
Supplementary note on Tensors: a practical lesson 

Tensors are mathematical objects that have definite transformation properties under some 

coordinate transformations (for example, rotations, Lorentz transformations, etc.) Examples of 

tensors are vectors (tensor of rank-1), scalars (tenors of rank-0), or tensors of higher ranks – e.g. 

rank-2 tensors: electromagnetic field tensor (Sec 3.2.3), energy momentum tensor (Sec 3.2.4). 

The reason we are interested in tensor equations because they are automatically coordinate 

symmetric (relativistic), See e.g. Eq.(1.8). 

In this course we shall deal mainly with tensor components with contravariant components 

having upper indices and covariant components having lower indices, Eq.(3.12). They transform 

oppositely Eq.(3.27) and video lecture #3c. Examples of tensors: 

• Rank-1 (vectors):    𝐴′𝛼
= [𝑅]𝛽

𝛼𝐴𝛽 ,     𝐴′
𝛼 = [𝑅−1]𝛼

𝛽
𝐴𝛽      

o [𝑅] and [𝑅−1] are respectively the transformation matrix and its inverse .  

o 𝛼′s are free indices— they must match in each term of a tensor equation. 

o Each of the above equations has a pair repeated indices (𝛽′s), meaning  

they are summed over. Namely, here we adopt Einstein summation convention 

of omitting the display of the summation sign ∑𝛽  

• Rank-2 tensors:  

𝐴′𝛼𝛾
= [𝑅]𝛽

𝛼[𝑅]
𝛿
𝛾

𝐴𝛽𝛿 ,     𝐴′
𝛼𝛾 = [𝑅−1]𝛼

𝛽[𝑅−1]𝛾
𝛿𝐴𝛽𝛿 ,      𝐴′𝛾

𝛼 = [𝑅]𝛽
𝛼[𝑅−1]𝛾

𝛿𝐴′𝛿
𝛽

 

o 𝛼′s and γ′s are free indices; each term must be of the same rank. 

o The pairs of 𝛽′s and δ′s are repeated indices, meaning they are summed over.  
Namely, there are two summations in the above equations, but we omit the 

display of the summation signs ∑𝛽  and ∑𝛿  

o For each upper index of a tensor, there is a [𝑅] transformation, and  

each lower a [𝑅−1].   

• Rank-3 tensors:  

𝐴′𝛼𝛾𝜌
= [𝑅]𝛽

𝛼[𝑅]
𝛿
𝛾[𝑅]𝜎

𝜌
𝐴𝛽𝛿𝜎,    𝐴′𝛾𝜌

𝛼 = [𝑅]𝛽
𝛼[𝑅−1]𝛾

𝛿[𝑅−1]𝜌
𝜎𝐴′𝛿𝜎

𝛽
,     𝑒𝑡𝑐. 

In the following I will comment on a couple of homework assignments related to tensors 

[I] Ex 3.2 on p.38 (the quotient theorem) is one of the assigned homework problems. Here I will 

work out a slightly simpler version and you should be able complete the exercise by following 

the same steps.  

■ Given a tensor equation 𝐴𝛼 = 𝐶𝛼𝛽𝐵𝛽. If we know that 𝐴𝛼  and 𝐵𝛽 are tensors, prove that 𝐶𝛼𝛽 

must also be a tensor. Namely, demonstrate that   𝐶′𝛼𝛽 = [𝑅]𝛾
𝛼[𝑅]𝛽

𝐶𝛾 . 

The proof goes like this:  𝐴𝛼 = 𝐶𝛼𝛽𝐵𝛽 being a tensor equation, it then holds not only in O-frame, 

but must also in the O’-frame: 𝐴′𝛼 = 𝐶′𝛼𝛽𝐵′𝛽. Since 𝐴𝛼  and 𝐵𝛽 are tensors, we have 

𝐴′𝛼
= [𝑅]𝛾

𝛼𝐴𝛾  and  𝐵′
𝛽 = [𝑅−1]𝛽

𝛿 𝐵𝛿 .    Sub them into the primed relation, we then have  

[𝑅]𝛾
𝛼𝐴𝛾 = 𝐶′𝛼𝛽[𝑅−1]𝛽

𝛿 𝐵𝛿 



. 

Now, sub in on the LHS the unprimed relation 𝐴𝛾 = 𝐶𝛾 𝐵𝜖 , we get  

[𝑅]𝛾
𝛼𝐶𝛾 𝐵𝜖 = 𝐶′𝛼𝛽[𝑅−1]𝛽

𝛿 𝐵𝛿 . 

We can “move” the [𝑅−1]𝛽
𝛿  factor from RHS to the LHS by multiplying both sides with 

[𝑅]𝛽
  and noting  [𝑅][𝑅−1] = [𝐼] so that    

[𝑅]𝛽[𝑅]𝛾
𝛼𝐶𝛾 𝐵𝜖 = 𝐶′𝛼𝛽{[𝑅]𝛽[𝑅−1]𝛽

𝛿 }𝐵𝛿 = 𝐶′𝛼𝛽𝛿𝛿𝐵𝛿 = 𝐶′𝛼𝛽𝐵 , 

where we have replaced the product factor {…   } in the 2nd term by a Kronecker delta 𝛿𝛿 . 

Finally, cancelling the common factor 𝐵𝜖 in the first with the one in last term, we have  

[𝑅]𝛽[𝑅]𝛾
𝛼𝐶𝛾 = 𝐶′𝛼𝛽  , proving that 𝐶𝛼𝛽 is a tensor.   

One of the practical lessons I want to emphasize here is that [𝑅]𝛽
′𝑠 are components of a 

matrix. While matrices are non-commutative, their components are just ordinary numbers 
that we can freely move them around. The same property holds for tensor components too. 

[II] Now on to Ex 3.9 – Lorentz transformation of EM fields from the covariant formalism. 

You are asked to show that result of Eq.(2.40) is contained in Eq.(3.69). First, the indices 

µ, 𝜈, . . run over the range of 0, 1, 2, 3 with 1 = 𝑥, 2 = 𝑦, 3 = 𝑧.    From Eq.(3.63), or (3.64), 

noting 𝐹01 = −𝐸𝑥, we then concentrate on Eq. (3.69), with the free indices µ and ν set at µ =

0, 𝜈 = 1 so that  𝐹′01 = [𝐿−1]0
𝜆[𝐿−1]1

𝜌
𝐹𝜆𝜌.  This involves a double sum over the repeated indices of λ as 

well as ρ (with the summation signs ∑𝜆  and ∑𝜌  omitted). In principle there are 16 terms on the 

RHS; however many of these terms vanish as [𝐿−1]0
2 = [𝐿−1]1

3 = 𝐹00 = 𝐹11 = 0, all we have 𝐹′01 =

[𝐿−1]0
0[𝐿−1]1

1𝐹01 + [𝐿−1]0
1[𝐿−1]1

0𝐹10 . 

Lorentz transformation being  [𝐿−1] = (

𝛾 𝛽𝛾
𝛽𝛾 𝛾

1
1

) , with 𝐹01 = −𝐸1 = −𝐸𝑥, we obtain     

−𝐸′
𝑥 = 𝛾2(−𝐸𝑥) + 𝛽2𝛾2𝐸𝑥 = −𝐸𝑥, after 𝛾2(1 − 𝛽2) = 1. This is one of the Eq. (2.40) result.  

This is part (a) of the homework. For part (b), you are asked to convert Eq.(3.69) into matrix 

multiplication. The key point keep in mind is that in a matrix component representation of  

[𝐴]𝛽
𝛼 , or 𝐹𝛼𝛽 , the α is the column index while β is the row index. The product of matrices  

involves the multiplication of row element with the column element: hence the pair-wise 

contraction of column index with the correspondent row index. We need to place the contracted 

indices next to each other:   𝐹′µ𝜈 = [𝐿−1]µ
𝜆[𝐿−1]𝜈

𝜌
𝐹𝜆𝜌 = {[𝐿−1]µ

𝜆𝐹𝜆𝜌}[𝐿−1]𝜈
𝜌

.   Namely, the standard 

matric multiplication of [𝐿−1][F] with [𝐿−1] on the left, then multiply [𝐿−1] from right. However 

its column and row indices are at the wrong place. Thus we need to take the “transpose” of the 

matrix. But in our case [𝐿−1] is a symmetric matrix, i.e., transpose operation has no effect. The 

final result is the matrix multiplication [𝐹’] = [𝐿−1][𝐹][𝐿−1] as shown at the last line on p.271. 


