The solutions manual - Chapter 7
A College Course on Relativity and Cosmology by Ta-Pei Cheng
which fixes the constants $\alpha=1 / 2 r_{\text {min }}^{2}, \beta=-1 / 6 r_{\text {min }}^{2}$. In this way one finds the result, accurate up to the first order in r^{*}, of a bent trajectory:

$$
\begin{equation*}
\frac{1}{r}=\frac{\cos \phi}{r_{\min }}+\frac{r^{*}}{r_{\min }^{2}} \frac{3-\cos 2 \phi}{4} \tag{E.150}
\end{equation*}
$$

(e) From this expression for the light trajectory $r(\phi)$, one can deduce the angular deflection $\delta \phi$, cf. Fig. 6.12(b), by plugging in (either the initial or final) asymptote $r=\infty$, and $\phi_{i}=\pi / 2+\delta \phi / 2$

$$
\begin{equation*}
0 \simeq-\frac{\sin \delta \phi / 2}{r_{\min }}+\frac{r^{*}}{r_{\min }^{2}} \frac{3+1}{4} \simeq \frac{-1}{r_{\min }}\left(\frac{\delta \phi}{2}-\frac{r^{*}}{r_{\min }}\right) \tag{E.151}
\end{equation*}
$$

which leads to the result of (6.77) of $\delta \phi=2 r^{*} / r_{\text {min }}$.
(7.1) The travel time from horizon to the singular origin: (a) How much proper time $\Delta \tau$ (in terms of the Schwarzschild radius r^{*}) passes for a probe falling from the event horizon to the $r=0$ singularity? You may assume that the probe fell in radially from rest at infinity as in the discussion above. (b) Evaluate this time interval for the case of a black hole with a mass $3 M_{\odot}$ as well as the case of a supermassive black hole with a mass of $10^{9} M_{\odot}$.
7.1A (a) To arrive at the proper time interval of going from r^{*} to $0: \Delta \tau=$ $\left[\tau(r=0)-\tau\left(r=r^{*}\right)\right]=2 r^{*} / 3 c$, we need to use (7.4) for $\tau(r)$:

$$
\begin{align*}
\tau(0) & =\tau_{0}+\frac{2 r^{*}}{3 c}\left(\frac{r_{0}}{r^{*}}\right)^{\frac{3}{2}} \\
\tau\left(r^{*}\right) & =\tau_{0}-\frac{2 r^{*}}{3 c}\left[1-\left(\frac{r_{0}}{r^{*}}\right)^{\frac{3}{2}}\right] \tag{E.152}
\end{align*}
$$

(b) For the case of a black hole with a mass $3 M_{\odot}$ we have $\Delta \tau=2 r_{\odot}^{*} / c$. With $r_{\odot}^{*}=3 \mathrm{~km}$ the time interval is then $\Delta \tau=2 \times 10^{-5} \mathrm{~s}=20 \mu \mathrm{~s}$. A supermassive black hole of $10^{9} M_{\odot}$ mass has a Schwarzschild radius $r_{S M B H}^{*}=10^{9} r_{\odot}^{*}$. The infalling time comes out to be $\Delta \tau_{S M B H} \simeq$ $2 \times 10^{9} \mathrm{~km} / \mathrm{c} \simeq 2$ hours.
(7.2) Retarded EF coordinates with past $r=0$ singularity: Above we obtained the advanced EF coordinates (\bar{t}, r) with lightlike geodesics, (7.14) and (7.15), defining lightcones tilting over smoothly inward towards a future $r=0$ singularity. Obtain likewise the corresponding retarded EF coordinates (\tilde{t}, r). Find the outgoing and incoming light geodesics that bound lightcones tilting outward away from a past $r=0$ singularity as in Fig. 7.3(b).
7.2A Here one wants the outgoing light geodesics be represented by 45° worldlines $c d \tilde{t}=d r$, instead of $c d \bar{t}=-d r$. This suggests that in the $d s^{2}=0$
equation (7.11) one makes the identification of

$$
\begin{equation*}
\left(c d t-\frac{d r}{1-r^{*} / r}\right)=(c d \tilde{t}-d r) \tag{E.153}
\end{equation*}
$$

The vanishment of the other parenthesis in (7.11) then leads to light geodesic relations, instead of (7.15), of

$$
\begin{equation*}
c d \tilde{t}=-\frac{r+r^{*}}{r-r^{*}} d r \tag{E.154}
\end{equation*}
$$

This equation describes outgoing light geodesics in the $r<r^{*}$ region and incoming light geodesics in the $r>r^{*}$ region, as shown in Fig.7.3(b).
(7.3) Change of BH mass is proportional to BH gravity and change of area: Using the definition of BH surface gravity of (7.25) to derive the mass/area relation shown in (7.26).
7.3A The BH area being

$$
A^{*}=4 \pi r^{* 2}=\frac{16 \pi G_{\mathrm{N}}^{2} M^{2}}{c^{4}}
$$

or

$$
d A^{*}=\frac{32 \pi G_{\mathrm{N}}^{2} M}{c^{4}} d M=\frac{8 \pi G_{\mathrm{N}}}{\sigma^{*}} d M
$$

where we have plug in the definition of σ^{*}.
(7.4) From Hawking temperature to the proportionality of BH entropy to area: By a simple integration of $d S=T^{-1} d E$, derive the proportionality of BH entropy and area as shown in (7.33).
7.4A With $E=M c^{2}$ and the Hawking temperature of $k_{B} T=\frac{\hbar c^{3}}{8 \pi G_{\mathrm{N}} M}$, we have

$$
\frac{d S}{k_{B}}=\frac{c^{2}}{k_{B} T} d M=\frac{4 \pi G_{\mathrm{N}}}{\hbar c} d M^{2}
$$

which leads to

$$
\begin{align*}
\frac{S}{k_{B}} & =\frac{4 \pi G_{\mathrm{N}}}{\hbar c} M^{2} \\
& =\frac{1}{4} 4 \pi\left(\frac{2 G_{\mathrm{N}} M}{c^{2}}\right)^{2} \frac{c^{3}}{\hbar G_{\mathrm{N}}}=\frac{A^{*}}{4 l_{\mathrm{Pl}}^{2}} \tag{E.155}
\end{align*}
$$

