As we dis-
cussed in the flat-spacetime diagram, Fig. 3.5, the lightcone structure normally
dictates that a timelike or lightlike (ds2 ≤ 0) trajectory inevitably moves in the di-
rection of ever-increasing time. You cannot stand still (much less go back) in time,
but you can move freely in space. However, (7.9) tells us that inside the r = r∗

surface of a black hole, any particle following a timelike or lightlike worldline can-
not rest at a fixed radial position (much less move outward) but must proceed
toward the r = 0 singularity.

Schwarzschild coordinates and their limitation

As we emphasized while discussing the spacetime diagram, the lightcone struc-
ture can clarify the causal structure of spacetime. In this context, the tipping of
lightcones at the event horizon illustrates the above-discussed role reversal of the
Schwarzschild time and space coordinates. For r > r∗, the lightcones open in
the future direction; for r < r∗, they tip toward the singularity at the origin (see
Fig. 7.2). We might also like to depict the mechanism by which the event ho-
rizon acts as a one-way barrier. Unfortunately, we will see that the coordinate
singularity at r = r∗ makes Schwarzschild coordinates unsuitable for such an in-
vestigation. The faraway observer who measures the coordinate time never sees
anything cross the event horizon.

To study lightcones is to study the light geodesics that form them. Recall that
in a flat spacetime the radial (i.e., with fixed θ and φ) lightlike worldlines, corre-
sponding to the solutions of the condition ds2 = –c2 dt2 + dr2 = 0, or c dt = ±dr,
are straight lines of unit slope in the (ct, r) spacetime diagram:

ct = ±r + constant. (7.10)

ct

0 rr*

Figure 7.2 Lightcone behavior in Sch-
warzschild coordinates. The dashed lines
are lightlike paths. Lightcones close up
when they approach the Schwarzschild
surface in the Schwarzschild coordinate
system. Inside the black hole, they tip
over toward the singularity at r = 0.
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The plus sign is for outgoing (r increasing with t) and the minus sign for incoming
light. Timelike worldlines are always contained inside the lightcone; particles with
mass must proceed toward the future, cf. Fig. 3.5.

A radial (dθ = dφ = 0) worldline for a photon in the Schwarzschild
coordinates has a null line-element interval:

0 = ds2 = –
(
1 –

r∗

r

)
c2 dt2 +

(
1 –

r∗

r

)–1

dr2

= –
(
1 –

r∗

r

)(
c dt +

dr
1 – r∗/r

)(
c dt –

dr
1 – r∗/r

)
. (7.11)

We then have3 3 This relation differs from (7.5), be-
cause we are now considering lightlike
worldlines.

c dt = ± dr
1 – r∗/r

, (7.12)

which can be integrated to give

ct = ±(r + r∗ ln |r – r∗| + constant). (7.13)

Outside the event horizon (r> r∗), the plus sign is for the outgoing, and the mi-
nus sign for the infalling, lightlike geodesics. In Fig. 7.2, we have drawn several
representative lightcones. We note that for the region far from the source where
the spacetime becomes flat, the lightcones formed by the null geodesics (7.13) ap-
proach their expected form with sides of unit slope; however, as one moves closer
to the r = r∗ surface, the lightcones close up. Inside the event horizon (r< r∗),
the causal structure changes as discussed above. The lightcones tip over, opening
toward the r =0 singularity rather than toward ever-increasing time.

The fact that the metric becomes singular at r = r∗ means that the Schwarzs-
child coordinates (t, r, θ ,φ) are not convenient for the description of events near
the Schwarzschild surface. One might get the impression from the clammed-up
lightcones in Fig. 7.2 that nothing ever crosses the event horizon. In fact, all it
means is that a distant observer (whose clock keeps the Schwarzschild coordinate
time) never sees it happen. Better-behaved coordinates should better depict such
events.

Better-behaved coordinate systems

We now search for coordinates that can describe the Schwarzschild geometry
without the r = r∗ singularity. In such coordinates, the lightcones should tilt over
smoothly.

We start with the (advanced) Eddington–Finkelstein (EF) coordinates, whose
time coordinate (c dt̄ ) is chosen to equal the distance traveled by an infalling pho-
ton (–dr). Recall from (7.4) that the proper time of a particle falling into a black
hole is smooth for all values of r. Instead of setting up the coordinate system
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using a static observer far from the gravitational source (as in Schwarzschild co-
ordinates), one could describe the Schwarzschild geometry from the viewpoint of
an infalling observer. Mathematically, an even simpler choice is to use an infalling
photon. While a photon cannot measure a proper time, its traveled distance could
serve as a time coordinate: c dt̄ = –dr, which would make the infalling photon’s
worldline look the same as (7.10) for a flat space. This suggests that we replace
the factor [c dt + dr/(1 – r∗/r)] in (7.11) with (c dt̄ + dr). Namely, we introduce
a new coordinate time c dt̄ = c dt + r∗ dr/(r – r∗), so that, in terms of t̄, the light
geodesic condition ds2 = 0 is satisfied (i.e., (7.11) is solved) by the vanishing in
turn of the expressions in the last two parentheses:

c dt̄ = –dr (incoming), (7.14)

c dt̄ =
r + r∗

r – r∗
dr (outgoing/incoming). (7.15)

In the new spacetime diagram with (ct̄, r) axes (Fig. 7.3a), incoming light
follows straight paths of negative unit slope (for which we rigged the time co-
ordinate). Meanwhile, the outgoing lightlike worldlines gradually become steeper

ct
(a)

(b)

Incoming light

Outgoing light

Outgoing light

Incoming light

0 r* r

0 r* r

ct~

Figure 7.3 Lightcones tilt over smoo-
thly in Eddington-Finkelstein spacetime.
(a) A black hole in advanced EF coor-
dinates (t̄, r): all light geodesics inside
the horizon move toward the future r = 0
singularity. (b) Reversing the time coor-
dinate (dt̃ = –dt̄ ) yields a white hole in
retarded EF coordinates (t̃, r): all light
geodesics inside the horizon move away
from the past r = 0 singularity.



Schwarzschild black holes 141

as they approach the r = r∗ event horizon, which itself is a vertical null line, a
lightlike path. Once inside the r< r∗ region, the coefficient in (7.15) becomes
negative, just like that in (7.14). Thus both lightlike geodesics, (7.14) and (7.15),
are incoming; r decreases as t̄ increases. Namely, inside the black hole, all light
cones open inward, so all timelike geodesics head for the r =0 singularity. We
already saw the tipping of lightcones in Schwarzschild coordinates. The improve-
ment in EF coordinates is that the tipping is smooth. The lightcones do not clam
up at the event horizon; some cross over into the black hole. Thus EF coordinates
can credibly describe the event horizon.

A stationary (dr = 0) point on the r = r∗ Schwarzschild surface is the limit
of solutions to (7.15) and therefore traces a null (lightlike) path in spacetime, a
vertical line in Fig. 7.3(a). Thus the stationary event horizon is a null surface in
spacetime, everywhere tangent to inward-pointing lightcones as shown in Fig. 7.4.
This is what makes the event horizon special; this is why it is a one-way barrier.
A timelike worldline passing through any point on such a null surface can only
point inward toward the r = 0 singularity.

N
ul

l s
ur

fa
ce

Figure 7.4 A null surface is an event
horizon. The lightcones of all points on
the null surface are on one side of the
surface. All timelike worldlines (samples
shown as arrowed lines) are contained
inside lightcones and thus can cross the
null surface only in one direction. There-
fore, a null surface is a one-way barrier.

Black hole vs. white hole One may wonder whether the same procedure can
be applied to the last parenthesis in (7.11) to straighten out the outgoing light
geodesics. Indeed, we can define a (retarded) EF time t̃ with c dt̃ = dr for the
outgoing light and c dt̃ = –[(r+ r∗)/(r – r∗)]dr for the incoming/outgoing light. Es-
sentially, we have just reversed the direction of time: dt̃ = –dt̄. Again we see that
the lightcones, depicted in Fig. 7.3(b), tilt over smoothly across the Schwarzschild
surface. But instead of tipping inward as in Fig. 7.3(a), they lean outward away
from the r = 0 singularity. That is, while the Schwarzschild geometry depicted in
the advanced EF coordinates has a future singularity at r =0, the geometry de-
picted in retarded EF coordinates contains a past singularity at r =0. Once again,
the r = r∗ surface is a null surface, a one-way membrane allowing the transmis-
sion of particles and light only in one direction—this time outward. Thus we
now have a white hole (containing the past singularity). While this time-reversed
black hole is a perfectly good solution to Einstein’s equation (which of course is
covariant under time reversal), we have not found such a thing in our physical
universe.

Exercise 7.2 Retarded EF coordinates with past r = 0 singularity

Above, we obtained the advanced EF coordinates (t̄, r) with lightlike geodesics,
(7.14) and (7.15), defining lightcones tilting over smoothly inward toward a fu-
ture r =0 singularity. Obtain likewise the corresponding retarded EF coordinates
(t̃, r). Find the outgoing and incoming light geodesics that bound lightcones tilting
outward away from a past r =0 singularity as in Fig. 7.3(b).
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Metric is singularity-free at r = r∗ in Kruskal–Szekeres coordinates
Above, we separately straightened the light geodesics into worldlines of unit slope.
Advanced EF coordinates straightened the incoming null geodesics, and retarded
EF coordinates the outgoing. One can actually make a coordinate transforma-
tion that straightens both at the same time, i.e., that simplifies both parentheses
in (7.11). But the metric still has the troublesome prefactor (1 – r∗/r). Kruskal
and Szekeres independently found a transformation involving the exponentiation
of the coordinates that eliminates the singularity at r = r∗, leaving only the gen-
uine one at r = 0. As the procedure is somewhat complicated, we shall omit its
presentation.44 For an elementary introduction with

some details worked out, see (Cheng 2010,
Section 8.1.3).

Section 7.1.3 concludes our presentation of the Schwarzschild black hole by
discussing the orbits of particles around such a compact source of gravity.

7.1.3 Binding energy to a black hole
can be extremely large

We are familiar with the fact that thermonuclear fusion, when compared with
chemical reactions, is a very efficient process for releasing the rest energy of a
particle. Here we show that binding a particle to a compact gravity source like a
black hole can be an even more efficient mechanism. The thermonuclear reac-
tions taking place in the sun can be summarized as fusing four protons (hydrogen
nuclei, each with a rest energy of 938MeV) into a helium nucleus (having a rest
energy smaller than the sum of the four proton rest energies) with a released en-
ergy of 27MeV, which represents 27/(4× 938) = 0.7% of the input energy. Here
we discuss the energy that can be released when a particle first falls into stable
orbits around a Schwarzschild black hole before it eventually spirals through the
event horizon.

Recall that the orbit can be determined from the effective 1D energy balance
equation that we studied in the Chapter 6. Equation (6.88) may be written as

1
2
mṙ2 +m�eff = E , (7.16)

Newtonian Φeff

R+ R–

r

ΦeffFigure 7.5 Schwarzschild vs. Newto-
nian effective potential. The solid curve
represents a specific choice of angu-
lar momentum (l0/mc)2� 4.6r∗2. For
higher l, Φeff more closely tracks the
Newtonian potential before falling off
sharply at lower r. In the text it is shown
that for l below l0, (l0/mc)2 = 3r∗2, there
are no maxima or minima; the potential
is monotonic.
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with an effective potential

�eff = –
GNM
r

+
l2

2m2r2
–

r∗l2

2m2r3
. (7.17)

The first term on the right-hand side is clearly the Newtonian gravitational po-
tential, the second term is the rotational kinetic energy (the centrifugal barrier),
and the last term is the new GR contribution. It is a small correction for situations
such as a planet’s motion discussed in Chapter 6, but can be very important when
the radial distance r is comparable to the Schwarzschild radius r∗ as in the case of
an orbit just outside the horizon.

The innermost stable circular orbit We can find the extrema of this
potential by setting ∂�eff/∂r = 0:

r∗c2

2r2
–

l2

m2r3
+

3r∗l2

2m2r4
= 0, (7.18)

or

r2 – 2
(
l
mc

)2 r
r∗

+ 3
(
l
mc

)2
= 0. (7.19)

The solutions R+ and R– specify the locations where �eff has a maximum and a
minimum, respectively (see Fig 7.5):

R± =
1
r∗

(
l
mc

)2 ⎡⎣1∓
√
1 – 3

(
r∗mc
l

)2
⎤
⎦ . (7.20)

We note the important difference between the Schwarzschild �eff and its New-
tonian analog, whose centrifugal barrier always dominates in the small-r region
(l2/r3 →∞ as r → 0). This means that a particle in the Newtonian field cannot
fall into the r = 0 center as long as l �= 0. In the small-r region of the relativis-
tic Schwarzschild geometry, the last (GR correction) term in (7.17) dominates
(–l2/r4 → –∞ as r → 0). When E ≥ m�eff(R+), a particle can plunge into the
gravity center even if l �= 0. For E = m�eff(R–), just as in the Newtonian case,
we have a stable circular orbit with radius R–. This circular radius cannot be ar-
bitrarily small. In order to have an orbit of any kind and not just plunge into the
black hole, a particle must have enough angular momentum to create a sufficient
centrifugal barrier. Equation (7.19) must have a solution, so its determinant in
the square root of (7.20) must be nonnegative. This fixes a minimum angular
momentum l0:

3
(
r∗mc
l0

)2
= 1, or

(
l0
mc

)2
= 3 (r∗)2 , (7.21)
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so that the innermost stable circular orbit (ISCO) has a radius

R0 =
1
r∗

(
l0
mc

)2
= 3r∗. (7.22)

As we reduce the angular momentum to l = l0, the centrifugal barrier peak in �eff

(Fig. 7.5) atR+ falls and the stable orbit trough atR– rises until they meet, forming
a flat point of inflection at R0, the ISCO. For smaller angular momenta (l < l0),
the potential falls monotonically from limr→∞�eff = 0 to limr→0�eff = –∞, so
there are no orbits.55 For a more detailed discussion of �eff,

see (Wald 1984, pp. 139–143).
The plasma in an accretion disc around a black hole settles

into stable orbits, but will lose its orbital angular momentum through turbulent
viscosity (due to magnetohydrodynamic instability) and eventually, owing to the
disappearing centrifugal barrier, spiral into the black hole.

The binding energy of a particle around a black hole To illustrate the
energy of gravitational binding by a Schwarzschild black hole, consider a free
particle that falls toward a black hole and ends up bound in the ISCO. Thus,
according to (7.22) and (7.21), the particle orbits at a radial distance r = R0 = 3r∗

with angular momentum l0 =
√
3r∗mc. According to the energy balance equation

(7.16) with ṙ = 0, we have E = m�eff = –mc2/18. This solution gives the total
energy for the gravitationally bound particle:66 Cf. (6.87) and Sidenote 34 in

Chapter 6.

E (∞)
mc2

=
κ

c
=

√
2E
mc2

+ 1 =

√
8
9
= 0.94. (7.23)

That is, 6% of the rest energy is released—almost ten times larger than the 0.7%
from thermonuclear fusion.77 We should note that the gravitational

binding energy of a particle around a spin-
ning black hole is even greater; it can be as
much as 42% of its rest energy! 7.2 Astrophysical black holes

So far we have concentrated on the Schwarzschild black hole: an idealized, static,
spherically symmetric entity. Is it relevant for any astrophysical phenomena? In
this section, we shall qualitatively answer this question on two fronts: on the
theoretical side we summarize the results of studies of more realistic black hole so-
lutions in GR; on the phenomenological side, we briefly report the present status
of our search for black holes in the universe.

7.2.1 More realistic black holes

First, we present some theoretical results applicable to more realistic black holes.
The Kerr solution of the Einstein equation generalizes the Schwarzschild solution
to rotating sources. Model studies indicate that stellar gravitational collapse can
result in rotating black holes.
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Rotating black holes

Most stars rotate and thus have only axial symmetry. The simplest of such sources
of gravity is characterized not just by its mass M but also by its angular mo-
mentum J. The solution of Einstein’s equation for the spacetime exterior to
such a rotating source was discovered by Roy Kerr (1934–). The Kerr space-
time reduces to the Schwarzschild geometry in the limit of J = 0, but has in
general a considerably more complicated singularity structure. We shall present
only a brief introduction to some of its salient features. The physical singular-
ity is no longer a single point, but a ring perpendicular to the symmetry axis,
with a radius proportional to the angular momentum of the source. Similarly,
the Kerr black hole has an event horizon, a null surface, that is not spherical
but ellipsoidal. While the event horizon of a Schwarzschild black hole coincides
with the surface of infinite redshift, the Kerr horizon surface is enclosed inside
the surface of infinite redshift, which coincides with the stationary limit sur-
face, which we will explain below. As the source rotates, GR predicts that the
spacetime will be dragged along;8 8 This GR frame-dragging prediction

has been tested by the Gravity Probe B ex-
periment. This satellite experiment man-
aged to measure the tiny gyroscopic pre-
cession brought about by earth’s rotation.

see Fig. 7.6. If a particle (or photon) starts
with a vanishing angular momentum l = 0, we would normally expect it to
fall straight toward the center of the gravitational attraction; but with a rotat-
ing inertial frame of reference, such a zero-angular-momentum particle would
still develop an angular velocity. The stationary limit surface is the bound-
ary of a region where the frame dragging is so strong that no particle (not
even light) can be stationary; everything rotates in the same direction as the
source—even if it entered with great angular momentum opposing the source
rotation.

An interesting feature of the rotating black hole is that one can actually extract
energy from it. A physical processes (called the Penrose process) taking place in
the region (called the ergosphere) between the stationary limit surface and the
event horizon null surface can send particles to distant observers that carry away
the rotational energy of the source. Clearly, a rotating black hole can bring about
more complex physical processes than a static Schwarzschild black hole. The
mathematics involved is correspondingly more complicated, so we refer interested
readers to more advanced texts.9 9 See, e.g., (Hobson et al. 2006, Chap-

ter 13) or (Cheng 2010, Section 8.4).

(a) (b)

Figure 7.6 Dragging of the inertial
frame: a counterclockwise-rotating sou-
rce turns (a) some initial spacetime (be-
fore source rotation) into (b) a twisted
geometry (following the source rotation).
Radial geodesics follow those twisted
lines; they are swept along with the
rotation.
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Gravitational collapse into a black hole

Our discussion of black holes has so far assumed a static source, an eternal black
hole that has always existed, with its mass behind its event horizon. Naturally, one
would like to know whether GR could allow the creation, through the gravitational
collapse of more normal matter, of a region of spacetime with these features? Such
an investigation would involve solving the Einstein equation for a nonvanishing
energy/momentum source. The simplest model was the original Schwarzschild
interior solution for a constant energy density; gradually, more realistic equations
of state for the stellar interior were incorporated in such studies. The most influ-
ential investigations were carried out by Robert Oppenheimer (1905–1967) and
his students around 1939. Their research showed analytically that a cold Fermi
gas quickly collapses from a smooth initial distribution to form a black hole with
the properties discussed above. The gravitational attraction causes each mass el-
ement to follow a geodesic trajectory toward the center. As the interior density
increases, ever more exterior space is described by the Schwarzschild metric until
all matter passes through the r = r∗ surface. The exterior then contains an event
horizon, so a black hole is formed.

Nevertheless, the physics community remained skeptical of the reality of black
holes. Their reservations were many. For example, it was questioned whether
the assumption of spherical symmetry was too much of an idealization. How
should one account for realistic complications such as deformation-forming
lumps, shock waves leading to mass ejection, effects of electromagnetic and
gravitational radiation, etc.? However, numerical calculations years later showed
that any multipole distortion to the Schwarzschild metric is quickly shaken off
through gravitational radiation; the source relaxes to the exact Schwarzschild
black hole.

As for stellar rotation, we have already mentioned the Kerr solution found
in 1963. While there does not exist an analytic solution of gravitational collapse
for a rotating source analogous to the one discussed above, numerical calcu-
lations have again demonstrated that even with large distortions, a collection
of matter with nonvanishing angular momentum always collapses into a Kerr
black hole.

The revival of theoretical study of black holes since the 1950s was due
in large part to the leadership of John Wheeler (1911–2008) in the United
States and Yakov Zel’dovich (1914–1987) in the Soviet Union. The final ac-
ceptance by physicists of the GR prediction of black holes as the generic end
product of gravitational collapse was brought about by the proof in the early
1960s of the singularity theorems10

10 This set of theorems show in realistic
situations the inevitability of the formation
of an event horizon, within which always
lies a singularity. by Roger Penrose (1931–). Related to this,

we note also a well-known theorem stating that all black holes can be com-
pletely characterized by their mass, angular momentum, and electric charge.11

11 The GR solution for an electri-
cally charged source, called the Reissner-
Nordström geometry, is thought to be less
phenomenologically relevant.

Their lack of any other features inspired the witty summary “Black holes have
no hair.”
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7.2.2 Black holes in our universe

In Chapter 6, we saw that the GR predictions of bending of light and gravitational
redshift have all been verified within our solar system. Can we likewise confirm
the strong gravity predictions of black holes’ existence?

Black holes are faraway, small, black discs in the sky; it would seem rather
hopeless to ever observe them. But, by accounting for the gravitational effects of
an object on its surroundings (such as gravitational lensing, the orbits of nearby
stars, and the accretion of hot gas), one can estimate the mass of the object. If a
highly compact source has a mass greater than about 3M�, it is a strong candidate
to be a black hole—since no known mechanism can stop such a massive system
from gravitationally collapsing into a black hole.

The Chandrasekhar limit What is the basis of this 3M� limit? In an ordi-
nary star, the gravitational attraction is balanced by the outward pressure from
thermonuclear burning in its interior. When the fuel is spent, what else can pre-
vent gravitational collapse? One possibility is the quantum mechanical repulsive
force due to Pauli exclusion (called the degeneracy pressure or Pauli blocking)
among particles of half-integer spin (fermions). This is the source of stability for
white dwarfs (the fermions being electrons) and neutron stars (the fermions being
neutrons). In 1930, Subrahmanyan Chandrasekhar (1910–1995) used the new
quantum mechanics to show that for stellar masses M > 1.4M�, the electrons’
degeneracy pressure is not strong enough to stop the gravitational contraction.
Thus he was the first one to make the radical suggestion that massive enough
stars would collapse into black holes (decades before such nomenclature was in-
vented). In 1932, James Chadwick (1891–1974) discovered the neutron, and,
soon after, in 1934, Fritz Zwicky (1898–1974) suggested that the remnant of a
supernova explosion, associated with the final stage of gravitational collapse, was
a neutron star. Because of the strong nuclear force, there exists no simple analytic
calculation for the corresponding limit for neutron stars, but numerical estimates
of the neutron degeneracy pressure all point to a value not much more than 3M�.

Black holes in X-ray binaries The majority of stars are members of binary
systems orbiting each other. If a black hole is in a binary system with another
visible star, then, by observing the Kepler motion of the visible companion, one
can obtain some limit on the mass of the invisible companion. If it exceeds 3M�,
it is a black hole candidate. Even better, if the visible star produces significant gas
(as in the case of solar flares), the infall of such gas (called accretion) into the black
hole will produce intense X-rays. A notable example is Cygnus X-1, which is now
generally accepted as a black hole binary system, in which the visible companion
is a supergiant star12 12 The supergiant star, having a radius

of about 20R�, cannot be the source of the
observed X-rays.

of mass Mvis � 30M�, and the invisible compact object,
presumably a black hole, has a mass M ≥ 8M�. Altogether, close to ten such
binary candidate black holes have been identified in our galaxy.
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Supermassive black holes It has also been discovered (again by detecting
the gravitational influence on nearby visible matter) that at the centers of most
galaxies are supermassive black holes, with masses ranging from 106 to 1012M�.
Even though the initial findings were a great surprise, once this discovery had
been made, it was not too difficult to understand why we should expect such su-
permassive centers. The gravitational interaction between stars is such that they
swing-and-fling past each other: one flies off outward while the other falls inward.
Thus we can expect stars and dust to be driven inward toward the galactic core,
producing a supermassive gravitational aggregate. Some of these galactic nuclei
emit huge amounts of X-rays and visible light a thousand times brighter than the
stellar light of a galaxy. This is interpreted as light emitted from gas heated as it
is funnels into the central black hole.1313 When stars pass close enough to a

massive black hole, tidal forces rip them
apart, producing streams of debris that
then swirl around and ultimately get swal-
lowed by the black hole.

Such galactic centers are called AGN (ac-
tive galactic nuclei). The well-known astrophysical objects, quasars (quasi-stellar
objects), are interpreted as AGN in the early stage of galactic evolution. Obser-
vations suggest that an AGN is composed of a massive center surrounded by a
molecular accretion disk. It is thought to be powered by a rotating supermassive
black hole at the core of the disk. Such huge emissions require extremely efficient
mechanisms for releasing the energy associated with the matter surrounding the
black hole. Recall our discussion in Section 7.1.3 of the huge gravitational bind-
ing energy of particles orbiting close to a black hole horizon. Thus, besides the
electromagnetic extraction of rotational energy as alluded to above, an important
vehicle is gravitational binding of accreting matter. The gravitational energy is
converted into radiation when free particles fall into lower-energy centrally bound
states in the formation of the accretion disk around the black hole. From a whole
host of such observations and deductions, we conclude that galactic centers con-
tain objects of tens of millions of solar masses. They must be black holes, because
no other known object could be so massive and so small.

7.3 Black hole thermodynamics
and Hawking radiation

The “no-hair” theorem suggests that black holes, being characterized only by
mass, spin, and charge, are extraordinarily simple entities. One might conclude
that a black hole has vanishing entropy (S =0). This immediately runs into a
contradiction: the process of matter falling into a black hole would then be an
entropy-decreasing process! In the early 1970s, Jacob Bekenstein (1947–) pointed
out that a black hole must have nonvanishing entropy proportional to its ho-
rizon area: S∝A∗. Here we shall restrict ourselves to the simplest case of a
Schwarzschild black hole, whose area is simply proportional toM2:

A∗ = 4πr∗2 = 16πc–4G2
NM

2. (7.24)

As matter falls into a black hole, the horizon area (and hence the entropy) is clearly
ever-increasing, as (M + dM)2>M2 + dM2. The area- and entropy-increasing
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theorem implies that while two black holes can join to make a bigger black hole,
one black hole can never split into two, becauseM2

1 +M
2
2 < (M1 +M2)2.

7.3.1 Laws of black hole mechanics
and thermodynamics

There is in fact a deep analogy between the laws of black hole mechanics and the
laws of thermodynamics. After noting the surface gravity of a black hole,14 14 The surface gravity of a Schwarzs-

child black hole is the limit of the weight
(per unit mass) of a stationary object near
the event horizon, as measured by a distant
observer (perhaps holding the object on a
long massless string). You can see from
(7.25) that it is analogous to the Newto-
nian acceleration at the event horizon.

σ ∗ =
GNM
r∗2

=
c4

4GNM
, (7.25)

we list the four laws of black hole mechanics:

0th law: The surface gravity σ ∗ has the same value everywhere on the event
horizon.

1st law: The change in mass of a black hole is proportional to the surface gravity
times the change in area:

dM =
σ ∗

8πGN
dA∗. (7.26)

2nd law: The surface area of the event horizon of a black hole can only increase,
never decrease.

3rd law: It is impossible to lower the surface gravity to zero through any physical
process.

Exercise 7.3 Change of BH mass is proportional to BH surface
gravity and change of area

Use the definition of BH surface gravity (7.25) and area (7.24) to derive the
mass/area relation shown in (7.26).

These laws of black hole mechanics are closely analogous to the four laws of
thermodynamics:

0th law: The temperature T of a system in thermal equilibrium has the same
value everywhere in the system.

1st law: The change in energy of a system is proportional to its temperature
times the change in entropy: dE = T dS.

2nd law: The entropy of a system can only increase, never decrease.

3rd law: It is impossible to lower the temperature of a system to zero through
any physical process.
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Thus we have the following correspondence between black hole physics and
the laws of thermodynamics:

Black holes Thermodynamics
MassM ⇐⇒ Energy E

Surface gravity at horizon σ ∗ ⇐⇒ Temperature T
Area of event horizon A∗ ⇐⇒ Entropy S

This correspondence, except for that between mass and energy, is apparently
mysterious. A black hole is a piece of spacetime geometry, not a container of gas
and liquid—why should there be such a correspondence to a thermodynamical
system? So far, all one can say is that these two sets of laws appear similar. This
suggests the proportionality of entropy to area (S∝A∗) and temperature to sur-
face gravity (T ∝ σ ∗), but we do not know their proportionality constants. Such
questions were partially answered in 1973 by the discovery of Hawking radiation,
from the application of quantum mechanics to black holes.

7.3.2 Hawking radiation: quantum fluctuation
around the horizon

Here we shall offer some brief comments on the interplay between black holes
and quantum physics. Any detailed discussion of these advanced topics is beyond
the scope of this introductory exposition. Our purpose here is merely to alert the
readers to the existence of a vast body of knowledge on such topics, which are at
the forefront of current research.

The Planck scale GR is a classical macroscopic theory. For a microscopic de-
scription, we would need to combine GR with quantum mechanics into a theory
of quantum gravity. The natural scale for such a quantum description of gravity
is the Planck scale.

Soon after his 1900 discovery of the eponymous Planck’s constant h̄ in fitting
the blackbody spectrum, Max Planck (1857–1947) noted that a self-contained
system of natural units of mass–length–time can be defined by various combina-
tions of Newton’s constant GN (gravity), Planck’s constant h̄ (quantum theory),
and the speed of light c (relativity). When we recall from Newtonian theory that
[GN· (mass)2·(length)–1] has units of [energy], and from relativistic quantum the-
ory that the natural scale of [energy· length] is h̄c, we can obtain the natural mass
scale for quantum gravity, the Planck mass,

MPl =
(
h̄c
GN

)1/2
. (7.27)
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From this, we can immediately deduce the other Planck scales:

Planck energy EPl = MPlc2 =
(
h̄c5

GN

)1/2
= 1.22× 1022 MeV,

Planck length lPl =
h̄c
EPl

=
(
h̄GN

c3

)1/2
= 1.62× 10–35 m,

Planck time tPl =
lPl
c

=
(
h̄GN

c5

)1/2
= 5.39× 10–44 s,

Planck temperature TPl =
EPl

kB
=
(

h̄c5

GNk2B

)1/2
= 1.42× 1032 K,

(7.28)

where we have also used Boltzmann’s constant kB to define a natural tempera-
ture scale. Such extreme scales are utterly beyond the reach of any laboratory
setup. (Recall that the rest energy of a nucleon is about 1GeV and that the high-
est energies probed by the current generation of accelerators are on the order of
104 GeV.) The only natural phenomena that can reach such an extreme scale are
the physical singularities in GR: the endpoints of gravitational collapse hidden in-
side black hole horizons and the origin of the cosmological big bang. It is expected
that quantum gravity will modify such singularity features of GR.

Quantum field theory vs. quantum gravity Quantum field theory (QFT) is
the union of SR with quantum mechanics. Namely, SR describes classical fields
(such as Maxwell’s electromagnetic fields); a quantum description of fields (such
as quantum electrodynamics) is a QFT. The quanta of a field are generally viewed
as particles. For example, the quanta of an electromagnetic field are photons, the
quanta of an electron field are electrons, etc. The central claim of QFT is that the
essence of reality is a set of fields, subject to the rules of quantum mechanics and
SR; all observed phenomena are consequences of the quantum dynamics of these
fields. QFT is the natural language to describe interactions that include the pos-
sibility of particle creation and annihilation allowed by the relativistic energy and
mass relation E = mc2. QFTs of nongravitational interactions need not operate at
the extreme Planck scale. Quantum gravity is the quantum theory of the gravita-
tional field. As in other QFTs, the gravitational field has its quantum particle, the
graviton. Gravitons interact with the energy–momentum 4-tensor as photons in-
teract with the charge-current 4-vector. GR, with its geometric interpretation and
warped spaces, must emerge15 15 There are suggestions that space and

time themselves are emergent concepts
from quantum gravity.

as the macroscopic (low-energy) limit of quan-
tum gravity in the same way that Maxwell’s electromagnetic theory emerges from
quantum electrodynamics. But, as mentioned above, the natural scale of quantum
gravity is the Planck scale; thus, in this context, all observable phenomena may
be macroscopic. Gravity is too weak at our preferred scales to reveal its quantum
nature.
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Hawking radiation

The surprising theoretical discovery by Stephen Hawking (1942–) that a black
hole can radiate (contrary to the general expectation that nothing can escape
from it) was made in the context of a quantum description of particle fields in
a background Schwarzschild geometry. That is, the relevant theoretical frame-
work involves only a partial unification of gravity with quantum theory: while
the fields of photons, electrons, etc., are treated as quantized systems, gravity is
still described by the classical (nonquantum) theory of GR. Thus, the relevant
theoretical framework is quantum field theory in a curved spacetime.

Figure 7.7 Spacetime diagram of
Hawking radiation. The cylinder is the
(2+1)-dimensional worldsheet of the
Schwarzschild horizon, with the time
axis in the vertical direction. Quantum
fluctuation causes particles and antipar-
ticles to pop in and out of the vacuum. If
one of the particles is inside the horizon
and has negative energy, the other one
of the pair can reach infinity with a
positive energy. The black hole thereby
radiates.

The quantum uncertainty principle of energy and time, �E�t � h̄, implies
that processes can temporarily violate energy conservation, provided they do so
for a sufficiently short time interval �t. Such quantum fluctuations turn empty
space into a medium with particle and antiparticle pairs appearing and disap-
pearing. In normal circumstances, such energy-nonconserving processes cannot
survive on a macroscopic timescale. Hence the temporarily created and destroyed
particles are called virtual particles. However, Hawking showed that if such ran-
dom quantum fluctuations take place near the event horizon of a black hole, the
virtual particles can become real because in such a situation energy conservation
can be maintained permanently.

Qualitative explanation Consider the simplest quantum fluctuation: the cre-
ation of a particle–antiparticle pair from the vacuum. If the pair are to persist and
not promptly annihilate back into the vacuum, energy conservation requires that

0 = E(∞) + Ẽ(∞). (7.29)

If both particles could reach r =∞, then E(∞) and Ẽ(∞) would be their energies
measured by observers at infinity. Such energies must be positive, so the equality
(7.29) cannot be satisfied. However, if this quantum fluctuation takes place suffi-
ciently close to the event horizon of a black hole, one particle can be outside (and
eventually travel to r = ∞) and the other particle can be inside16

16 During a fluctuation, one cannot lo-
cate any particle to such precision. If one
insists on a classical picture with exact par-
ticle locations, one can say that after the
particles’ creation, one of them, during
the fluctuation time �t, travels across the
event horizon—or, in quantummechanical
language, one particle tunnels across the
horizon.

the event hori-
zon (and fall into the singularity); see Fig. 7.7. Recall our discussion of the causal
structure of the event horizon. The roles of space and time are interchanged at
the r = r∗ Schwarzschild surface. In the same way, the energy component17

17 Recall that just as time and space
intervals are components of the same vec-
tor (ct, xi), so are energy and momentum
(E/c, pi).

inside
the horizon takes on the properties of momentum; in particular, it is possible for
the energy of a particle to be negative. If Ẽ(∞) is negative, then the conservation
relation (7.29) can be satisfied on a macroscopic timescale. To a distant observer,
the black hole emits a particle with positive energy, while losing a correspond-
ing amount by swallowing its partner with negative energy. This is known as the
Hawking effect or Hawking radiation.

Result obtained from QFT in curved spacetime Any radiation field,
whether quantum or classical, can be decomposed into plane waves. The (Fou-
rier) coefficients of expansion obey the simple harmonic equation. Thus radiation
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can be viewed as a collection of harmonic oscillators.18 18 For a simple discussion, see
(Cheng, 2013, Sections 3.1 and 6.4).

A QFT treats these field
oscillators according to quantummechanics, so their energy spectra have discrete,
evenly spaced levels, states with a particular number of energy quanta (particles).
These quantum states are related by the so-called raising and lowering ladder
operators. Thus QFT provides a natural language to describe the creation and
annihilation of particles. In a curved spacetime, the natural decomposition is still
into plane waves, but they are plane waves with respect to the coordinates that en-
code the curvature. Near the horizon of a Schwarzschild black hole, for example,
the Kruskal–Szekeres coordinates are convenient. The vacuum (i.e., the lowest-
energy state) of such a field system, when viewed by a distant observer in flat
spacetime, is a state containing a distribution of particles. In this way, Hawking
obtained the particle distribution result

| |2 = 〈n〉 = (e2πcE/h̄σ
∗
– 1)–1. (7.30)

This has the form of a thermal number distribution, 〈n〉 = (eE/kBT – 1)–1, with kB
being Boltzmann’s constant. In this way, one can identify the black hole’s surface
gravity σ ∗ of (7.25) as temperature:

kBT =
h̄σ ∗

2πc
=

h̄c3

8πGNM
=

h̄c
4πr∗

. (7.31)

Namely, due to quantum effects in the surrounding space, a black hole of sur-
face gravity σ ∗ should radiate particles as a perfect blackbody of temperature T ,
with (7.31) giving us the desired proportionality constant relating σ ∗ to T . Once
derived, this expression for thermal energy appears reasonable on dimensional
grounds. It is a relativistic quantum effect, hence the presence of h̄c, which has the
dimensions of [energy · length]; the only lengthscale available is the Schwarzschild
radius r∗. Equivalently, this Hawking thermal energy can be expressed in terms of
the natural quantum gravity unit of Planck energy:

kBT
EPl

=
T
TPl

=
lPl

4πr∗
=

MPl

8πM
. (7.32)

In short, Hawking radiation shows that black holes radiate like blackbodies;
smaller and hotter black holes should evaporate completely.

Black hole entropy From the expression for temperature and noting that
E =Mc2, we can immediately deduce the black hole’s entropy through the def-
inition dS = T–1 dE (cf. Exercise 7.4). In this way, we find that the entropy is
indeed proportional to the horizon area A∗ of (7.24):

S
kB

=
A∗

4l2Pl
, (7.33)

where l2Pl is the Planck length squared. This is a shocking result! Entropy is an
extensive variable, so one would expect it to be proportional to the volume, not
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the area, of the system. This result inspired a proposal that in quantum gravity
the description of a volume of space is somehow encoded on its boundary; for
instance, all the information about a black hole is encoded on its event horizon.
Much like Einstein’s proposal of the equivalence principle in GR, this idea has
been elevated to a fundamental principle of quantum gravity: the holographic
principle.1919 The holographic principle was first

proposed by Gerard ’t Hooft (1946–) and
later formulated in the context of string
theory by Leonard Susskind (1940–) and
others. Exercise 7.4 From Hawking temperature to the proportionality

of black hole entropy to area

By a simple integration of dS = T–1 dE, derive the proportionality of black hole
entropy and area shown in (7.33).

Deciphering the meaning of black hole entropy

One of the great achievements of Ludwig Boltzmann (1844–1906) was to show
that the second law of thermodynamics was amenable to precise mathematical
treatment. The macroscopic notion of entropy S could be related to a counting
of the corresponding microscopic states, the complexionsW :

S = kB lnW . (7.34)

What would be the microscopic statistical description of a black hole that cor-
responds to the just-obtained entropy? The traditional approach would suggest
that to do this counting, we need a microscopic theory of quantum gravity. In
fact, black hole entropy would provide a check on the viability of any proposed
quantum gravity theory. Currently, the most developed theory is superstring the-
ory. Indeed, string theorists have been greatly encouraged by some success in
recovering the entropy (7.33) by counting the number of ways a black hole
can be formed in superstring theory. Nevertheless, it is still not a total success;
the black holes being studied can be properly described only as black-hole-
like entities. We are still far from having a realistic quantum description of a
black hole.

Entropic gravity? Some have suggested2020 The reader interested in finding out
more about such an approach may wish
to start with ( Jacobson 1995), (Padman-
abhan 2010), and (Verlinde 2010).

that the entropy result is even more
fundamental, that gravity is an entropic force. Just like the restoring force of a
rubber band, which can be viewed as resulting from entropy maximization, the
gravitational force can be derived (by reverse engineering) from extremizing en-
tropy based on some conjectured principle governing the quantized spacetime.
But this may not be such an interesting approach if one is ultimately interested in
the detailed microscopic description of spacetime that quantum gravity promises
to provide.21

21 As in the case of a rubber band,
we are ultimately more interested in the
atomic/molecular explanation of its con-
tracting force.
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Review questions

1. What does it mean that the Schwarzschild surface at
r = r∗ is only a coordinate singularity?

2. What is the event horizon associated with a black hole?

3. At the r = r∗ surface of a Schwarzschild black hole,
the proper time is finite, while the coordinate time is
infinite. To what time measurements do we refer in
these two descriptions? In terms of light frequency,
what is an alternative (but equivalent) description of
this phenomenon of infinite coordinate time dilation?

4. An event horizon is a null 3-surface. What is a null sur-
face? Why does it allow particles and light to traverse
only in one direction?

5. What is the basic property of the time coordinate in
the advanced EF coordinate system that allows the
lightcone to tip over smoothly inward across the r = r∗

surface? Answer the same question for the retarded
EF system (with outward-tipping lightcones). Such
properties of the coordinates allow their respective
spacetime diagrams to display the black hole and white
hole solutions. What is a white hole?

6. The effective potential for a particle in Schwarzschild
spacetime has the form

Veff = –
A
r
+
Bl2

r2
–
Cl2

r3
(7.35)

with positive coefficients A,B, and C. Use this expres-
sion to explain why, unlike in the Newtonian central
force problem, a particle can spiral into the center even
with nonzero angular momentum l �= 0.

7. Black holes are linked with many of the most energetic
phenomena observed in the cosmos. What is the en-
ergy source associated with a black hole that can power
such phenomena?

8. List three or more astrophysical phenomena that are
thought to be associated with black holes.

9. Explain why one expects that stars with a final mass
> 3M� after they have burnt out must undergo
gravitational collapse into black holes?

10. There is a correspondence between black hole physics
and the laws of thermodynamics. While it is not sur-
prising that black hole mass behaves like energy, what
properties of the black hole behave like temperature
and entropy?

11. Hawking radiation is understood in the context of
quantum mechanics applied to black hole physics. But
we say it only represents a partial union of quantum
theory and GR. Why so?




