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which fixes the constants α = 1/2r2
min, β = −1/6r2

min. In this way
one finds the result, accurate up to the first order in r∗, of a bent
trajectory:
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(e) From this expression for the light trajectory r (φ) , one can deduce
the angular deflection δφ, cf. Fig. 6.12(b), by plugging in (either the
initial or final) asymptote r =∞, and φi = π/2 + δφ/2
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which leads to the result of (6.77) of δφ = 2r∗/rmin.

(7.1) The travel time from horizon to the singular origin: (a) How
much proper time ∆τ (in terms of the Schwarzschild radius r∗) passes
for a probe falling from the event horizon to the r = 0 singularity? You
may assume that the probe fell in radially from rest at infinity as in the
discussion above. (b) Evaluate this time interval for the case of a black
hole with a mass 3M� as well as the case of a supermassive black hole
with a mass of 109M�.

7.1A (a) To arrive at the proper time interval of going from r∗ to 0 : ∆τ =
[τ (r = 0)− τ (r = r∗)] = 2r∗/3c, we need to use (7.4) for τ (r):
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(b) For the case of a black hole with a mass 3M� we have ∆τ = 2r∗�/c.
With r∗� = 3 km the time interval is then ∆τ = 2× 10−5s = 20µs. A
supermassive black hole of 109M� mass has a Schwarzschild radius
r∗SMBH = 109r∗�. The infalling time comes out to be ∆τSMBH '
2× 109 km/c ' 2 hours.

(7.2) Retarded EF coordinates with past r = 0 singularity: Above
we obtained the advanced EF coordinates (t̄, r) with lightlike geodesics,
(7.14) and (7.15), defining lightcones tilting over smoothly inward towards
a future r = 0 singularity. Obtain likewise the corresponding retarded EF
coordinates

(
t̃, r
)
. Find the outgoing and incoming light geodesics that

bound lightcones tilting outward away from a past r = 0 singularity as in
Fig. 7.3(b).

7.2A Here one wants the outgoing light geodesics be represented by 45o world-
lines cdt̃ = dr, instead of cdt̄ = −dr.This suggests that in the ds2 = 0
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equation (7.11) one makes the identification of(
cdt− dr
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)
=
(
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)
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The vanishment of the other parenthesis in (7.11) then leads to light geo-
desic relations, instead of (7.15), of

cdt̃ = −r + r∗

r − r∗ dr. (E.154)

This equation describes outgoing light geodesics in the r < r∗ region and
incoming light geodesics in the r > r∗ region, as shown in Fig.7.3(b).

(7.3) Change of BH mass is proportional to BH gravity and change of
area: Using the definition of BH surface gravity of (7.25) to derive the
mass/area relation shown in (7.26).

7.3A The BH area being

A∗ = 4πr∗2 =
16πG2
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where we have plug in the definition of σ∗.

(7.4) From Hawking temperature to the proportionality of BH en-
tropy to area: By a simple integration of dS = T−1dE, derive the
proportionality of BH entropy and area as shown in (7.33).

7.4A With E = Mc2 and the Hawking temperature of kBT = ~c3
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, we have
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