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INCORRECT FONT FOR CHRISTOFFL SYMBOLS ON THIS PAGE !!

(11.1) Christoffel symbols as the metric tensor derivative: (a) The geom-

11.1A

etry in which we are working has the property that two covariant di
fferen-tiation operations on a scalar tensor commute: D,D,S= D,D,S.
(We call such derivatives torsion-free.) From this prove that Christoffel
sym-bols are symmetric with respect to the interchange of their lower
indices: »x = A\

(b) From the relation (11.22) of Christoffel symbols as the

coe cients of expansion of the derivative 9, e,,, we showed that the metric is
covariantly constant as in (11.29). From this, derive the expression
for Christoffe symbols,as the
first derivatives of the metric tensor, shown in (5.30). To signify
its importance, this relation is called the fundamental theorem
of Riemannian geometry. Suggestion: One can obtain the result by
taking the linear combination of three equations expressing (Dg = 0)

with indices cyclically permuted and by using =04,
as shown in part (a).

(a) From D, D,Q} = D, D,Q,we immediately have D, (0,2) = D, (9,)
because 2 is a scalar. On the other hand, the derivatives (9,9) and
(0u82) are rank 1 covariant vectors so their covariant derivatives involve
the Christoffel symbols:

0,0,0—), 0\0= 8, 0,0— 0\
From the commutativity of the ordinary differentiation we get the claimed

result,
_OX
B =0
(b) We start by using several versions of (11.29) with their indices per-
muted cyclically:
Dyguw= aAgpu_Qﬁugpu_nggup =0
Dyga,= &,g)\u—Ql’j)\gw—Qﬁug)\p =0 (E.186)
—D,gur=—0u902 QI-QngX‘q_QMAng =0

Adding up these three equations and using the symmetry property of
Qr,=Qp, derived in (a), we obtain:

a)\guV"' augku_aHgVA_2Q§VgHﬂ = O or, (E187)

in its equivalent form,

1
Qf\w: 72.g>\p [8Vgup + a,ugz/p_apguy] s (E188)

as

rst displayed in (5.30).
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(11.3)
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Parallel-transported of a vector along a geodesic: Show that when
a vector A, is parallel-transported along a geodesic, the angle between the
vector and the geodesic (i.e., the tangent of the geodesic) as in (11.37) is
unchanged as in Fig. 11.2(b). Namely, prove the following relation:

D <A dx#) =0. (E.189)

do \"" do

The proof is straightforward:

D dz* DA, (dz* D (dzV
— A, — ) = El — A,—— ). E.190
da(“da) do (d0>+ ”da(da) ( )
The RHS indeed vanishes: the first term is zero because we are parallel
transport the vector, cf. (11.6),
DA®

=0 E.191
=0, (E191)

the second term is zero because the curve is a geodesic satisfying (11.37),

D (dx*
—|—=—)=0. E.192
do < do > 0 (E-192)

Riemann curvature tensor as the commutator of covariant deriv-
atives: We can obtain the same result as in Box 11.1 somewhat more
efficiently by calculating the double covariant derivative

DoDsA" = D, (85A“ + rgAAA) =.., (E.193)

as well as the reverse order DgD, A" = Dg (8aA“ + FZAA’\) =.... Show
that their difference (expressed here as a commutator) is just the expres-
sion for the Riemann tensor given by (11.40):

[Da, Dg] A* = R, ;A (E.194)

Following the rule of (11.25), we have

DaDgA, = 0a(DsA,) —T%sD,A, —T%,DgA, (E.195)
drop
= 0a0pA, — 0o (T4, A,) —T%,08A, +T%, T3, A\
drop

= —(0aT3,) Ax-T%,00A, —T%,054, + T,

ap

Ij2u14k

drop

The underlined terms are symmetric in the indices («, 5) and will be can-
celled when we include the —DgD,A,, calculation. From this we clearly
get (11.56) with R’\#aﬁ given by (11.40).
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From geodesic deviation to nonrelativistic tidal forces: Show that
the equation of geodesic deviation (11.67) reduces to Newtonian deviation
equation (6.24) in the Newtonian limit. In the nonrelativistic limit of slow
moving particle with 4-velocity of dz®/dr ~ (¢,0,0,0), the GR equation
(11.67) is reduced to

d*st

a2
We have also set s = 0 because we are comparing the two particle’s
acceleration at the same time. Thus (6.24) can be recovered by showing
the relation

—®R ;08" (E.196)

1 0%
2 Ozidzi
in the Newtonian limit. You are asked to prove the this limit expression
of the Riemann curvature (11.40).

Roj0 = (E.197)

Besides slow moving particles, the Newtonian limit means a weak gravita-
tional field: g,, = 1,, + hy, with h,, being small. Thus (5.30) becomes

1
Fgg = Q’qﬂp[aahgp + 6@hap - aphag]. (E198)

Also, in this weak-field limit, we can drop the quadratic terms (I'T") in
the curvature (11.40) so that there are only two terms, related by the
interchange of (8, \) indices

ng = (r“),\l"gﬁ — 05T, (E.199)
1
= iﬁﬂp[a,\aahﬁp — 8A8,,ha5 — 8/5(9@/1)\/} + 856‘,}1@)\}
after cancelling two terms. Thus
. 1 1
Rojo = 5[@'80/10@‘ — 0;0ihoo — Oodohji + 9o0ihoj] = —iaiajhoo. (E.200)

Because the Newtonian limit also has the static field condition, to reach
the last line we have dropped all time derivatives 9)s. With hgg = —2®/c?
as given by (5.41), we have the sought-after relation of

1 0%®

Jacobi identities and double commutator of covariant deriva-
tives: (a) Prove the Jacobi identity. Namely, demonstrate explicitly
that the cyclic combination of three double commutators in (11.72) van-
ishes. (b) Use the expression of Riemann tensor in terms of the double
commutator as in (11.57) to show
[Dx,[Dy, D]} Ao = — (DAR”

apy

) Ay + R, Dy A, (E.202)
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(a) By expanding out the double commutators, the operator relation of
Jacobi identity is seen to be valid:

[Dx, [Dyy, Du]l + [Dy, [Dx, Dyl + [Dys, [Dy, DA

— DAD.D, — DyD,D, — D,D,Dy+ D,D,Dy +
D,D\D, — D,D,Dy — D\D,,D, + D,D\D, +
D,D,D, — D,D\D, — D,DxD,, + DD, D,

— 0 (E.203)

(b) Using the expression of the Riemann tensor in terms of commutator
of covariant derivatives on a covariant vector

[Da, Dg] Ay = =R, 545 (E.204)
and on a rank-2 tensor
[Do,Dg] Bay = —R”yaﬁBM — R"’/\QBBW, (E.205)
we have

[DM [D/u DVH Ao = Dy [D/Lv DV] Aq — [D/L’DV} DyA,
= =Dy (R,,A,) + R, DyA, + RY, D A,

_D)\RVQ;WA’Y - R’Ya;wD)\A’Y + R'YQIWD)\A,Y + R

= —D\R"

apy

A’Y + R’Y)\/LVD’YAQ7
where (11.57) has been applied to rank-2 tensor DyA,, then the

middle two terms cancel.

Newtonian limit of Einstein field equation: Show that Newton’s
gravitational field law, written in differential form (4.7), is the leading-
order approximation to the Einstein field equation (11.88) in the New-
tonian limit (cf Section 5.3.1) for a slow (v < ¢) source particle producing
a static and weak gravitational field. In this way, one can also establish the
connection between the proportionality constant x and Newton’s constant
as shown in (6.39).

Slow moving source particle In the non-relativistic regime of small v/c,
the rest energy density term Tyo being dominant, we shall concentrate on
the 00-component of (11.88), as other terms are down by O (v/c) :

1
Roo =k (Too - 2T900> (E.207)
with 1
T = guyT;w = gOOTOO = —Tpo. (E208)

goo

Apv

D, A,
(E.206)
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(E.207) becomes

1
ROO = ilﬂ)Too. (E209)

To recover the Newtonian field equation, we need to show that Ropy —
V2goo: From the definition of Ricci tensor (in terms of the Riemann-
Christoffel tensor), we have

Roo = 6" Ruovo = 9" Riojo (E.210)

where (i = 1,2,3) and in reaching the last equality we have used the fact
that the tensor components such as Rygpo and R;ppo all vanish because of
symmetry properties of the curvature tensor, R,,x, = —R.p, etc.

Weak field limit The Newtonian limit also corresponds to weak field
limit, g,.,, = 1, + hyuw With hy,, being small. Since dg = dh, we will keep

as few powers of Jg as possible: i.e., keep 00g terms rather than (8g)2s,
etc.

1
R/waﬁ = *5 (au,aozgl/[} - (91/3@9“5 + 3uagg,,,a — auaﬁg,,a) . (E211)

Substitute this into (E.210) we have

j

Roo = 9" Rigjo = —% (005900 — 000;gi0 + 0000gij — 0i0vgo;) (E.212)

Static limit Newtonian limit also corresponds to a static situation, we
can drop in (E.212) all terms having a time derivative dy factor,

1
Roo = =5 V7 goo. (E.213)

After using the relation (5.41) between gop and the Newtonian potential
® and Tyy = pcas discussed in Chapter 3 following (3.84), in this way
(E.209) becomes

1, o\ 1
iv (1 + 202> = P’ (E.214)

or

1
Vi = 5npc‘l. (E.215)

Thus we see that the Einstein equation indeed has the correct Newtonian
limit of V2® = 47Gnp when we identify the proportional constant as in
(6.39).





