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Low-Energy Theorems for e' Compton Scattering Amplitudes
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The Rockefeller University, frere York, klew York 100Z1
(Received 2 August 1968)

Unitarity and axed-momentum-transfer dispersion relations are used to evaluate the contribution to theJ Compton amplitude from the intermediate state of target plus soft photon. It is found that the leading
term goes like ce' lnce for scattering of photons of low frequency (ce) by either spin-0 or spin-xs targets. The
ee amplitudes up to this order {ce' Ince) are shown to be structure-independent as a consequence of the usual
Compton-scattering low-energy theorems, which have been proven rigorously only in order e'.

I. INTRODUCTIOÃ

&T has been known" for a long time that when the
scattering amplitudes of low-energy photons by

spin-0 and spin- —,
' targets are expanded in a power

series of the photon frequency (co), the entire zeroth-
and erst-order coeScients can be expressed. in terms of
the static properties of the target system: the electric
charge and the magnetic moment of the particle.
Recently these theorems have been further extended,
to scattering involving "charged" photons, 3 also to
parts of the 0(co') amplitude' and to cases of higher-spin
targets. ' The derivations of all these theorems rest on
the crucial assumption that the single-particle inter-
mediate states is separated from the multiparticle
states by a 6nite energy gap. Thus the presence of inter-
mediate states made up of a target particle and soft
photons will invalidate this assumption. Consequently,
while the usual proofs of low-energy theorems are valid
to all orders of strong interactions, their validity
has been demonstrated only to the lowest order in
electromagnetism.

An equivalent way of stating the same problem is to
say that the original power-series expansion in photon
frequencies may not be valid to the desired order of +
in the presence of radiative corrections. Intermediate
states of target particle plus soft photons bring about
the well-known infrared-divergent terms, as well as
6nite terms proportional to cv" inca, in the elastic Comp-
ton scattering amplitude. Clearly the presence of any
terms proportional to co In~ will invalidate the usual
low-energy theorems for the linear-frequency part of
the amplitude.

The physical basis of the infrared divergence has
long been clear and the divergence, as is to be ex-

pected, cancels if one adds the corresponding cross

~ W. Thirring, Phil. Mag. 41, 1193 (1950).
e p. E. Low, Phys. Rev. 96, 1428 (1954); M. Geil-Mann and

M. L. Goldberger, ikid 96, 1433 (1954.).
e M. A. B.Bdg, Phys. Rev. Letters 17, 333 (1966).
e V. Singh, Phys. Rev. Letters 19, 730 {1N7).
5 A. Pais, Phys. Rev. Letters 19, 544 (1967); Nuovo Cimento

53, 433 (1968); see also, K. Bardakci and H. Pagels, Phys. Rev.
166, 1783 (1968).

e It is possible that in certain instances there are more than one
single-particle intermediate states Dor example, the A, Z' states
in the SU(3) limitj. This fact will not affect the validity of the
usual derivations. Here we have assumed, for simplicity, that
there is only one such single-particle state.

section for emission of soft photons in the scattering
process. ~ These divergent terms can be calculated in a
structure-independent way, at least in the erst few
orders of n, by the usual perturbation method. ' They
are always multiplied by an angular factor which
vanished in the forward direction, corresponding to
the physical fact that there will be no radiation by the
charged target particle when it is not accelerated.
Thus we expect that there will be no modi6cation by
infrared Ckserge-nt terms of the low-energy theorems in
the forward direction. As for nonforward amplitudes,
modi6cations by these terms will clearly depend on
the energy resolution of the experimental setup. 9 Since
these features are we11 known, we will concentrate on
the fertite terms that are proportional to co" lnco.

As a erst step, we will investigate the leading contri-
bution to Compton scattering amplitude from the inter-
mediate state of target plus ore soft photon. Our method
will be 6rst to compute the contribution to the absorp-
tive part of the amplitude up to, and including, O(co').
This can be done since the absorptive amplitude in-
volves only an angular integration over a product of
two e' Compton scattering amplitudes of low-energy
photons, each of which can be evaluated up to 0(co) by
the usual low-energy theorems. Phase-space factors are
of 0(co). Fixed tdispersion re-lations are then used to
obtain the dispersive parts. In this way we obtain for
the e4 Compton scattering amplitude with either spin-0

r E Koch and A. Nordsieck, Phys Rev.. 52, 54 (1937).
For a detailed discussion of the infrared-divergence problem

in the context of modern perturbation theory see J. M. Jauch
and F. Rohrlich, The Theory of Photons and Electrons (Addison-
Wesley Publishing Co., Inc. , Reading, Mass. , 1955), Chap. 16.' Possible modi6cations of the Thomson low-energy theorem by
the infrared-divergent terms have been discussed by W. Thirring
PPrinciPtes o/ Qnantnm Electrodynamics (Academic Press Inc. ,
New York, 1958), p. 190j, and by J. D. Bjorken and S. D. Drell
)Relatieistec Qnantnm Fields (McGraw-Hill Book Co., New York,
1N4), p. M3j. With the corresponding soft-photon emission cross
section being included, the Compton scattering differential cross
section has its zero-frequency limit as

Ck» 2n cd—,(ee e') 1+—— (1—cosa) ln )ace/m )m' 321- m
,

co-aO

where itce is the energy resolution of the detector. Qualitatively
we expect that with the Bnite resolution the limit or -+ 0 can at
best, in a real experiment, be taken to mean co-+ Aced. This will
lead to a correction factor (2n/3e. ) (tice/m)'(1 —cosH) ln ) &c/ te, m
which should be a very sma11 number compared to the leading
constant term.
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or spin--, targets:

a (a (~)s 2

~

—
~
(3+cos8) (eo e)——(eo k) (e 'kp)

3w&m km) m'

Xin~+IRD+ terms of 0(&u'), (1.1)

where es (e) and ks (k) are, respectively, the polariza-
tion and momentum vectors of the initial (final) photon,
and cose is the scattering angle in the rest frame of the
target. IRD stands for infrared-divergent terms. We
are unable to compute unambiguously their explicit
form by our dispersion method. According to perturba-
tion calculations,

2&x Q GO

IRD =—— — (1—cos8) inoo;„(es e)
3' nZ nS

+higher-order terms.

The cross product of the e' amplitude in Eq. (1.1) and
the Thomson amplitude, —(n/m)(es e), gives rise to
a leading contribution to the e6 differential cross section,

2nt'n ' cu

do s ——dQ—
~

— —L(cos'8 —3 cos'8 —3 cos8—3) in~
3~&m m

+ (1—cos8) (1+cos'8) incr;„j+0(~') (1.2)

This expression agrees with the low-energy limits of the
exact relativistic results calculated in perturbation
theory by Corinaldesi and Jost for a spin-0 target M

and by Brown and I'"eynman for an electron target. "
With our approach the results (1.1) and (1.2) are proven
to be valid to all orders of strong interactions.

We observe that the e amplitude for a spin-~ target
in Eq. (1.1) does not contain, up to O(co'), any spin-
dependent terms. Indeed it will be shown in Sec. III
that all spin-dependent terms are at least of the order
of oP incr. Thus the usual low-energy theorems are cor-
rect in order e' except in the nonforward directions
where there will be an expected modi6cation by the
infrared-divergent terms. ' We note parenthetically that
Brown and Feynman" are only concerned with spin-
average cross sections. They surmned over electron
spins at the very beginning of their calculation.

Knowing the result for the e4 amplitude and the fact
that there is no infrared divergence in the forward
amplitudes, we go on to consider the possibility that the
usual low-energy theorems for forward Compton ampli-
tudes are exact to all orders of the electromagnetic
coupling. There are only two independent forward
amplitudes (f;) for a spin-s target,

ft(co)(eo e)+ifs(ro)e (esXe). (1.3)

Their absorptive parts (a~) are related, through the
optical theorem, to the total cross sections:

( )=( /& )lL ( )— ( )1, (15)
I F. Corinaldesi and R. Jost, Helv. Phys. Acta 21, 183 {1948).
u L. M. Brown and R. P. Feynman, Phys. Rev. 85, 251 (1952).

where op ls the total cross section for circularly polar-
ized photons with their helicity parallel to the target
spin; 0&, antiparallel. The usual low-energy theorem
states that in the low-frequency limit the leading
terms of these amplitudes are

fr ———e'/m,

fs= 2(os'(e/2m)'

(1.6)

(1.7)

where I(, is the anomalous magnetic moment of the
target particle measured in units of (e/2m). The
theorem for ft in Eq. (1.6) should be correct to all
orders of 0.. On. the other hand, terms that might be
possible, terms proportional to co inca, coming from the
intermediate state of the target plus soft photons,
would spoil the theorem for fs as expressed in Eq. (1.7).
These terms are shown explicitly to be absent to the e4

order. We now argue that they should be absent to all
orders of electromagnetic coupling because the existence
of such terms will be shown to imply physically un-
reasonable features for the total cross sections. We note
that such an ~ in~ term in f& would imply a term pro-
portional to co in the forward absorptive amplitude u2.
It would then imply, through Eq. (1.5), that op and
0.& would have to be different in the sero-frequency
limit. This would be a totally unphysical feature since
cross sections for scattering zero-frequency photons
cannot possibly be dependent on the spin orientation
of the target. Of course there remains the possibility
that there would be other types of terms, besides these
logarithms)" which could invalidate the usual low-

energy theorems. It is our conjecture that all the special
functions involved will reduce to simpIe functions and
logarithms when their arguments take on the non-
relativistic limit. The Spence function is a well-known
example. "Thus it seems plausible, although we have
o6ered a proof only in order e4, that the low-energy
theorem for the forward amplitude Eq. (1.7) is exact
to all orders in electromagnetism.

In Sec. II, we will review brieQy the usual proofs of
low-energy theorems. These procedures are rigorously
valid only in the lowest order of n. Kinematical pre-
liminaries will also be presented in this section. In
Sec. III, the new low-energy theorems for e' Compton
amplitudes will be derived, Grst for spin Q, then for
spin g.

While this work was being completed, I learned that
Dr. Roy and Dr. Singh had obtained similar low-energy
theorems for e' Compton amplitudes via fixed-angle
dispersion relations. "'4

"Terms proportional to a&Dna& j~ with ttt & 1 can be ruled out in
a similar manner. They would imply the total cross sections to be
divergent in the zero-frequency limit.

» S. M. Roy and V. Singh, Phys. Rev. Letters 21, 681 (1968).
I am grateful to Dr. M. A. B. B6g, Dr. A. Pais, and Dr. J.
Pasupathy for calling my attention to this work." tt7ote added iw proof It has been broug. ht to my attention
that L. D. Soloviev PNucl. Phys. 64, 657 (1965)j has investigated
the problem of the low-energy expansion of amplitudes involving
photons to all orders in the electromagnetism.
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G. e~ LOW-ENERGY THEOREMS

We here review briefly the usual proofs of low-energy
theorems. Although there exist a number of diferent
approaches, all of them have the same basic inputs:
Lorentz invariance, gauge invariance, and the "regu-
larity assumption. " The content of the last input will

become clear as we proceed. We shall adopt an approach
that is in substance a manifestly covariant formulation
of the method originally used by Low."

Consider the scattering of photons with initial (final)
four-momentum and polarization ko, eo„(k,ex), respec-
tively, by a target of arbitrary spin with initial (final)
momentum po(p); the tensorial amplitude T„x is re-
lated to the S matrix by

(p, k
I
g—1IPo, k,)= —i(2s-)'8(Po+ko —P—k)

1
eo„exT„x(P,k; Po,ko), (2.1)

(21r) (4cocoo)

where Ep and E are the appropriate normalization
factors for the initial and final states of the target
pa, rticle. T„q is related to the matrix element of the
electromagnetic current J by

kp and k, we get

E„),'= —kp„J."„g',
Bkpp

(2.8a,)

k„E„„.
Bk),

(2.8b)

Treating kp and k as independent variables, we have,
from Eqs. (2.8a) and (2.8b),

E„g'=kp„k p
— E„p'.

Bkpp ~kx

Thus, the existence of the limit

(2.8c)

t9 8—Es p
~kpp, ~kx ~ ko-+p, A, ~p

(the "regularity assumption")" implies that E„x' is of
the order cop meed of the order co. For physical scattering,
cop and co being related through conservation of momen-
tum, E„z' is then of the order oP. The low-energy
theorem is established:

Usi +0 (co ) . (2.9a)

T„x(P,k; Po, ko) = i-
EXp

dg g
—i(Js+ko) x/2

Xe(*)(pII Jx(is*),~, (—s*)jl Po)+ETC (2 2)

Tsx Us)L+ cog+ Esx cpx

—= U„x'+E„x', (2.6)

g„y being nonsingular and such that U„q' is gauge-in-
variant, kp„U„),'=kqU„)'=0. It then follows that the
remaining part also satisfies the conditions

kp„E„),'=0, (2./a)

(2.7b)

Differentiating the above two equations with respect to

"Ke follow closely to the work of R. Jackie, Phys. Rev. $68,
1628 (1968); see, also, Bardakci and Pagels (Ref. 5).

where ETC stands for possible equal-time commutator
factors, including the Schwinger terms. Crossing sym-
metry implies that

T„x(P,k; Poko) = eTx„(P, —ko, Po, —k); (2.3)

e=+1 for the dispersive part, e= —1 for the absorptive
part. Ga,uge invariance requires that

kp„T„),=kgb„),=0.

We separate out from the full amplitude a contribu-
tion corresponding to one made by the single-particle
state Up, y .

Tox=
U ox++sx ~ (2.5)

Write

To the lowest order in e the "regularity assumption" is
clearly correct. Indeed, to this order, all the derivatives
of E„q' with respect to k and kp exist at the zero-fre-
quency limit. On the other hand, since contributions
from intermediate states of target plus photons give
rise to cuts extending to the point (coo ——co= 0) where the
amplitude is being expanded, the "regularity assump-
tion" Lhence the low-energy theorem as stated in
Eq. (2.9a)j is open to question in the presence of
higher-order radiative corrections. Ke shall see, in our
explicit calculation of the e' Compton amplitude, that
the "regularity assumption" as stated here is indeed
not valid to this order (i.e., the double derivative in
question is singular in this limit). Hut, as one of our
main results, the leading contribution due to the inter-
mediate target plus one soft-photon sta, te will be shown
to be proportional to oP incr. Consequently the usual
low-energy theorem, Eq. (2.9a), will only be modified to
read, taking into account the expected infrared di-
vergence, as

T„x=U„x'10(e4oi' inn&)+IRD. (2.9b)

"See, for example, J. S. Bell, Nuovo Cimento 52, 688 (1967).

Thus to obtain the low-energy behavior of e' Compton
scattering amplitude, our principal task will be, ac-
cording to Eq. (2.9a), to compute the gauge-invariant
contribution from the one-particle state. We will work
out the familiar results for the case of spin-0 and spin-~
targets. Our purpose is simply to set up machinery
for the next section, where in writing out the e4

low-energy theorems we need to evaluate the gauge-
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invariant contribution coming from the state of target
plus one soft photon. For convenience we will often
refer to the spin-0 target as a pion and to the spin--',

target as a nucleon.

A. Spin-0 Case

The contribution of the single-pion intermediate state
to the absorptive part of the amplitude can be written
down immediately by Eq. (2.2) (here s, t, u denote the
usual Mandelstam variables):

7re—'p(s m'—)0(s m'—) (2po+k0) „(2p+k)~

b(u—m'—)8(u m'—)(2p ko)—„(2po k)i—$, (2 1o)

where we have used, for the electromagnetic matrix
element,

where f, and f are the appropriate s- and u-channel ab-
sorptive amplitudes. In our case they can be read off from
Eq. (2.10). p(t) stands for possible subtraction terms
and incidentally the ETC of Eq. (2.2) will contribute
to such a term in the amplitude. The requirement of
gauge invariance then fixes p(t) to be —2e'8q„. We
obtain the low-energy theorem for px scattering:

(2p,+k,)„(2p+k),
~xp= e

s—m'

(2p —kp) „(2pp—k) g
e2 —2e'8), +0(oP) (2.12)

B. Spin —,' Case

The electromagnetic current operator between nu-
cleon states is

i p1~'I' ~ 2 g/
&pl»«)lpo&= I I

e(p+po)~ for(p —po)'=o, /m )
(2x)' Aeoei (pl»(0) I p &=

(2~)' E e,~i

f (u', t)du'1 f, (s', t)ds' 1

f(s,t,u) =p(t)+- +-
sp s —s 7t' ~p Q Q

eo and e being the energy variables of the target. To
obtain the corresponding amplitude a 6xed-t dispersion
relation may be formally applied:

x (p) -I I...(p-p), (p)
&2mi

for (p —po)'=0. In the same way as seen in the case of
a spin-0 target, we get a low-energy theorem for yN'
scattering, in covariant form:

-i(pp+ko) y —m
T,&,

= —~'u(p) v&,+~
&2mi s—m'

fz)
v.—I

2mi

+ v„—
2m

~(po —k) y —m-
v~+I ~~~„k.

)

u(po)+0(~'). (2.13)
u —m' &2mi

In the rest frame of the target nucleon with transverse photons, the above expression reduced to a matrix taken
between Pauli spinors X,

e' e )' ( e )2
eo;e;T;;=&~ ——(eo e)—2m

[
(1+2~)s (eoXe)+2m] )

(1+~)'cr (eoXko)X(eXk)
m 2mi

+2m~
~
(1+~)[o (eoXko)(ko e)—e (eXk)(k eo)] &+0(cv')

&2mi
(2.14)

with i(j)= 1, 2, 3.

III. e4 LOW-ENERGY THEOREMS

As we discussed in Sec. II, the intermediate state of
target particle plus soft photons (being degenerate
with the single-particle state in the zero-photon-energy
limit) may contribute a piece to the amplitude of orders
less than co' in the low-frequency limit. In this section
we will study the simplest case: contributions from the
state of target plus one soft photon. Our approach here
is similar to that used in Sec. II, where the single-
particle-state contribution is calculated.

A. Spin-0 Case

The dispersive part of the tensorial amplitude T„q
which satis6es the requirements of crossing symmetry,
time-reversal invariance, and Hermiticity of the cur-
rents can be expressed in terms of the invariant basis as

T„),=Fi5„),+F,k„kp),+F3P„P„

+F4(k„P),,+P„ko),), (3.1)

P=p+ po, and F;=F;(s,t,u). We have dropped all terms
that are proportional to either ko„or kq. Gauge in-
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variance requires that

(u —$)F4+fFs+2Ft= 0,

(u —s)Fs+tF4 ——0.
(3.2a)

(3.2b)

Just as in the case of the single-particle state, we will
6rst compute contributions to the absorptive amplitude
from the pion plus one soft photon state Ip', k'). By
Eq. (2.2) we have

1 d'p' d'k'
L8(P+k —P' —k')T), *(Pk P'k')T (P k p'k')

Sx' 2e' 2o)' —&(P—ko —P' —k')T„.*(P, —ks, P', k')Tg„(P,, —k; P', k')g
1 s—m'l

I8(s—m') dQ'T „*(p,k p'k')T (p, k, p'k')
32~' 2z 2

u ms)—
I8(u —m') dQ'T„„*(p, —ks, p', k')T~„(ps, —k; p', k'), (3.3)

2Q

where QQ' is an element of the solid angle contained by k' in the barycentric frame of reference. The T's are e'
Compton scattering amplitudes with all photons on mass shell. Since we are only interested in the region where
ks -+ 0 and k ~ 0, we are entitled to apply the low-energy theorem as expressed in Eq. (2.12) to these T's. Clearly,
there is no question that coeKcients of the 0 functions in 3f„q can be expanded in a power series of co, since power-
series expansion is known to be valid for each of the T's. We can compute (TeT)„q np to 0(co) and hence M„q up
to 0(~'), the phase-space factors (s—m')/s and (u—m')/u being of order cu. When expressed in terms of invariant
bases of Eq. (3.1), the absorptive amplitudes M, corresponding to F; are computed to be

e4 -2(s—m' 2/s —m' ' 2(u —m' 2(u —m' '
~,= ——8(s—m') -I —-I +0(oP) —8(u—m') -I —-'I +0(oP)

3l ms 3I, ms 3& m'

) 4
cV,= ——8(s—m')I +0(a))

I

—8(u —m')~ +0(o)
Um' i am'

e4 1 t t 1 ( t
Ms ————8 (s—m') +0 (oP) —8(u —m') —

I I

— +0((o')
4x 3m' s—m' 3m4 3ms ku —m'l 3m4

e' 2 2 (s—m' 1 (
m, = ——8(s—m ) —

I + I
+.0(~s)

4x 3m' 3m'5 m' 3m ks—ms

2 2 (u—m' 1 lr

+8 (u —m') —
i + I +0 ((o')

3ms 3m'k ms 3m'ku —m'

(3.4)

Assuming that each F;(s,f,u) satisfies the simple dispersion relation of Eq. (2.11), we then have from the
threshold contribution, '~

e4 2 t 1u—s)'-
»

I
~—m'

I +pa(t)+0(co')
3 m' 3 ms i

e'(8
l"

I
s—m'

I +ps (t)+0 (co ),
4ss (3ms

e4 4 t ' 2 t- e4 (
»Is —m'I+

I

— in)ts+ps(f)+0(~')
4&'-3m' &—u 3m' 3s' msks —u

e' 2(u —s 4~ t e4 t
In I s—m'

I
— in)i'+p4(t)+0(&o),

4~' 3m'k m 3ms(u —sl 3&m s—I
» We note that ln s—ms =In(u —rN'~+O(cu) =O(luau). Any confusion as to the proper crossing properties of the amplitudes in

Eqs. (3.4) and (3.5) s ould be cleared by the simple observation that an dispersive amplitude ~inca' (even under crossing) corre-
sponds to an absorptive amplitude s.s(or) (odd under crossing). e(ca)=+1 for ~&0; s(u&)= —1 for cu(0. The s function comes
about because the physical amplitude is defined as the limit to be approached from "above" I'co+is, e-+ 0) of the cuts in the complex

plane. Consequently the contours have to be taken in opposite directions for the evaluation of discontinuities of the right- and
left-hand cuts.
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being the 6ctitious photon mass. The infrared- parts,
divergent terms come about in F3 and F4 because we
used axed-t dispersion relations and there were t/(s —m')
and t/(I —m') terms in Mo and M4. As it should be,

m d'k'—d'p' p(p+k —p' —k')
Sx' e' 2~'

terms proportional to ines —m'~ automatically satisfy
the gauge-invariance requirements of Eq. (3.2). For the
rest of the amplitudes Eq. (3.2) implies that

p (t)=p (t)=0
and

(e /3n. mo)t 1nXo—tpo(t) —2p~(t) =0.

The usual perturbation result as stated in the Intro-
duction corresponds to the solution

po(t) =0

pg(t) = (e4/6~'m') t ink'

In the rest frame of the target pion, the contribution
from terms of Fo and F4 to the amplitude T;; will be
of the order of higher than ~'; hence only Fz (8;;) and
F& (k/o;) amplitudes appear in Eq. (1.1). They are of
the order co' lnoP. Actually in this case of a spin-0 target
we could have anticipated this general feature. Since
the absorptive amplitude in Eq. (3.3) contains terms
proportional to coo(co) and aPe(co) Lo(co) =+1 for co)0;—1 for co (0],the corresponding dispersive parts should
be proportional to & lnaP and co' lnoP. The co incr' terms
cancel as required by crossing symmetry.

B. Spin —~~ Case

We will now treat the more interesting, but algebrai-
cally much more involved, case of Compton scattering
with spin-~ targets. Unlike the case of spin 0, there is no
simple argument within the context of our calculation
that we can use to rule out the possible co incr terms
since there are spin-dependent terms that are odd
under crossing. If such terms exist, the usual derivation
of low-energy theorems for the linear-frequency part
of the amplitude would be invalidated.

The approach we are going to take will be the same
as that used in jm scattering. But with the experience
and understanding gained from the spin-0 case, we
will be able to simplify the algebraic problem consider-
ably. We have learned that the amplitudes coming from
dispersion integrals over target plus soft photon cuts
will be proportional to lnco and hence must satisfy the
gauge-invariance conditions of Eqs. (3.2) among them-
selves. Consequently in our evaluation of the absorptive

XT~,'(p k; p', k')T„(po,ko, p', k')
—8(p —ko—p' —k')T„,*(p, —ko, p', k')

X Tz, (po, —k; p', k')], (3.6)

although we must still use the Lorentz- and gauge-
invariant amplitudes of Eq. (2.13) for each of the T's,
the product (T~T)z„may be computed in any gauge
and frame of reference we choose. Thus in the rest
frame of the target particle (yo

——0) with transverse
photons we have, after a rather lengthy calculation,

e' -2(s—m') 2t's —m')'-
0(s—m') -I

[
—-I —

[ a;;
8~m 3( m' I 3% m'

+ k;ko;+0(oo')
3m'

e' 2 (u—m') 2 (I m')'—
e(~—mo)

8xm 3k m' i 3k m' I

+ k;ko;+0 (oP)
3m2

+spin-dependent terms of O(cv') (3.7)

with i(j)=1, 2, 3. Through axed-t dispersion relations
we then get the result for the (e4)yE Compton ampli-.

tude as stated in Eq. (1.1).We did not explicitly calcu-
late the spin-dependent terms of O(co') in the absorptive
amplitude. Their corresponding dispersive amplitudes,
being proportional to co' lnoP, should cancel as required
by crossing symmetry, because all spin-dependent am-
plitudes are odd under crossing. Ke note that in each
of the two terms in Eq. (3.7) there are no O(~) spin-
dependent terms; they all cancel in the explicit compu-
tation. Consequently the result is that the e4 spin-
dependent amplitudes of nucleon Compton scattering
are of the order of oP inca'.

ACKNOWLEDGMENTS

I am grateful to Professor A. Pais for suggesting this
investigation of the validity of low-energy theorems to
higher orders of electromagnetic couplings and for his
continual encouragement. I wish to thank Professor
M. A. B.Bhg for many valuable criticisms and. also wish
to thank Professor G. Feinberg, Professor I. Muzinich,
and Professor H. Pagels for helpful discussions.


