Page#	Line/Eq number	Incorrect content/Instruction on how to correct	So that the corrected version reads as
44	(3.54)	$\frac{\text{Insert a minus sign}}{\text{hand side of the } 2^{\text{nd}} \text{ equation}}$	$\frac{\Delta\omega}{\omega} = -\frac{\Delta v}{c}$
112	(6.42)	Insert a minus sign and remove 4π	$\Box A_{\mu} = -\frac{1}{c}j_{\mu}$
143	3 rd and 6 th lines below (7.20)	Change the superscripts in the 3 rd line $l^2/r^3 \rightarrow \infty$ and in the 6 th line $-l^2/r^4 \rightarrow -\infty$	$\frac{l^2/_{r^2} \to \infty}{\text{and } - \frac{l^2}{_{r^3} \to -\infty}}$
163	(8.18)	<u>Change the value</u> $\cong 0.005$	≅ 0.0035
196	3 rd line of 2 nd paragraph (Point 2)	Change the value 300,000	400,000
221	1 st line below (10.11)	<u>Insert 4π in the denominator of r_0 and <u>add parentheses</u></u>	$r_0 = e^2 / (4\pi m_e c^2)$
264	1 st line in #7.6	Insert a slash so that it reads as	$-Cl^2/r^3$
273	Ex6.3(d)	<u>Change the sign</u> in front of $cos2\varphi$ in the 1 st equation	$\frac{d^2 u_1}{d \omega^2} + u_1 - \frac{1 + \cos 2\varphi}{2r^2} = 0$
273	Ex6.3(d)	Insert a minus sign in the inline equation at the end of the line below the above equation	$\frac{d^{2}u_{1}}{d\varphi^{2}} + u_{1} - \frac{1 + \cos 2\varphi}{2r_{min}^{2}} = 0$ $\beta = -\frac{1}{(6r_{min}^{2})}$
273	Ex6.3(d) the last displayed equation	<u>Change sinφ</u> to $cos\varphi$ and <u>change the sign</u> in front of $cos2\varphi$	$\frac{1}{r} = \frac{\cos\varphi}{r_{min}} + \frac{r^*}{r_{min}^2} \frac{3 - \cos 2\varphi}{4}$

Corrections to **Cheng** / A college course on relativity and cosmology