The solutions manual - Chapter 10
 A College Course on Relativity and Cosmology by Ta-Pei Cheng

(10.1) Estimate $\left|1-\Omega\left(t_{\mathrm{bbn}}\right)\right|$ from $\left|1-\Omega\left(t_{\mathrm{RM}}\right)\right|$: Given that the universe was radiation-dominated from t_{bbn} to t_{RM}, estimate the magnitude of $\left|1-\Omega\left(t_{\mathrm{bbn}}\right)\right|$ from $\left|1-\Omega\left(t_{\mathrm{RM}}\right)\right|$, as in (10.2). The estimate will depend on knowing that the scale factor evolves as the inverse temperature $a_{\mathrm{RM}} / a_{\mathrm{bbn}}=$ $T_{\mathrm{bbn}} / T_{\mathrm{RM}}=O\left(10^{5}\right)$.
10.1A The time evolution for cosmic time (including t_{bbn}) prior to t_{RM} was radiation dominated: $a(t) \sim t^{1 / 2}$ or $\dot{a} \sim t^{-1 / 2} \sim a^{-1}$, we have from (10.2),

$$
\begin{equation*}
\frac{1-\Omega\left(t_{\mathrm{bbn}}\right)}{1-\Omega\left(t_{\mathrm{RM}}\right)}=\left[\frac{\dot{a}\left(t_{\mathrm{bbn}}\right)}{\dot{a}\left(t_{\mathrm{RM}}\right)}\right]^{-2}=\left[\frac{a\left(t_{\mathrm{bbn}}\right)}{a\left(t_{\mathrm{RM}}\right)}\right]^{2} \tag{E.175}
\end{equation*}
$$

Combining the results of $a_{\mathrm{RM}} / a_{\mathrm{bbn}}=T_{\mathrm{bbn}} / T_{\mathrm{RM}}=O\left(10^{5}\right)$ and $\left|1-\Omega\left(t_{\mathrm{RM}}\right)\right|=$ $O\left(10^{-4}\right)$ from (10.2), we have

$$
\begin{align*}
\left|1-\Omega\left(t_{\mathrm{bbn}}\right)\right| & =\left|1-\Omega\left(t_{\mathrm{RM}}\right)\right|\left[\frac{T_{\mathrm{RM}}}{T_{\mathrm{bbn}}}\right]^{2} \tag{E.176}\\
& =O\left(10^{-4}\right)\left[O\left(10^{-5}\right)\right]^{2}=O\left(10^{-14}\right)
\end{align*}
$$

(10.2) Redshift dependence of Hubble constant via the energy densities: (a) Insert the present Friedmann equation (8.48) into the general equation (8.42) and then use (8.14) for the critical density to express the epoch-dependent Hubble parameter as $H(a)=H_{0}\left[\rho(a) / \rho_{\mathrm{c}, 0}+\left(1-\Omega_{0}\right) / a^{2}\right]^{1 / 2}$
(b) Put in the scale dependence of the densities in $\rho(a)=\rho_{M}(a)+\rho_{\Lambda}$ (neglect the radiation density, which is negligible long after $t_{R M}$) to find

$$
\begin{equation*}
H(a)=H_{0}\left(\frac{\Omega_{\mathrm{M}, 0}}{a^{3}}+\Omega_{\Lambda}+\frac{1-\Omega_{0}}{a^{2}}\right)^{1 / 2} \tag{E.177}
\end{equation*}
$$

or in terms of the redshift in (8.35),

$$
\begin{equation*}
H(z)=H_{0}\left[\Omega_{\mathrm{M}, 0}(1+z)^{3}+\Omega_{\Lambda}+\left(1-\Omega_{\mathrm{M}, 0}-\Omega_{\Lambda}\right)(1+z)^{2}\right]^{1 / 2} \tag{E.178}
\end{equation*}
$$

10.2A (a) First we replace the curvature parameter k term in (8.42) by the expression shown in (8.47),

$$
\begin{equation*}
[H(a)]^{2}=\frac{\dot{a}^{2}(t)}{a^{2}(t)}=\frac{8 \pi G_{\mathrm{N}}}{3} \rho+\frac{\dot{a}^{2}\left(t_{0}\right)}{a^{2}(t)}\left(1-\Omega_{0}\right) \tag{E.179}
\end{equation*}
$$

Pulling out the $\dot{a}^{2}\left(t_{0}\right)=H_{0}^{2}$ and identify the combination $3 H_{0}^{2} /\left(8 \pi G_{\mathrm{N}}\right)$ as the critical density now $\rho_{\mathrm{c}, 0}$, we have

$$
\begin{equation*}
[H(a)]^{2}=H_{0}^{2}\left(\frac{\rho(a)}{\rho_{\mathrm{c}, 0}}+\frac{1-\Omega_{0}}{a^{2}(t)}\right) \tag{E.180}
\end{equation*}
$$

(b) With $\rho(a)$ expressed in terms of the various components

$$
\begin{equation*}
\frac{\rho(a)}{\rho_{\mathrm{c}, 0}}=\Omega(a)=\frac{\Omega_{\mathrm{R}, 0}}{a^{4}}+\frac{\Omega_{\mathrm{M}, 0}}{a^{3}}+\Omega_{\Lambda, 0} \tag{E.181}
\end{equation*}
$$

and dropping the negligible radiation density $\Omega_{\mathrm{R}, 0}$, (E.180) becomes, after dropping the negligible radiation density $\Omega_{\mathrm{R}, 0}$,

$$
\begin{equation*}
H(a)=H_{0}\left(\frac{\Omega_{\mathrm{M}, 0}}{a^{3}}+\Omega_{\Lambda}+\frac{1-\Omega_{0}}{a^{2}}\right)^{1 / 2} \tag{E.182}
\end{equation*}
$$

which can in turn be expressed in terms of the redshift,

$$
\begin{equation*}
H(z)=H_{0}\left[\Omega_{\mathrm{M}, 0}(1+z)^{3}+\Omega_{\Lambda}+\left(1-\Omega_{\mathrm{M}, 0}-\Omega_{\Lambda}\right)(1+z)^{2}\right]^{1 / 2} \tag{E.183}
\end{equation*}
$$

(10.3) A check on the cosmic age formula: For a matter-dominated flat universe without a cosmological constant $\left(\Omega_{0}=\Omega_{M, 0}=1\right.$ with $\left.\Omega_{\Lambda, 0}=0\right)$, check that the cosmic age formula of (10.26) has the correct limit of $t_{0}=$ $\frac{2}{3} t_{H}$ in agreement with the result obtained in (8.71).
10.3A Plug in the condition of $\Omega_{M, 0}=1$ into (10.26) and take the $\Omega_{\Lambda} \rightarrow 0$ limit of $\left[\ln \left(\sqrt{\Omega_{\Lambda}}+\sqrt{1+\Omega_{\Lambda}}\right)\right] \rightarrow \sqrt{\Omega_{\Lambda}}$, we obtain $t_{0}=\frac{2}{3} t_{\mathrm{H}}$.
(10.4) Estimate of matter and dark energy equality time Closely related to the deceleration/acceleration transition time $t_{\text {tr }}$ is the epoch $t_{\mathrm{M} \Lambda}$ when the matter and dark energy components are equal $\Omega_{\mathrm{M}}\left(t_{\mathrm{M} \Lambda}\right)=$ $\Omega_{\Lambda}\left(t_{\mathrm{M} \Lambda}\right)$. Show that the estimated $t_{\mathrm{M} \Lambda}$ is comparable to, and as expected somewhat greater than, $t_{\mathrm{tr}} \simeq 7.6 \mathrm{Gyr}$ obtained above.
10.4A The matter and dark energy equality time being defined by $\Omega_{\mathrm{M}}\left(t_{\mathrm{M} \Lambda}\right)=$ $\Omega_{\Lambda}\left(t_{\mathrm{M} \Lambda}\right)$, from their respective scaling property, we can then relate the matter and dark energy densities now to the scale factor $a\left(t_{\mathrm{M} \Lambda}\right)$

$$
\begin{equation*}
\left[a\left(t_{\mathrm{M} \Lambda}\right)\right]^{3}=\frac{\Omega_{\mathrm{M}, 0}}{\Omega_{\Lambda}} \tag{E.184}
\end{equation*}
$$

Plugging this into (10.25)

$$
\begin{equation*}
\frac{t_{\mathrm{M} \Lambda}}{t_{\mathrm{H}}}=\frac{2}{3 \sqrt{\Omega_{\Lambda}}} \ln (1+\sqrt{2})=0.71 \tag{E.185}
\end{equation*}
$$

Thus the matter and dark energy equality time $t_{\mathrm{M} \Lambda} \simeq 10.2 \mathrm{Gyr}$.

