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INCORRECT FONT FOR CHRISTOFFL SYMBOLS ON THIS PAGE !!

(11.1) Christoffel symbols as the metric tensor derivative: (a) The geom-
etry in which we are working has the property that two covariant di
fferen-tiation operations on a scalar tensor commute: DµDνS= DνDµS. 
(We call such derivatives torsion-free.) From this prove that Christoffel 
sym-bols are symmetric with respect to the interchange of their lower 
indices: νλ =Ωµ

λν

                (b) From the relation (11.22) of Christoffel symbols as the

coe cients of expansion of the derivative ∂ν eµ, we showed that the metric is 
covariantly constant as in (11.29). From this, derive the expression 
for Christoffe symbols,as the 
first derivatives of the metric tensor, shown in (5.30). To signify 
its importance, this relation is called the fundamental theorem 
of Riemannian geometry. Suggestion: One can obtain the result by 
taking the linear combination of three equations expressing (Dg = 0)

νλ
=Ωµλνwith indices cyclically permuted and by using   Ωµ 

as shown in part (a).

11.1A (a) From DµDνΩ = DνDµΩ,we immediately have Dµ (∂νΩ) = Dν (∂µΩ)
because Ω is a scalar. On the other hand, the derivatives (∂νΩ) and 
(∂µΩ) are rank 1 covariant vectors so their covariant derivatives involve 
the Christoffel symbols:

∂µ∂νΩ−Ωλµν ∂λΩ= ∂ν ∂µΩ−Ων
λ
µ∂λΩ.

From the commutativity of the ordinary differentiation we get the claimed 
result,

Ωλµν =Ων
λ
µ.

(b) We start by using several versions of (11.29) with their indices per-
muted cyclically:

Dλgµν = ∂λgµν−Ωρλµgρν−Ωρλν gµρ = 0

Dν gλµ = ∂ν gλµ−Ων
ρ

ρ
λgρµ−Ων

ρ

ρ
µgλρ = 0 (E.186)

−Dµgνλ =−∂µgνλ +Ωµν gρλ +Ωµλgνρ = 0

Adding up these three equations and using the symmetry property of
Ωρµν =Ων

ρ
µ derived in (a), we obtain:

(E.187)∂λgµν + ∂ν gλµ−∂µgνλ−2Ωρλν gµρ = 0 or, 

in its equivalent form,

Ωλµν =
1
gλρ [∂ν gµρ + ∂µgνρ−∂ρgµν ] , (E.188)

2

as 

rst displayed in (5.30).
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(11.2) Parallel-transported of a vector along a geodesic: Show that when
a vector Aµ is parallel-transported along a geodesic, the angle between the
vector and the geodesic (i.e., the tangent of the geodesic) as in (11.37) is
unchanged as in Fig. 11.2(b). Namely, prove the following relation:

D

dσ

(
Aµ

dxµ

dσ

)
= 0. (E.189)

11.2A The proof is straightforward:

D

dσ

(
Aµ

dxµ

dσ

)
=
DAµ
dσ

(
dxµ

dσ

)
+Aµ

D

dσ

(
dxµ

dσ

)
. (E.190)

The RHS indeed vanishes: the first term is zero because we are parallel
transport the vector, cf. (11.6),

DAµ

dσ
= 0; (E.191)

the second term is zero because the curve is a geodesic satisfying (11.37),

D

dσ

(
dxµ

dσ

)
= 0. (E.192)

(11.3) Riemann curvature tensor as the commutator of covariant deriv-
atives: We can obtain the same result as in Box 11.1 somewhat more
effi ciently by calculating the double covariant derivative

DαDβA
µ = Dα

(
∂βA

µ + ΓµβλA
λ
)

= ..., (E.193)

as well as the reverse order DβDαA
µ = Dβ

(
∂αA

µ + ΓµαλA
λ
)

= .... Show
that their difference (expressed here as a commutator) is just the expres-
sion for the Riemann tensor given by (11.40):

[Dα, Dβ ]Aµ = RµλαβA
λ. (E.194)

11.3A Following the rule of (11.25), we have

DαDβAµ = ∂α (DβAµ)− ΓναβDνAµ
drop

− ΓναµDβAν (E.195)

= ∂α∂βAµ
drop

− ∂α
(
ΓνβµAν

)
− Γναµ∂βAν + ΓναµΓλβνAλ

= −
(
∂αΓλβµ

)
Aλ−Γνβµ∂αAν − Γναµ∂βAν

drop

+ ΓναµΓλβνAλ

The underlined terms are symmetric in the indices (α, β) and will be can-
celled when we include the −DβDαAµ calculation. From this we clearly
get (11.56) with Rλµαβ given by (11.40).
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(11.4) From geodesic deviation to nonrelativistic tidal forces: Show that
the equation of geodesic deviation (11.67) reduces to Newtonian deviation
equation (6.24) in the Newtonian limit. In the nonrelativistic limit of slow
moving particle with 4-velocity of dxα/dτ ' (c, 0, 0, 0), the GR equation
(11.67) is reduced to

d2si

dt2
= −c2Ri0j0sj . (E.196)

We have also set s0 = 0 because we are comparing the two particle’s
acceleration at the same time. Thus (6.24) can be recovered by showing
the relation

Ri0j0 =
1

c2
∂2Φ

∂xi∂xj
(E.197)

in the Newtonian limit. You are asked to prove the this limit expression
of the Riemann curvature (11.40).

11.4A Besides slow moving particles, the Newtonian limit means a weak gravita-
tional field: gµν = ηµν + hµν with hµν being small. Thus (5.30) becomes

Γµαβ =
1

2
ηµρ[∂αhβρ + ∂βhαρ − ∂ρhαβ ]. (E.198)

Also, in this weak-field limit, we can drop the quadratic terms (ΓΓ) in
the curvature (11.40) so that there are only two terms, related by the
interchange of (β, λ) indices

Rµαλβ = ∂λΓµαβ − ∂βΓµλα (E.199)

=
1

2
ηµρ[∂λ∂αhβρ − ∂λ∂ρhαβ − ∂β∂αhλρ + ∂β∂ρhαλ]

after cancelling two terms. Thus

Ri0j0 =
1

2
[∂j∂0h0i − ∂j∂ih00 − ∂0∂0hji + ∂0∂ih0j ] = −1

2
∂i∂jh00. (E.200)

Because the Newtonian limit also has the static field condition, to reach
the last line we have dropped all time derivatives ∂′0s. With h00 = −2Φ/c2

as given by (5.41), we have the sought-after relation of

R i
0j0 =

1

c2
∂2Φ

∂xi∂x j
. (E.201)

(11.5) Jacobi identities and double commutator of covariant deriva-
tives: (a) Prove the Jacobi identity. Namely, demonstrate explicitly
that the cyclic combination of three double commutators in (11.72) van-
ishes. (b) Use the expression of Riemann tensor in terms of the double
commutator as in (11.57) to show

[Dλ, [Dµ, Dν ]]Aα = −
(
DλR

γ
αµν

)
Aγ +RγλµνDγAα. (E.202)
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11.5A (a) By expanding out the double commutators, the operator relation of
Jacobi identity is seen to be valid:

[Dλ, [Dµ, Dν ]] + [Dν , [Dλ, Dµ]] + [Dµ, [Dν , Dλ]]

= DλDµDν −DλDνDµ −DµDνDλ +DνDµDλ +

DνDλDµ −DνDµDλ −DλDµDν +DµDλDν +

DµDνDλ −DµDλDν −DνDλDµ +DλDνDµ

= 0 (E.203)

(b) Using the expression of the Riemann tensor in terms of commutator
of covariant derivatives on a covariant vector

[Dα, Dβ ]Aµ = −RλµαβAλ (E.204)

and on a rank-2 tensor

[Dα, Dβ ]Bλν = −RγναβBλγ −R
γ
λαβBγν , (E.205)

we have

[Dλ, [Dµ, Dν ]]Aα = Dλ [Dµ, Dν ]Aα − [Dµ, Dν ]DλAα

= −Dλ

(
RγαµνAγ

)
+RγαµνDλAγ +RγλµνDγAα

= −DλR
γ
αµνAγ −RγαµνDλAγ +RγαµνDλAγ +RγλµνDγAα

= −DλR
γ
αµνAγ +RγλµνDγAα, (E.206)

where (11.57) has been applied to rank-2 tensor DλAα, then the
middle two terms cancel.

(11.6) Newtonian limit of Einstein field equation: Show that Newton’s
gravitational field law, written in differential form (4.7), is the leading-
order approximation to the Einstein field equation (11.88) in the New-
tonian limit (cf Section 5.3.1) for a slow (v � c) source particle producing
a static and weak gravitational field. In this way, one can also establish the
connection between the proportionality constant κ and Newton’s constant
as shown in (6.39).

11.6A

• Slow moving source particle In the non-relativistic regime of small v/c,
the rest energy density term T00 being dominant, we shall concentrate on
the 00-component of (11.88), as other terms are down by O (v/c) :

R00 = k

(
T00 −

1

2
Tg00

)
(E.207)

with
T = gµνTµν w g00T00 =

1

g00
T00. (E.208)
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(E.207) becomes

R00 =
1

2
κT00. (E.209)

To recover the Newtonian field equation, we need to show that R00 →
52g00: From the definition of Ricci tensor (in terms of the Riemann-
Christoffel tensor), we have

R00 = gµνRµ0ν0 = gijRi0j0 (E.210)

where (i = 1, 2, 3) and in reaching the last equality we have used the fact
that the tensor components such as R0000 and Ri000 all vanish because of
symmetry properties of the curvature tensor, Rµνλρ = −Rµνρλ, etc.

• Weak field limit The Newtonian limit also corresponds to weak field
limit, gµν = ηµν + hµν with hµν being small. Since ∂g = ∂h, we will keep

as few powers of ∂g as possible: i.e., keep ∂∂g terms rather than (∂g)
2s,

etc.

Rµναβ = −1

2
(∂µ∂αgνβ − ∂ν∂αgµβ + ∂ν∂βgµα − ∂µ∂βgνα) . (E.211)

Substitute this into (E.210) we have

R00 = gijRi0j0 = −g
ij

2
(∂i∂jg00 − ∂0∂jgi0 + ∂0∂0gij − ∂i∂0g0j) (E.212)

• Static limit Newtonian limit also corresponds to a static situation, we
can drop in (E.212) all terms having a time derivative ∂0 factor,

R00 = −1

2
∇2g00. (E.213)

After using the relation (5.41) between g00 and the Newtonian potential
Φ and T00 = ρc2as discussed in Chapter 3 following (3.84), in this way
(E.209) becomes

1

2
∇2

(
1 + 2

Φ

c2

)
=

1

2
κρc2, (E.214)

or
∇2Φ =

1

2
κρc4. (E.215)

Thus we see that the Einstein equation indeed has the correct Newtonian
limit of ∇2Φ = 4πGNρ when we identify the proportional constant as in
(6.39).




