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A College Course on Relativity and Cosmology by Ta-Pei Cheng 
Appendix E

(1.1) Graphic representation of Galilean transformation: Draw a (2D)
vector diagram showing the Galilean relation of r′ = r− vt for a general
relative relative velocity, instead of the restricted case of v = vx̂ as shown
in Fig 1.2.

1.1A Graphic representation of Galilean transformation for a general v.

Exercise 1.1 Two coordinate systems in motion with a general relative
velocity.
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(1.2) Galilean covariance of Newton’s law: Demonstrate that the law of
universal gravitational attraction,

F = GN
mAmB

r3
AB

rAB , (E.1)

is unchanged under Galilean transformation. In the above equation we
have two mass points mA and mB , located at positions rA and rB , sepa-
rated by rAB = rA− rB , pointing from B to A. The force on either mass
due to the other is related to the acceleration by Newton’s Second Law,
F = −mAaA = mBaB .

1.2A Because the vt term is the same for both r′A and r
′
B , we have an invariant

separation: r′AB = r′A − r′B = rA − rB = rAB . Thus the RHS is invariant
under the transformation. As for the LHS F = ma, time-differentiating
the position relation (using t′ = t), we have dr/dt′ = dr/dt − v; differen-
tiating one more time, we see that acceleration is unchanged: d2r′/dt′2 =
d2r/dt2 because the relative velocity is a constant, dv/dt = 0. Conse-
quently every term in Newton’s gravity law are invariant under a Galilean
transformation. Clearly the same equation holds in the new inertial frame
of reference.

(1.3) Galilean covariance of Newtonian momentum conservation: Con-
sider the two-particle collision A + B −→ C + D. Demonstrate that if
momentum conservation holds in one frame O,

mAuA +mBuB = mCuC +mDuD, (E.2)

it also holds in another frame O′ in relative motion (v) , provided the total
mass is also conserved: mA +mB = mC +mD.

1.3A We need to check the validity of

(mAu
′
A +mBu

′
B)− (mCu

′
C +mDu

′
D) = 0. (E.3)

Given the Galilean velocity addition rule of u′i = ui−v, with i = A,B,C,D,
the above equation becomes

(mAuA +mBuB)− (mCuC +mDuD) = v [(mA +mB)− (mC +mD)] .

This relation holds because the LHS vanishes by (E.2) and RHS vanishes
by mass conservation.

(1.4) The SR velocity addition rule: For motion in one spatial dimension (x
only), the space and time coordinates transform according to the Lorentz
transformation of (1.16). From its differential form,

dx′ = γ (dx− vdt) , dt′ = γ
(
dt− v

c2
dx
)
, (E.4)
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prove this new SR velocity addition rule, replacing the familiar relation of
(1.10) with

u′ =
u− v
1− uv

c2
, (E.5)

where u = dx/dt and u′ = dx′/dt′ are the velocities of a particle as
measured in two reference frames in relative motion (v) .

1.4A The differential form of the Lorentz transformation being

dx′ = γ (dx− vdt) , dt′ = γ
(
dt− v

c2
dx
)
, (E.6)

the ratio of these two equations is

dx′

dt′
=

dx− vdt
dt− v

c2 dx
. (E.7)

Since u = dx/dt and u′ = dx′/dt′, this equation of the ratio is the new
velocity addition ruleu′ = (u− v) /

(
1− uv/c2

)
.

(2.1) Illustrating the relativity of equilocality: While the notion of simul-
taneity’s relativity may appear strange to us, we are all familiar with its
analog in spatial coordinates – the relativity of equilocation. Two events
that take place at the same location (but at different times) will be seen
by a moving observer to have happened at different positions. This is a
straightforward consequence of Galilean transformation. Use the setup as
shown in Fig. 2.2 (i.e., light emissions at a fixed location on the railcar)
to illustrate this phenomenon of relativity of equilocality.

2.1A We can illustrate this by considering the emission of two sequential light
pulses from a fixed location on the railcar (e.g., the front end). While
these two events are clearly equilocal to an observer on the railcar, they
are seen as taking place at two different locations when viewed by the
passing observer standing on the rail platform.

(2.2) Calculating the nonsynchronicity of two events: In Fig. 2.2 the
two events (light pulses arriving at the front and back ends of the railcar)
are viewed as simultaneous in the O′ frame: t′1 = t′2. (a) Work out the non-
synchronicity,4t = t2−t1, of these two events as viewed by an observer on
the ground as the train of length L in the platform observer’s (O) frame
passes by with speed v. (b) Show that simultaneity would be absolute,
4t = 4t′, had we followed the classical velocity addition rule (1.10), so
that light signals would propagate forward with speed c+v and backward
with c− v.

2.2A To the observer on the ground, light travels a shorter distance to reach
the back-end of the rail car and an extra distance to the front-end. (a)
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Because of the constancy of the light speed, their arrival times will be
different:

t1 =
L
2 − vt1
c

, or t1 =
L
2

c+ v
, (E.8)

and

t2 =
L
2 + vt2

c
, or t2 =

L
2

c− v . (E.9)

The amount of nonsynchronicity is then

4t = t2 − t1 =
L

2

2v

c2 − v2
= γ2 v

c2
L. (E.10)

(b) Had the light propagates with c ± v speeds, the two events would be
seen as simultaneous in the O frame, just as so in the O′ frame:

t1 =
L
2 − vt1
c− v , or t1 =

L

2c
= t2. (E.11)

(2.3) Lorentz transformation for a general relative velocity: The Lorentz
transformation given in (2.12) is the special case in which the relative ve-
locity v of the two frames is along the direction of the x axis. Namely, the
coordinate system is chosen such that the x axis is parallel to the relative
velocity v. For the case where v is of a general direction, show that the
position transformation may be written as

r′ = r+ (γ − 1)
r · v
v2

v − γvt. (E.12)

2.3A The Lorentz transformation (2.12) for a general velocity written in terms
of the parallel and perpendicular position components is as follows:

r′‖ = γ
(
r‖ − vt

)
, r′⊥ = r⊥

t′ = γ
(
t− v · r

c2

)
. (E.13)

Since parallel components are along the direction of the unit vector v/v
and perpendicular components are r⊥ = r − r‖ and are not changed by
the transformation: r′ = r′‖ + r′⊥ = r′‖ + r⊥, substituting in the above
transformation we obtain

r′ = r′‖
v

v
+
(
r− r‖

v

v

)
= r+

(
r′‖ − r‖

) v
v

= r+
[
(γ − 1) r‖ − γvt

] v
v

= r+ (γ − 1)
v · r
v2

v − γvt.

(E.14)

(2,4) The transformation of coordinate derivatives via the chain rule:
Given the transformation for the space and time coordinates, find the
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Lorentz transformation for the coordinate derivatives (2.18) by the chain
rule of differentiation:

∂

∂x′
=

∂

∂x

∂x

∂x′
+
∂

∂t

∂t

∂x′

∂

∂t′
=

∂

∂x

∂x

∂t′
+
∂

∂t

∂t

∂t′
. (E.15)

The partial derivatives (∂x/∂x′, etc.) can be read off from the differential
form of (2.14) by interpreting it also as a train rule equation:

dx =
∂x

∂x′
dx′ +

∂x

∂t′
dt′

dt =
∂t

∂x′
dx′ +

∂t

∂t′
dt′. (E.16)

Namely, the transformation is a matrix of partial derivatives(
∂′x
∂′0

)
=

(
∂x
∂x′

∂x0

∂x′
∂x
∂x′0

∂x0

∂x′0

)(
∂x
∂0

)
. (E.17)

2.4A The (inverse) Lorentz transformation for infinitesimal coordinates being

dx = γ (dx′ + vdt′)

dt = γ
(
dt+

v

c2
dx′
)
, (E.18)

we can identify the transformation matrix elements with partial derivatives
in (E.16) as

∂x

∂x′
= γ,

∂x

∂t′
= γv,

∂t

∂x′
= γ

v

c2
,

∂t

∂t′
= γ. (E.19)

Substitute them into (E.15) we obtained the transformation for coordinate
derivatives

∂

∂x′
= γ

(
∂

∂x
+
v

c2
∂

∂t

)
∂

∂t′
= γ

(
∂

∂t
+ v

∂

∂x

)
, (E.20)

which is just the relation displayed in (2.18).

(2.5) Use a light-pulse clock to show length contraction: In Fig. 2.3 we
used a light-pulse clock to demonstrate the phenomenon of time dilation.
This same clock can be used to demonstrate length contraction. Suppose
the clock moves parallel, rather than perpendicular, to the bouncing light
pulses. The length of the clock L′ can be measured in the rest frame of
the clock through the time interval ∆t′ that it takes a light pulse to make
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the trip across the length of the clock and back: c (∆t′1 + ∆t′2) = c∆t′ =
2L′. In the moving reference frame the length and time are measured to
be L and ∆t. A naive application of the time-dilation formula of ∆t =
γ∆t′ would suggest the incorrect effect of length elongation, L = γL′.
Demonstrate that a careful consideration of the light clock’s operation in
this setup does lead to the expected result of L = L′/γ.

2.5A Let the time interval for the light to travel from the left-end to the right-
end be ∆t1 and when in the opposite direction, ∆t2. In the rest frame of
the clock, we clearly have∆t′1 = ∆t′2. The length measured by the observer
at rest with respect to the clock is 2L′ = c∆t′ with ∆t′ = ∆t′1+∆t′2.When
the clock is moving along the direction parallel to the light pulse, say, from
left to right, the propagation time intervals in the two directions are not
the same (as the light needs to travel further to reach the right-end, and
travel less when bouncing back to the left-end):

c∆t1 = L+ v∆t1, c∆t2 = L− v∆t2. (E.21)

The round trip time becomes

∆t1 + ∆t2 =
L

c− v +
L

c+ v
=

2L

c
γ2. (E.22)

For the LHS we can apply the time dilation formula ∆t = γ∆t′ and then
convert it to the rest frame length L′ via c∆t′ = 2L′,

∆t1 + ∆t2 = γ (∆t′1 + ∆t′2) = γ
2L′

c
. (E.23)

A comparison of the RHSs of (E.22) and (E.23) leads then to the length
contraction result of L = L′/γ.

(2.6) Lorentz contraction of a moving sphere: A sphere of radius R is
depicted as x2 + y2 + z2 = R2. A moving observer O′ with speed v will
see this sphere having the shape of ellipsoid:

x′2

X2
+
y′2

Y 2
+
z′2

Z2
= 1 with a volume V ′ =

4π

3
XY Z. (E.24)

How is this ellipsoidal volume related to the original spherical volume?

2.6A The equation for the sphere may be written as

x2

R2
+
y2

R2
+
z2

R2
= 1 (E.25)

The moving frame (x′, y′, z′) coordinates are related to we have x′ =
x/γ, y′ = y, z′ = z, and the spherical equation becomes

γ2x
′2

R2
+
y′2

R2
+
z
′2

R2
= 1 (E.26)
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which is an equation of ellipsoid

x′2

X2
+
y′2

Y 2
+
z
′2

Z2
= 1 (E.27)

with X = R/γ, Y = Z = R. The volume of an ellipsoid is 4π
3 XY Z =(

4π
3 R

3
)
/γ, just the spherical volume contracted by a Lorentz factor.

(2.7) Constancy of light velocity in a general direction: In Chapter 1
[cf (1.18)] we showed that if light travels in the same direction as the
relative velocity of two observers, each observer sees the light propagate
with the same speed, u′ = u = c. Prove this result for a light pulse
moving in an arbitrary direction. In principle one can follow the same
procedure and work out the three components u′i = dx′i/dt

′ from the
Lorentz transformation of the infinitesimal intervals and then show that for
such a light pulse the magnitude of u is invariant. However this approach
involves a rather laborious calculation. Here you are asked to follow a
much more effi cient route by using the invariant interval ds2, defined in
(2.28), for your proof.

2.7A The invariance of the infinitesimal interval ds′2 = ds2 certainly applies to
the particular case of light: If we have ds2 = 0, we must also have ds′2 = 0;
but in each case it is a statement of light velocity having the magnitude
of c regardless of its propagation direction:

dx2 + dy2 + dz2 − c2dt2 = 0 (E.28)

or equivalently (
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

= c2. (E.29)

(2.8) s is absolute because c is absolute: The previous exercise showed
that c is absolute because s is absolute. Here you are asked to prove
the converse statement: the constancy of c leads to the invariance of s. Of
course in (2.30) we already demonstrated this invariance by a direct appli-
cation of the Lorentz transformation, which is based on c’s constancy. You
are now asked to demonstrate this directly without any detailed Lorentz
transformation calculations. Hint: From the vanishing invariant interval
for light, ds′2 = ds2 = 0, and the fact that ds′ and ds are infinitesimals
of the same order, you can argue that the general intervals (not just for
light) measured in two relative frames must be proportional to each other:
ds′2 = Pds2, where P must be constant in space and time. From this,
you can then show that the proportionality factor (which in principle be
velocity-dependent) must be the identity, P = 1, by considering three

frames O v→ O′
−v→ O′′, where the symbols above the arrows indicate the

relative velocities.
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