
(9.1) Photon temperature boost by e+e− annihilation: Since neutrinos
and photons were once coupled and in thermal equilibrium, their temper-
atures were the same: T ′ν = T ′γ . The reaction e

+ + e− � γ + γ ceased
to proceed from right to left when the photon energy fell below 0.5 MeV.
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The disappearance of positrons increased the photons’number and hence
their temperature. This temperature boost can be calculated through the
entropy conservation condition. Entropy (S) is related to energy (U) as
dS = (1/T ) dU = (V/T ) du, where V and u are respectively the volume
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and photon temperature change as required by the entropy conservation
condition S′e+ + S′e− = Sγ − S′γ in the annihilation reaction and the cor-
responding volume and neutrino temperature change for the uncoupled
neutrinos S′ν = Sν , show that the final photon and neutrino temperatures
are related by (9.37): Tγ = (11/4)

1/3
Tν .

9.1A The entropy conservation condition for the e+e− annihilation reaction may
be written as

S′γ + S′e+ + S′e− = Sγ . (E.164)

Given that Tγ
′ = Te

′
+ = Te

′
− , writing out the effective spin degrees g∗ of

(9.5) this entropy conservation condition becomes
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′3 = 2V Tγ
3 (E.165)

or
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. (E.166)

The volume factor can be replaced by neutrino temperature ratio because
of entropy conservation of the uncoupled neutrinos V ′Tν

′3 = V Tν
3 :(
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)3

=
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(
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)3

. (E.167)

Before the positron disappearance, neutrino and photon temperatures are
the same, Tν

′ = Tγ
′ , leading to the stated relation (9.37).
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(9.2) The radiation and matter equality time: The early universe was
radiation-dominated; it then gave way to a matter-dominated system. The
radiation-matter equality time tRM is defined to be the cosmic time when
the energy densities of radiation and matter were equal:

1 =
ρR (tRM )

ρM (tRM )
=

ΩR (tRM )

ΩM (tRM )
. (E.168)

Calculate tRM by the steps outlined below:

(a) From the scaling behavior of the radiation and matter densities, relate
the scale factor aRM at radiation-matter equality time to the matter-
to-radiation density ratio now, ΩR (t0) /ΩM (t0) .

(b) This density ratio can be calculated to have the value of ' 3× 10−4

with the following inputs: radiation is composed of photons and neu-
trinos, so the total radiation energy density ΩR (t0) is related to
photon density by way of (9.40); the matter content ΩM (t0) can
be deduced from the baryon fraction of matter ΩB (t0) /ΩM (t0) '
0.05/0.31 and the photon-to-baryon number ratio nγ/nB . The energy
of baryonic matter EB (t0) can be calculated by adding up the nu-
cleon rest energies, while the photon energy Ēγ (t0) can be deduced
from its value of 0.7 eV at redshift of zγ ' 1100.

(c) Follow the worked Example of 9.2, using the result for aRM from parts
(a) and (b) and a cosmic age t0 = 14 Gyr to show that the radiation-
matter dominance transition happened approximately 73000 years
after the big bang.



9.2A (a) Since radiation density scales as a−4 and matter scales as a−3, we
have

1 =
ρR (tRM )

ρM (tRM )
=
ρR (t0) /a4 (tRM )

ρM (t0) /a3 (tRM )
, or a (tRM ) =

ΩR (t0)

ΩM (t0)
.

(E.169)

(b) We first relate this density ratio through matter’s baryon content
with the present fraction being ΩB (t0) /ΩM (t0) = 0.05/0.31, and
relate the radiation density to photon density ΩR (t0) = 1.68Ωγ (t0)

a (tRM ) =
ΩR (t0)

ΩM (t0)
=

1.68Ωγ (t0)

ΩB (t0)

ΩB (t0)

ΩM (t0)

= 1.68× nγ
nB

Eγ (t0)

EB (t0)

ΩB (t0)

ΩM (t0)

= 1.68× 109

0.6
× 0.7eV/1100

939× 106eV
× 0.05

0.31

' 3× 10−4. (E.170)

It then follows that ΩR (t0) = 3 × 10−4ΩM (t0) . Clearly we are in a
matter dominated epoch with ΩM (t0) = 0.31 and ΩR (t0) ' 1×10−4.

(c) Assuming that the universe has been matter dominated for t > tRM ,
the cosmic time dependence of the scale factor should be a ∝ t2/3.

a0

aRM
=

(
t0
tRM

)2/3

(E.171)

or

tRM = (aRM )
3/2

t0 (E.172)

=
(
3× 10−4

)3/2 × 1.4× 1010 yr = 7.3× 104 yr.

(9.3) Temperature dipole anisotropy as Doppler effect: By converting

c

temperature variation to that of light frequency T ∼ 1/a ∼ 1/lengh, show
that the Doppler effect (3.52) implies that an observer moving with a non-
relativistic velocity v through an isotropic CMB would see a temperature
dipole anisotropy of δT/T = v cos θ, where the angle θ is measured from
the direction of the motion.

9.3A Recall that temperature scales as a−1, that is, as inverse wavelength, or
as frequency:

δT

T
=
δω

ω
. (E.173)

But the nonrelativistic Doppler effect (the small β limit of (3.52) reads

ω′ = 1− v

c
cos θ

( )
ω (E.174)

or (δω/ω) = (v/c) cos θ.
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