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(5.1) Coordinate choice: Clearly the ideal choice of coordinate system often
depends on the task at hand. Consider the calculation in the space of
a 2D plane of the circumference of a circle of radius R (2πR of course).
It is easy in polar coordinates (r, θ), but rather complicated in Cartesian
coordinates (x, y). Carry out the calculations in both coordinate systems.

5.1A (a) In polar coordinates (r, θ) , we have for r = R

s =

∫
ds =

∫ 2π

0

Rdθ = 2πR. (E.108)

(b) In Cartesian system (x, y) with origin at the center of the circle,

x2 + y2 = R2, (E.109)

we just calculate the circumference of the first quadrant with both
coordinates having the range of (0, R) :

s4 =

∫ √
dx2 + dy2 =

∫
dx

√
1 +

(
dy

dx

)2

. (E.110)

Differentiating (E.109) we have

dy

dx
= −x

y
= − x√

R2 − x2
(E.111)

leading to

s = 4s4 = 4R

∫ R

0

dx√
R2 − x2

= 4R
[
sin−1 x

R

]R
0

= 2πR. (E.112)

(5.2) Cylindrical coordinate metric: Find the metric tensor for the cylin-
drical coordinates (ρ, φ) on a 2-sphere. Suggestion: From Fig. 5.1 note
that the radial coordinate is related to the polar angle by ρ = R sin θ; then
show that

g
(ρ,φ)
ab =

(
R2/

(
R2 − ρ2

)
0

0 ρ2

)
. (E.113)

5.2A Since the cylindrical radial coordinate is related to the polar angle by
ρ = R sin θ, we have dρ = R cos θdθ =

√
1− sin2 θRdθ, thus dρ2 =(

1− ρ2/R2
)
R2dθ2. Sub this into the polar coordinate metric

[ds2](θ,φ) = R2dθ2 +R2 sin2 θdφ2

=
R2

R2 − ρ2
dρ2 + ρ2dφ2 = [ds2](ρ,φ). (E.114)
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(5.3) Transformation in curved space: Find the coordinate transformation
matrix [Λ] (i.e., showing its coordinate-dependence) that changes the polar
coordinates (θ, φ) to the cylindrical (ρ, φ) .(

dρ
dφ

)
= [Λ]

(
dθ
dφ

)
. (E.115)

5.3A Since one of the coordinates is unchanged, clearly we have [Λ]φφ = 1
and [Λ]ρφ = [Λ]φθ = 0. From Ex.(5.2) we see that dρ = R cos θdθ, hence
[Λ]ρθ = R cos θ. In this way we have the transformation(

dρ
dφ

)
=

(
R cos θ 0

0 1

)(
dθ
dφ

)
. (E.116)

(5.4) Geodesics on simple surfaces: Use the geodesic equation.(5.25) to
confirm the familiar results that the geodesic is (a) a straight line on a flat
plane and (b) a great circle on a spherical surface. Suggestion: For the
case (b), working out the full parametrization can be complicated; just
check that the great circle given by φ = constant and θ = α + βτ solves
the relevant geodesic equation.

5.4A (a) Flat plane: For this 2D space with Cartesian coordinates (x1, x2) =
(x, y), the metric gab = δab. The second term in the geodesic equation
(5.25) vanishes, as well as the two components of the equation dẋν/dσ

ẍ = 0 and ÿ = 0, (E.117)

which have respective solutions of

x = A + Bσ and y = C + Dσ. (E.118)

They can be combined as

y = α+ βx (E.119)

with (A, B, C, D) and (α, β) being constants. We recognize this as
the equation for a straight line.

(b) Spherical surface: For a 2-sphere, we choose the coordinates (x1, x2) =
(θ, φ) with a metric given by (5.8) For the θ component of the geo-
desic equation (5.25) is

θ̈ = sin θ cos θφ̇
2
, (E.120)

the φ component equation,

2 sin θ cos θθ̇φ̇+ sin2 θφ̈ = 0. (E.121)

Instead of working out the full parametric solution, we will just check
that φ = constant and θ = α+βσ solve these two equations. Clearly
these solutions describe longitudinal great circles on the sphere
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(6.1) Gaussian curvature is coordinate-independent: Check the coordinate-
independence of the curvature (a) for a flat plan in Cartesian and in polar
coordinates, and (b) for a spherical surface with radius R in polar co-
ordinates and in cylindrical coordinates, by plugging in their respective
metrics, (6.6), (5.8) and (5.9), into the curvature formula (6.7).

6.1A (a) For Cartesian coordinates, the metric is constant; so clearly we have
K

(x,y)
k=0 = 0. If we use a polar coordinates (r, θ) with g11 = 1 and g22 = r2

the curvature formula (6.7) yields

K
(r,θ)
k=0 =

1

2r2

{
−2 +

1

2r2

[
0 + 4r2

]}
= 0. (E.122)

(b) For sphere with the polar coordinates (θ, φ) of a spherical surface, we
have from (5.8) g11 = R2 and g22 = R2 sin2 θ, the formula (6.7) yields

K
(θ,φ)
k=1 =

1

2R4 sin2 θ

{
0− 2R2 cos 2θ + 0 +

1

2R2 sin2 θ

[
0 +R4 sin2 2θ

]}
=

1

2R2 sin2 θ

{
−2R2

(
cos2 θ − sin2 θ

)
+

1

2R2
R44 cos2 θ

}
=

1

R2
;

(E.123)

For the cylinder coordinates (ρ, φ) on a spherical surface, we have from
and (5.9). g11 = R2/(R2 − ρ2) and g22 = ρ2. This leads to the same result:

K
(ρ,φ)
k=1 =

(R2 − ρ2)

2R2ρ2

{
0− 2 +

[
2ρ2

(R2 − ρ2)
+ 0

]
+

1

2ρ2

[
0 + 4ρ2

]}
=

1

R2
.

(E.124)

(6.2) Pseudosphere metric from embedding coordinates: (i) Recover
the result (5.8) for the metric gab of a 2D k = +1 surface in the Gaussian
coordinates

(
x1,2 = θ, φ

)
by way of its 3D embedding coordinates Xi (θ, φ)

as shown in (5.3). From the invariant interval in the 3D embedding space,
extended to the Gaussian coordinate differentials by the chain rule of
differentiation, we have

ds2 = δijdX
idXj = δij

∂Xi

∂xa
∂Xj

∂xb
dxadxb. (E.125)

By comparing this to (5.5) you can identify the metric for the 2D space:

gab = δij
∂Xi

∂xa
∂Xj

∂xb
, (E.126)

which can be viewed as the transformation of the metric from Cartesian
to the polar coordinates (ii) For a k = −1 2D pseudosphere its hyperbolic
Gaussian coordinates

(
x1,2 = ψ, φ

)
can be related to the 3D embedding

coordinates, in analogy with (5.3), by

X1 = R sinhψ cosφ, X2 = R sinhψ sinφ, X3 = R coshψ. (E.127)
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This embedding space has the metric ηij = diag(1, 1,−1) . Follow the
above steps to deduce the 2D space metric of

g
(ψ,φ)
ab = R2

(
1 0

0 sinh2

)
. (E.128)

(iii) Show that this metric leads, via (6.7), to a negative Gaussian cur-
vature of K = −1/R2. (iv) Show that while the circumference of a circle
with radius r on a spherical surface is 2πR sin(r/R), which is smaller
than 2πr as in Fig. 6.1(a), on a hypersphere it is 2πR sinh (r/R) , and
hence greater than 2πr. (v) A k = +1 2D sphere has no boundary but
a finite area: A2 =

∫
dsθdsφ = 4πR2. Similarly demonstrate that a

k = −1 2D pseudosphere has no boundary but an area that is infinite:
Ã2 =

∫
dsψdsφ =∞.

6.2A i. For 2-sphere in polar coordinates (θ, φ) :

g11 =
∂X1

∂x1

∂X1

∂x1
+
∂X2

∂x1

∂X2

∂x1
+
∂X3

∂x1

∂X3

∂x1
(E.129)

= R2 cos2 θ cos2 φ+R2 cos2 θ sin2 φ+R2 sin2 θ = R2.

and

g22 =
∂X1

∂x2

∂X1

∂x2
+
∂X2

∂x2

∂X2

∂x2
+
∂X3

∂x2

∂X3

∂x2
(E.130)

= R2 sin2 θ sin2 φ+R2 sin2 θ cos2 φ = R2 sin2 θ.

ii. For 2-pseudosphere in hyperbolic coordinates (ψ, φ) as shown in (E.127):

g11 =
∂X1

∂x1

∂X1

∂x1
+
∂X2

∂x1

∂X2

∂x1
− ∂X3

∂x1

∂X3

∂x1
(E.131)

= R2 cosh2 θ cos2 φ+R2 cosh2 θ sin2 φ−R2 sinh2 θ = R2.

and

g22 =
∂X1

∂x2

∂X1

∂x2
+
∂X2

∂x2

∂X2

∂x2
− ∂X3

∂x2

∂X3

∂x2
(E.132)

= R2 sinh2 θ sin2 φ+R2 sinh2 θ cos2 φ = R2 sinh2 θ.

iii. For the hyperbolic coordinates (ψ, φ) on a 2D surface, we have, from
g11 = R2 and g22 = R2 sinh2 θ, the Gaussian curvature (6.7):

K =
1

2R4 sinh2 θ

{
0− 2R2 cosh 2θ + 0 +

1

2R2 sinh2 θ

[
0 +R4 sinh2 2θ

]}
=

1

2R2 sinh2 θ

{
−2R2

(
cosh2 θ + sinh2 θ

)
+

1

2R2
R4 cosh2=π/s θ

}
= − 1

R2
.

(E.133)
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iv. Given (E.129) we have

ds2
θ = g11dθ

2 = R2dθ2, ds2
φ = g22dφ

2 = R2 sin2 θdφ2 (E.134)

we have the circumference of a circle on a 2-sphere

C2 =

∫
dsφ = R sin θ

∫ 2π

0

dφ = 2πR sin
( r
R

)
; (E.135)

on a 2-pseudosphere

C̃2 =

∫
dsφ = R sinh θ

∫ 2π

0

dφ = 2πR sinh
( r
R

)
(E.136)

v. The area of a 2D sphere with radius R

A2 =

∫
dsθdsφ = R2

∫ 1

−1

d cos θ

∫ 2π

0

dφ = 4πR2. (E.137)

Similarly for the 2D hypersphere with

ds2
ψ = R2dψ2, ds2

φ = R2 sinh2 ψdφ2 (E.138)

we have

Ã2 =

∫
dsψdsφ = R2

∫ ∞
1

d coshψ

∫ 2π

0

dφ =∞. (E.139)

(6.3) Light deflection from solving the geodesic equation: Take the
following steps to obtain the bending of light result shown in (6.77): (a)
Identify the two constants of motion. (b) Express the L = 0 equation in
terms of these constants. (c) Changing the curve parameter differential dτ
→ dφ and by changing the radial distance variable to its inverse u ≡ 1/r,
you should find the light trajectory to obey

u′′ + u− εu2 = 0, (E.140)

where u′′ = d2u/dφ2 and ε = 3r∗/2. (d) Solve (E.140) by perturbation:
u = u0 + εu1. Suggestion: Parameterize the first-order perturbation solu-
tion as u1 = α+β cos 2φ; then fix the constants α and β. (e) From this so-
lution of the orbit r (φ) for the light trajectory, one can deduce the angular
deflection δφ result of (6.77) by comparing the directions of the initial and
final asymptotes

(
r =∞ at φi = π/2 + δφ/2, and φf = −π/2− δφ/2

)
as

shown in Fig. 6.12(b).

6.3A To obtain the result (6.77) via the geodesic equation, we take the following
steps.
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(a) For a fixed xα = (ct, φ) ,We have two constants of motion ∂L/∂ẋα

with L = gµν ẋ
µẋν . For xα = x0, we have gµν∂ (ẋµẋν) /∂ẋ0 = 2g00ẋ

0;

similarly for xα = φ, we have gφφφ̇. Since g00 = − (1− r∗/r) and
gφφ = r2 sin2 θ = r2 as θ is fixed to be π/2, we call these two constants
κ ≡ (1− r∗/r) cṫ = −g00ẋ

0; and j ≡ r2φ̇.

(b) Express the RHS of (6.79) in terms of κ and j in the L = 0 equation:

L = g00

(
ẋ0
)2 − ṙ2/g00 + gφφφ̇

2
= κ2/g00 − ṙ2/g00 + r2φ̇

2
= 0 which

can be written as

ṙ2 +
j2

r2

(
1− r∗

r

)
= κ2. (E.141)

(c) Since jdτ = r2dφ or 1/dτ = j/
(
r2dφ

)
, we get

ṙ =
dr

dτ
=

j

r2

dr

dφ
. (E.142)

Then with u = 1/r,

u′ =
dr−1

dφ
= − 1

r2

dr

dφ
= − ṙ

j
. (E.143)

or (u′)
2

= ṙ2/j2 so that (E.141) may be re-written as

(u′)
2

+ u2 − r∗u3 =
κ2

j2
. (E.144)

By a simple differentiation with respect to φ, this equation becomes

u′′ + u− εu2 = 0, with ε = 3r∗/2. (E.145)

(d) Solve (E.145) by perturbation u = u0 + εu1.

(u′′0 + u0) + ε
(
u′′1 + u1 − u2

0

)
= 0. (E.146)

The zeroth order equation u′′0 = −u0 is a simple harmonic oscillator
equation with unit angular frequency and has the solution

u0 =
cosφ

rmin
, (E.147)

which is a straight-line r0 = rmin/ cosφ going from r0 = ∞ with
φi = π/2 to r0 = ∞ with φf = −π/2 as shown in Fig. 6.12(a). For
the first order equation

d2u1

dφ2 + u1 −
1 + cos 2φ

2r2
min

= 0 (E.148)

we try the form of u1 = α+ β cos 2φ so that

−4β cos 2φ+ α+ β cos 2φ− 1

2r2
min

− cos 2φ

2r2
min

= 0, (E.149)
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which fixes the constants α = 1/2r2
min, β = −1/6r2

min. In this way
one finds the result, accurate up to the first order in r∗, of a bent
trajectory:

1

r
=

cosφ

rmin
+

r∗

r2
min

3− cos 2φ

4
. (E.150)

(e) From this expression for the light trajectory r (φ) , one can deduce
the angular deflection δφ, cf. Fig. 6.12(b), by plugging in (either the
initial or final) asymptote r =∞, and φi = π/2 + δφ/2

0 ' − sin δφ/2

rmin
+

r∗

r2
min

3 + 1

4
' −1

rmin

(
δφ

2
− r∗

rmin

)
, (E.151)

which leads to the result of (6.77) of δφ = 2r∗/rmin.

7.2A Here one wants the outgoing light geodesics be represented by 45o world-
lines cdt̃ = dr, instead of cdt̄ = −dr.This suggests that in the ds2 = 0
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